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Abstract—In the 1990’s, Jeavons showed that every
finite algebra corresponds to a class of constraint
satisfaction problems. Vardi later conjectured that
idempotent algebras exhibit P/NP dichotomy: Ev-
ery non NP-complete algebra in this class must be
tractable. Here we discuss how tractability corre-
sponds to connectivity in Cayley graphs. In particular,
we show that dichotomy in finite idempotent, right
quasigroups follows from a very strong notion of
connectivity. Moreover, P/NP membership is first-
order axiomatizable in involutory quandles.

I. INTRODUCTION

Constraint satisfaction problems have a wide
range of applications, from artificial intelligence
to combinatorics and complexity theory. The gen-
eral constraint satisfaction problem (CSP) is NP-
complete, but there are many restrictions that
make certain CSPs tractable. Jeavons, Cohen, and
Gyssens [8] noticed that all tractable CSPs involve
closure under algebraic operations. It was later
noticed that all CSPs can be viewed this way [7].

Furthermore, Feder and Vardi [5] conjectured
that CSPs exhibit P/NP-complete dichotomy. Bula-
tov, Jeavons, and Krokhin proved that Feder and
Vardi’s conjecture is equivalent to showing that
algebras that fail to admit NP-complete CSPs must
only admit polynomial time CSPs [1].

A. Aim and Scope

There have been many advances toward a P/NP-
complete dichotomy theorem for all algebras. Much
of this progress has involved the discovery of con-
ditions under which algebras are tractable, that is,

admit only polynomial time CSPs. Such conditions
include term-based tests. For example, the exis-
tence of a unanimity operation [7], a generalized
majority-minority operation [10], a semilattice
operation [8], or a Malcev term [2] for a given
algebra guarantees tractability.

In this paper we introduce another term-based
test for tractability for idempotent, right quasi-
groups. We show this is a special case of the
Malcev term test. However, this approach is easier
computationally since it involves a binary Merling
term rather than a ternary Malcev term. Moreover,
this test governs a P/NP-complete dichotomy result:
If an idempotent, right quasigroup has a Merling
term it is tractable. Otherwise, it is NP-complete.

A Merling term has a strong geometric dimen-
sion: its existence is tantamount to a strong notion
of connectedness within the right Cayley graph.
Furthermore, for the subclass of involutory quan-
dles, one can replace the existence of a Merling
term with the satisfiabilty of a certain fixed, first-
order statement. In other words, tractability and,
by association, the existence of a Malcev term for
involutory quandles is first-order axiomatizable.

B. Brief Summary

We first establish the notion of a constraint
satisfaction problem over an algebra in Section
II. This allows us to speak of the tractability of
algebras via their constraint satisfaction problems.
In Section III we define Merling terms and prove
that in idempotent right quasigroups, the existence
of a Merling term is equivalent to the existence



of a Malcev term. Furthermore, in Section IV we
show that idempotent, right quasigroups exhibit
P/NP-complete dichotomy through an exploration
of a geometrical interpretation of Merling terms.
In Section V, we then narrow down idempotent,
right quasigroups to a strict subclass of algebras,
involutory quandles. We show that not only do
involutory quandles exhibit this dichotomy, but this
instance of P/NP-complete dichotomy is first-order
axiomatizable.

II. CONSTRAINT SATISFACTION PROBLEMS
OVER ALGEBRAS

Our treatment of the constraint satisfaction
problem closely follows [1]. A constraint over an
algebra A is a pair 〈(v1, v2, . . . , vn), A′〉 where
v1, v2, . . . , vn are variables and A′ is a subalgebra
of An. Note that elements of A′ are tuples of size
n. These tuples represent the possible values the
variables can take.

The components of a constraint satisfaction
problem over an algebra A are instances and so-
lutions. An instance is a triple

I = (V, A, C)

where V is a finite set of variables and C is a finite
set of constraints over A with variables from V . A
solution to an instance I is a function σ : V → A
such that for each constraint

〈(v1, v2, . . . , vn), A′〉 ∈ C,

we have

(σ(v1), σ(v2), . . . , σ(vn)) ∈ A′.

The set of CSPs over an algebra A is denoted
CSP (A).

The projection algebra U2 on two elements
plays an important role in this article. More gener-
ally, Un is the algebra (A, ∗) on the underlying set
A = {0, 1, . . . , n− 1} defined by x ∗ y = x.

Example 1. We typically present an algebra with
one basic operation by giving its Cayley table. Here
is the Cayley table for U2:

TABLE I. CAYLEY TABLE FOR U2

∗ 0 1
0 0 0
1 1 1

All subsets of Un are also subalgebras since the
projection operation forces all subsets to be closed
under ∗.

Example 2. An instance of the 3-SAT problem
is a proposition in conjunctive normal form whose
clauses each have three literals. For example, con-
sider the following.

(¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ w)

A solution is a truth assignment to the variables in
the clauses that satisfies the proposition. Any truth
assignment that makes both z and w true satisfies
this formula.

3-SAT can also be formulated as a CSP over
U2. The instance is the triple (V, {0, 1}, C) where V
is the set of variables that appear in the proposition,
0 represents false and 1 represents true, and C is the
set of constraints of the following form: For each
clause, whose variables are x1, x2, and x3, there is
a constraint 〈(x1, x2, x3), {0, 1}3−{(a1, a2, a3)}〉
where (a1, a2, a3) is the only truth assignment to
(x1, x2, x3) that makes the clause false.

For example, the constraint corresponding to
the clause ¬x ∨ y ∨ z is

〈(x, y, z), {0, 1}3 − {(1, 0, 0)}〉.

Note that since all subsets of U3
2 are also

subalgebras of U3
2 , all of the constraints for 3-SAT

are subalgebras of U3
2 . Hence 3-SAT is a problem

in CSP (U2).

An algebra A is NP-complete if CSP (A) con-
tains an NP-complete problem. A is tractable if
all problems in CSP (A) have polynomial-time
solutions.

Example 3. 3-SAT is a known NP-complete prob-
lem and CSP (U2) contains 3-SAT, so U2 is NP-
complete.

III. TRACTABILITY AND RIGHT
CANCELLATION

Definition 4. An idempotent, right quasigroup
(Q, ∗, /) is a set Q together with two binary basic
operations ∗, / : Q2 → Q satisfying the following
axioms:

Idempotence: ∀x(x ∗ x = x).

Right Cancellation I: ∀xy((x ∗ y)/y = x).

Right Cancellation II: ∀xy((x/y) ∗ y = x).

Note that Un is an idempotent, right quasigroup
when we define the / operation to be the same as
the ∗ operation. In particular, Un is an NP-complete
idempotent, right quasigroup for n ≥ 2, since it
admits the NP-complete CSP 3-SAT.



t(x1, x2, . . . , xk) = (...((xi ◦1 t1(x1, x2, . . . , xk)) ◦2 t2(x1, x2, . . . , xk)) . . .) ◦n tn(x1, x2, . . . , xk)

Fig. 1. Structure of t(x1, x2, . . . , xk).

r(x1, x2, . . . , xk) = (...((xi ◦1 t1(x1, x2, . . . , xk)) ◦2 t2(x1, x2, . . . , xk)) . . .) ◦i ti(x1, x2, . . . , xk)

Fig. 2. Structure of r(x1, x2, . . . , xk).

m(x, y) = (...((x ◦1 t1(x, y)) ◦2 t2(x, y)) . . .) ◦n tn(x, y)

Fig. 3. Structure of m(x, y).

s(x, y, z) = (...((x ◦1 t1(y, z)) ◦2 t2(y, z)) . . .) ◦n tn(y, z)
p(x, y, z) = (. . . ((s(x, y, z) ◦−1n z) ◦−1n−1 z) . . .) ◦

−1
1 z

Fig. 4. Definition of s(x, y, z) and p(x, y, z).

A. Malcev and Merling Terms

In [2], the authors proved that an algebra with
a Malcev term is tractable. A Malcev term over
an algebra A is a ternary term p(x, y, z) such that
p(x, y, y) = x and p(x, x, y) = y in A [3]. In
order to determine that an algebra is tractable, it
is sufficient to find a Malcev term for that algebra.

In idempotent, right quasigroups, however, we
do not need to find a Malcev term. Instead we only
need to find a Merling term:

Definition 5. A binary term m(x, y) over the right
quasigroup signature is a Merling term for the
quandle Q if m(x, y) = x in U2 but m(x, y) = y
in Q.

Note that a Merling term t for Q ensures
that Q and U2 have independent varieties [11].
The following technical result will prove useful in
multiple contexts.

Lemma 6. Let t(x1, x2, . . . , xk) be a term over
{∗, /}. Then the term operation on Um associated
to t is a projection operation. That is, for some
i = 1, 2, . . . , k, t(x1, x2, . . . , xk) = xi in Um.
Moreover, t takes a form as in Figure 1 for some
terms t1, t2, . . . , tn.

Proof: We prove this claim by induction on
the term structure of t(x1, x2, . . . , xk). The result
is immediate in most basic case in which the term
t(x1, x2, . . . , xk) is a variable xi for some 1 ≤ i ≤
k.

In the general case, t(x1, x2, . . . , xk) takes
the form t(x1, x2, . . . , xk) = r(x1, x2, . . . , xk) ◦
s(x1, x2, . . . , xk) where ◦ is either ∗ or /. By the
induction hypothesis, one of r(x1, x2, . . . , xk) =
xi holds in Um for some 1 ≤ i ≤ k. In
Um, x ∗ y = x and x/y = x for all x, y.

Hence t(x1, x2, . . . , xk) = r(x1, x2, . . . , xk) ◦
s(x1, x2, . . . , xk) = r(x1, x2, . . . , xk) = xi.

Also by the induction hypothesis, r takes the
form of Figure 2. Letting n = i + 1, ◦n = ◦, and
tn(x1, x2, . . . , xk)◦s(x1, x2, . . . , xk) places t in the
desired form.

Theorem 7. Let Q be an idempotent, right quasi-
group. Then Q has a Merling term if and only if it
has a Malcev term.

Proof: Let m(x, y) be a Merling term for Q.
Then according to Lemma 6, m(x, y) = x in U2

and m takes the form shown in Figure 3 where for
all 1 ≤ i ≤ n, ◦i is in {∗, /} and ti is a binary term.
Construct s(x, y, z) and p(x, y, z) as in Figure 4
where ◦−1i is / when ◦i is ∗ and ◦−1i is ∗ when ◦i
is /. The idempotence of ∗ and / ensure that any
term operation defined over these operators is also
idempotent. Hence for each of the terms operations
ti(x, y), ti(y, y) = y is a theorem of the first order
theory of idempotent, right quasigroups. Using this
fact along with right cancellation, for x, y ∈ Q, one
can reason as in Figure 5. Also from idempotence,
for x, y ∈ Q comes the derivation of Figure 6.
Thus, p is a Malcev term for Q.

Now let p(x, y, z) be a Malcev term for Q, i.e.
p(x, x, y) = y and p(x, y, y) = x in Q. Switching
x and y in the second identity, p(x, x, y) = y and
p(y, x, x) = y in Q.

By Lemma 6, one of the identities p(x, y, z) =
x, p(x, y, z) = y or p(x, y, z) = z holds in U2. Sup-
pose p(x, y, z) = x or p(x, y, z) = y in U2. Then
p(x, x, y) = x in U2, and p(x, x, y) = y in Q, so
m(x, y) = p(x, x, y) is a Merling term. Otherwise,
p(x, y, z) = z in U2. Then p(y, x, x) = x in U2,
and p(y, x, x) = y in Q, so m(x, y) = p(y, x, x) is
a Merling term.



p(x, y, y) = (...((x ◦1 t1(y, y)) ◦2 t2(y, y)) . . . ◦n tn(y, y)) ◦−1n y) ◦−1n−1 y) . . . ◦
−1
1 y

= (...((x ◦1 y) ◦2 y) . . . ◦n y)) ◦−1n y) ◦−1n−1 y) . . . ◦
−1
1 y

= x.

Fig. 5. Derivation of p(x, y, y) = x.

p(x, x, y) = (...((x ◦1 t1(x, y)) ◦2 t2(x, y)) . . . ◦n tn(x, y)) ◦−1n y) ◦−1n−1 y) . . . ◦
−1
1 y

= (...(m(x, y) ◦−1n y) ◦−1n−1 y) . . . ◦
−1
1 y

= (...(y ◦−1n y) ◦−1n−1 y) . . . ◦
−1
1 y

= y.

Fig. 6. Derivation of p(x, x, y) = y.

Corollary 8. If an idempotent, right quasigroup
has a Merling term, it is tractable.

Proof: Let Q be an idempotent, right quasi-
group with a Merling term. Then by Theorem 7, it
has a Malcev term. By [2], Q is tractable.

Malcev terms are computationally difficult to
calculate [13]. In general, the time it takes to find
term functions is dependent on the arity of the op-
eration. A well-designed search for a Merling term
should be computationally easier than a comparably
efficient search for a Malcev term, since the former
only considers binary term functions while the latter
searches the larger class of ternary term functions.

IV. CONNECTEDNESS AND DICHOTOMY

The existence of a Merling term corresponds to
a strong notion of connectivity in Cayley graphs. In
turn, this notion of connectivity reveals the desired
dichotomy result.

A. Connectedness

Let A be an idempotent, right quasigroup. We
define Cayley(A) to be the (right) Cayley graph
of A [12]. That is, Cayley(A) is the graph where
each element of A is assigned a vertex and there
is an edge between x and y in Cayley(A) if there
exists an element a in A such that x ∗ a = y or
x/a = y. If Cayley(A) is connected, then we say
A is connected.

Definition 9. Let Q be an idempotent, right quasi-
group.

i) Q is locally connected if every subalgebra
Q′ ≤ Q is connected.

ii) Q is totally connected if for all n ∈ N, Qn

is locally connected.

iii) Q is uniformly connected if it has a Mer-
ling term.

Note that an idempotent, right quasigroup is
totally connected if and only if all of its subpowers
are connected.

These are increasingly strong notions of con-
nectedness. That is, each subsequent notion of
connectedness implies those before it. Let Q be a
right quasigroup. Then Q being locally connected
implies Q is connected: If Q is locally connected,
then trivially, Q is a subalgebra of itself and hence
must be connected. If Q is totally connected, then
Q1 = Q is locally connected. As will be shown
in Theorem 11, if Q is uniformly connected, then
it is totally connected. Another consequence of
Theorem 11 is if Q is totally connected, then Q
is also uniformly connected. In order to show this,
however, we first need to show that uniformly
connected implies connected:

Lemma 10. If an idempotent, right quasigroup is
uniformly connected, then it is connected.

Proof: Let Q be an idempotent, right quasi-
group with a Merling term m(x, y). Since
m(x, y) = x in U2, x appears left-most in m(x, y).
That is m(x, y) must be of the form presented in
Figure 3 where for all 1 ≤ i ≤ n, ◦i is in {∗, /}
and ti is a binary term. Then, for a, b ∈ Q there is
a series of right translations from a to m(a, b) = b
in Q by the elements t1(a, b), t2(a, b), . . . , tn(a, b).
Each right translation corresponds to an edge in
Cayley(Q). This means that there is a path from a
to b in Cayley(Q) for all a, b in Q. In other words,
Cayley(Q) is connected, and hence Q is connected.

Now we can prove that uniformly connected and
totally connected are equivalent:

Theorem 11. An idempotent, right quasigroup is
totally connected if and only if it has a Merling
term.

Proof: Let Q be a totally connected idempo-



tent, right quasigroup. Let F(2, Q) be the free term
algebra on two generators over Q [14]. This algebra
is founded over the binary terms t(x, y) over the
signature {∗, /}. Two terms t(x, y) and s(x, y) are
in the same equivalence class if Q satisfies

∀xy(t(x, y) = s(x, y)).

Identifying the equivalence class of t(x, y) in
F(2, Q) with its term operation t : Q2 → Q, it
follows via a routine verification that F(2, Q) is a
subalgebra of Q|Q|

2

, and hence a subpower of Q.

Since Q is totally connected, its subpower
F(2, Q) is necessarily connected. This means that
there is a path in the (right) Cayley graph of
F(2, Q) from the term x to the term y. This path
corresponds to a sequence of right translations by
binary terms t1(x, y), t2(x, y), . . . tn(x, y). From
these terms, form m(x, y) as in Figure 3. Clearly,
m(x, y) = y in Q, since the right translations
correspond to the path in F(2, Q) from x to y.
Moreover, since x is the leftmost variable in the
expression m(x, y), m(x, y) = x in U2. Hence,
m(x, y) is a Merling term for Q.

Now let Q be an idempotent, right quasigroup
with a Merling term m(x, y). All algebras in the
variety of Q must also satisfy m(x, y) = y and so
inherit this Merling term. Specifically, m(x, y) is a
Merling term for each R ≤ Qn for all n ∈ N. That
is each subpower R of Q is uniformly connected,
and hence is connected by Lemma 10. Thus, Q is
totally connected.

B. P/NP Dichotomy

We now have the necessary results about con-
nectivity to prove a tractability dichotomy in idem-
potent, right quasigroups. The next two lemmas
prove one half of the dichotomy by providing a
sufficient condition for an idempotent, right quasi-
group to be NP-complete.

Lemma 12. If an idempotent, right quasigroup Q
is not totally connected, then U2 is in its variety.

Proof: Since Q is not totally connected, there
is a power R ≤ Qn that is not connected. Since
R is not connected, there exist at least two distinct
connected components of Cayley(R). Let C be one
of these connected components. Define h : R→ U2

by

h(z) =

{
0 if z ∈ C
1 otherwise

It is left to the reader to verify that this is indeed
a right quasigroup homomorphism onto U2. This
places U2 in the variety of Q.

Lemma 13. If an algebra A has U2 in its variety,
then it is NP-complete.

Proof: From Example 3, first note that U2 is
NP-complete.

Suppose U2 is in the variety of A. Then A
has a subpower R ≤ An such that there exists a
surjective homomorphism h : R → U2. According
to Corollary 7.3 of [1], R is NP-complete by virtue
of its unary factor U2. This means that there exists
an NP-complete CSP over R. Any CSP over R
is also a CSP over A, so CSP (A) is also NP-
complete. Hence A is NP-complete.

Corollary 14 (Dichotomy Theorem). If an idem-
potent, right quasigroup Q is not NP-complete, it
must be tractable.

Equivalently, Q is NP-complete if and only if
Q is not totally connected.

Proof: If Q is not NP-complete, then by the
contrapositive of Lemma 13, Q does not have U2

in its variety. Then by Lemma 12, Q is totally
connected. By Theorem 11, Q has a Merling term
and must be tractable by Corollary 8.

V. THE MERLING CONDITION AND
INVOLUTORY QUANDLES

It follows from Section IV that an idempotent,
right quasigroup Q is NP-complete if and only if Q
is not totally connected. In other words, tractable
(not NP-complete) idempotent, right quasigroups
must have Merling terms. Therefore, determining
the P/NP-complete classification of idempotent,
right quasigroups can be reduced to a term search.
However, finding term functions is, in general,
EXPTIME-complete [6]. On the other hand, given
a first-order formula, checking whether or not the
equation holds for an algebra takes polynomial time
on the size of the algebra [4]. Hence it is preferable,
whenever possible, to find a single, fixed first-order
formula to determine whether an idempotent, right
quasigroup is NP-complete or not. We introduce a
candidate formula below and demonstrate that this
formula is effective for a well-studied subclass of
idempotent, right quasigroups.

Definition 15. An algebra A is said to satisfy the
Merling condition if

A |= ∀xy(x ∗ y = x⇒ x = y).

Lemma 16. If A is an algebra that satisfies the
Merling condition, then An satisifies the Merling
condition for all n ∈ N.



Proof: Let A be an algebra that satisfies
the Merling condition. Suppose there exists x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ An such
that x ∗ y = x. Then for every 1 ≤ i ≤ n,
xi∗yi = xi. Since A satisfies the Merling condition,
xi = yi for all 1 ≤ i ≤ n, which implies that
x = (x1, x2, . . . , xn) = (y1, y2, . . . , yn) = y.

A. Quandles

Joyce introduced the first-order theory of quan-
dles in [9]. They originate from the ”crossover
algebra” of three-dimensional knots.

Definition 17. A quandle (Q, ∗, /) is a set Q
together with two binary operations ∗, / : Q2 → Q
satisfying the following axioms:

Idempotence: ∀x(x ∗ x = x).

Right Cancellation I: ∀xy((x ∗ y)/y = x).

Right Cancellation II: ∀xy((x/y) ∗ y = x).

Right Self-Distributivity: ∀xyz((x∗y)∗z = (x∗
z) ∗ (y ∗ z)).

Of course, quandles form a subclass of idem-
potent, right quasigroups and so also exhibit P/NP-
complete dichotomy.

Theorem 18. If a finite quandle Q does not satisfy
the Merling condition, then U2 is a subalgebra of
Q.

Proof: Suppose that a quandle Q does not
satisfy the Merling condition, but U2 is not a
subalgebra for the sake of contradiction. Then there
exist two distinct elements x, y in Q such that
x ∗ y = x. Define v0 = x and vi = y ∗ vi−1.

TABLE II. PARTIAL ∗ CAYLEY TABLE FOR Q

∗ y v0 v1 v2 . . . vn−1

y y v1 v2 v3 . . . vn

v0 v0 v0 v0 v0 . . . v0
v1 v1 v1 v1 . . . v1
v2 v2 v2 . . . v2
...

...
. . .

...
vn−1 vn−1 . . . vn−1

We need to show that for all i in N, vi ∗y = vi.
We proceed by induction on i. The base case is
i = 0, and indeed v0 ∗ y = x ∗ y = x = v0. Now
suppose vi−1 ∗ y = vi−1 for some i. From self-
distributivity and idempotence, vi ∗y = (y ∗vi−1)∗
y = (y ∗ y) ∗ (vi−1 ∗ y) = y ∗ vi−1 = vi.

We also need to show that for a given i in N
that for all j ≥ i, vi ∗ vj = vi. We proceed by

induction on j ≥ i. In the simplest case j = i, so
vi ∗ vj = vi ∗ vi = vi. Now assume that j > i and
vi∗vj−1 = vi. Then since vi∗y = vi, vi∗vj = (vi∗
vj−1)∗(y∗vj−1) = (vi∗y)∗vj−1 = vi∗vj−1 = vi.

Now we prove that for n ∈ N, vn 6= y and
vi 6= vj whenever 0 ≤ i < j ≤ n. We proceed
by induction on n. The base case is when n = 0.
Trivially, v0 = x does not equal y and there are
no instances of 0 ≤ i < j ≤ 0 to consider. Now
suppose v0 through vn−1 are all distinct for some n
and vi 6= y for all i < n. vn−1 ∗ y = vn−1, vn−1 ∗
vn−1 = vn−1, and y ∗ vn−1 = vn, so if vn = y,
then {y, vn−1} = U2, a contradiction, so vn 6= y. If
vn = vi for some i < n, then y ∗vn−1 = vi ∗vn−1.
From right cancellation, y = vi, a contradiction, so
vn 6= vi for all i < n. Hence vn is distinct from all
vi for i < n.

However, then Q contains {vi}ni=0 for all n ∈
N, so Q is infinite, a contradiction. Hence U2 must
be a subalgebra of Q.

Corollary 19. If U2 is a subpower of a finite
quandle then it is also a subalgebra.

Proof: Let U2 be a subalgebra of Qn. Then
there exist distinct x and y in U2 ≤ Qn such that
x ∗ y = x. Hence Qn does not satisfy the Merling
condition. By Lemma 16, Q does not satisfy the
Merling condition. Then by Theorem 18, U2 is a
subalgebra of Q.

B. Involutory Quandles

Definition 20. An involutory quandle (Q, ∗) is a
set Q together with a binary basic operation ∗ :
Q2 → Q satisfying the following axioms:

Idempotence: ∀x(x ∗ x = x).

Right Cancellation: ∀xy((x ∗ y) ∗ y = x).

Right Self-Distributivity: ∀xyz((x∗y)∗z = (x∗
z) ∗ (y ∗ z)).

Note that an involutory quandle is a quandle
where ∗ and / define the same operation.

The Merling condition axiomatizes the P/NP-
complete dichotomy that involutory quandles in-
herit from idempotent, right quasigroups. We al-
ready have most of the proof. Namely, if an in-
volutory quandle Q does not satisfy the Merling
condition, then U2 is a subalgebra of Q. But
CSP (U2) is NP-complete, so Q must also be NP-
complete. Otherwise, we will want it to be totally
connected, as we know totally connected quandles



are tractable, since they have Malcev terms. We
leverage the fact that the Merling condition is
inherited by powers since this allows us to reduce
the problem to showing that the Merling condition
implies connectedness.

Theorem 21. If a finite, involutory quandle Q
satisfies the Merling condition, then Q is connected.

Proof: Suppose Q is not connected for sake
of contradiction. Then there are two distinct ele-
ments x and y of Q in two different connected
components of Cayley(Q). Define x0 = x, x2i−1 =
x2i−2 ∗ y, and x2i = x2i−1 ∗ x.

TABLE III. PARTIAL ∗ CAYLEY TABLE FOR Q

∗ x y
x0 x0 x1

x1 x2

x2 x3

x3 x4

x4 x5

...
...

...

It is shown below that, for each j ∈ N, the
elements x0, x1, . . . , xj are distinct. This proceeds
by induction on j. For j = 0 this is certainly true
since there is just one element to consider. When
j = 1, there are just two elements x0 and x1 and
x1 = x0 ∗ y. If x1 = x0 then x = x0 = x1 = x ∗ y,
then x = y by the Merling condition. But x and
y are distinct, a contradiction, so x0 and x1 are
distinct.

Now let i ≥ 1 and suppose x0, x1, . . . , xi are
all distinct. Let j = i+1 and assume that for some
0 ≤ k ≤ i that xj = xk. We consider the cases in
which j > 1 is even or odd.

• j = i+ 1 is even: Then we may partition
the possible values of k into the following
four categories.
◦ k = 0: Then if xj = xk, xi ∗ x =

xi+1 = xj = xk = x0 = x =
x∗x = x0∗x. By right cancellation,
xi = x0. Since j = i+ 1 is even, i
is odd and so i > 0.

◦ k is odd and 0 < k < i − 1: Then
xi ∗ x = xi+1 = xj = xk so that
xi = (xi ∗ x) ∗ x = xk ∗ x = xk+1.
Since k < i− 1, k + 1 < i.

◦ k is even and 0 < k < i: Then
xi ∗x = xi+1 = xj = xk = xk−1 ∗
x. Right cancellation ensures that
xi = xk−1. Also, 0 < k− 1 < k ≤
i.

◦ k = i; Then xi ∗ x = xi+1 =
xj = xk = xi. Since Q satisfies the
Merling condition, xi = x = x0.

In each case, the assumption that xj = xk
forces xi = xl for some 0 ≤ l <
i. This contradicts the assumption that
x0, x1, . . . , xi are distinct. Hence, for j >
1 even, xj 6= xk.

• j = i+1 is odd: Here is an exhaustive list
of cases for k.
◦ k = 0: Then xi ∗ y = xi+1 = xj =

x0 which means xi = (xi ∗y)∗y =
x0 ∗ y = x1. Since j > 1 is odd,
i+ 1 = j > 2. Thus, i ≥ 2 > 1.

◦ k is odd and 0 < k < i: Then xi ∗
y = xi+1 = xj = xk = xk−1 ∗ y.
By right cancellation, xi = xk−1
but k − 1 < k < i.

◦ k is even and 0 < k < i− 1: Then
k + 1 is odd so xk+1 = xk ∗ y.
Therefore, xk+1∗y = (xk ∗y)∗y =
xk = xj = xi+1 = xi ∗ y. Right
cancellation yields xi = xk+1 but
since k < i− 1, k + 1 < i.

◦ k = i; Then xi ∗ y = xi+1 = xj =
xk = xi. Since Q satisfies the Mer-
ling condition, xi = y. However,
xi is in the same connected com-
ponent as x but y is in a different
connected component from x.

In each subcase, the assumption that xj =
xk generates a contradiction. The first three
subcases lead to a contradiction of the
induction hypothesis while the last merges
two distinct connected components of Q
into one. Since the set of subcases cover all
possibilities for k, it follows that xj 6= xk
when j > 1 is odd.

This means that the finite Q contains the infinite
set {xj |j ∈ N}, which is an obvious contradiction.
Hence, the assumption that Q is disconnected was
in error.

Corollary 22. If an involutory quandle satisfies
the Merling condition it is tractable. If it does not
satisfy the Merling condition it is NP-complete.

Proof: Let Q be an involutory quandle. Sup-
pose Q satisfies the Merling condition. Note that
the Merling condition is inherited by subalgebras,
so by Lemma 16 and Theorem 21, all subpowers
of Q are connected, i.e., Q is totally connected.
Thus by Corollary 14, Q is tractable. If Q does not
satisfy the Merling condition, then by Theorem 18
and Lemma 13, Q is NP-complete.



VI. FUTURE WORK

One obvious line of research is to see whether
Corollary 22 can be extended to the following, or
to all idempotent, right quasigroups, for that matter.

Conjecture 23. A quandle is tractable if it satisfies
the Merling condition and NP-complete otherwise.

Another direction to consider is to have the
results of this article inform the search for ”in-
teresting” finite algebras. We consider an algebra
to be interesting when it is not readily classifiable
as tractable or NP-complete. Of course, non trivial
right-cancelable operations should be avoided. We
close with a candidate theory for further explo-
ration.

Definition 24. A Quay algebra is a set Q together
with a binary operation ∗ : Q2 → Q satisfying the
following axioms:

∀x(x ∗ x = x).

∀xyz(((x ∗ z) ∗ y) ∗ z = x ∗ (y ∗ z)).

The second axiom is a theorem of involutory
quandles. However, Quay algebras satisfy neither
right cancellation nor right self-distributivity. They
are a rich class of algebras which include the class
of involutory quandles and the class of semilattices.

Lemma 25. All involutory quandles are Quay
algebras.

Proof: Let Q be an involutory quandle. So Q
is idempotent. Q also satisfies the conditions (x ∗
y) ∗ y = x and (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), which
give ((x∗z)∗y)∗z = ((x∗z)∗z)∗(y∗z) = x∗(y∗z).
Therefore, by definition, Q is a Quay algebra.

Definition 26. A semilattice is an algebraic struc-
ture (S, ∗) together with a binary operation *, such
that:

∀x(x ∗ x = x).

∀xy(x ∗ y = y ∗ x).
∀xyz((x ∗ y) ∗ z = x ∗ (y ∗ z)).

Lemma 27. All semilattices are Quay algebras.

Proof: Let S be a semilattice. So S is idempo-
tent. S also satisfies the conditions x∗y = y∗x and
(x∗y)∗z = x∗(y∗z), which give ((x∗z)∗y)∗z =
((x∗y)∗z)∗z = (x∗y)∗z = x∗(y∗z). Therefore,
by definition, S is a Quay algebra.

From [8], semilattices are tractable. Thus we
have some Quay algebras that are tractable and
some that are NP-complete.
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