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Abstract

The Shannon switching game is a combinatorial game for two players, which we refer to
as the cop and the robber. In this project, we explore a few variations of the original rules
that make the game more interesting. One of these variations is a game involving multiple
cops and one robber. We present a formal recursive definition of this game which we use to
prove several basic theoretical results. Next, we consider this game on complete graphs and
complete bipartite graphs. On each family of graphs, we investigate the winning conditions
for the players depending on who goes first. We describe these conditions as functions and
prove several asymptotic results. Finally, after looking at the variation with multiple cops
and one robber, we also study the game with multiple cops and multiple robbers and
compare the two variations.
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1
What is the Shannon Switching Game?

1.1 Introduction

Combinatorial game theory is an important branch of mathematics which combines the

study of combinatorics, game theory and graph theory. A combinatorial game is a game

with two players each having separate turns and making different moves to achieve a

winning positive. The players have alternate turns with perfect information such that the

moves of each player are known by both players. Mathematicians study the pure strategies

for each player involved in a combinatorial game. They also study how these strategies

affect the outcome of the game. They aim to explore situations such as: given the two

players play perfectly, who wins the game and how does the situation define the result.

Combinatorial games are so interesting as they provide the opportunity to explore several

cases and questions within the respective game being studied. One of the most notable

books on combinatorial game theory is Winning Ways for your Mathematical Plays [1].

The book includes mathematical strategies and proofs for several combinatorial games

therefore serving as a resource for scholars to explore these games in greater depth.
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The Shannon switching game is a combinatorial game invented by Claude Shannon and

its solution found in 1964 by Alfred Lehman [3]. This game has been previously studied

by many mathematicians for its intrinsic interest and relationship to graph theory and

matroid theory. As the game is played on a graph, we can study the positions of the

two players while investigating the game on different graphs. The game has also been

generalized to a game on matroids and this was initially done by Alfred Lehman in his

breakthrough with the game [5]. Matroid theory and graph theory are also connected as

the winning condition for one of the players involves the presence of disjoint spanning

trees within a graph which Lehman also proved using matroids in his solution [5]. The

Shannon switching game is also closely related to the game of Hex such that instead of

using edges, vertices are used in each move instead [2]. In 1976 [2], it was proven that this

version of the Shannon switching game related to Hex is PSPACE-complete and the same

was concluded in 1981 [2] for Hex as well. Therefore there is a vast pool of knowledge and

mastery from mathematicians of this game.

The game involves two players that we will call the cop and the robber and is played

on a graph. The Shannon switching game has been classified in a set of games called

Maker-Breaker games [4]; which are games where the goal of one player, the robber, is

to create a specific subgraph and the goal of the other player, the cop, is to prevent this

from happening. The robber wants to mark a path while the cop wants to destroy it. In

this project, we will be investigating variations of the original rules which make the game

more exploratory. In Section 1.2 we will provide a description of the game and its rules as

well as the types of games that exist. We will also show examples for the types of games

and among these is a winning strategy for the robber mentioned earlier involving disjoint

spanning trees [6].

Though the game is traditionally played with only two players, we will study a game with

multiple cops and one robber. We will refer to this game as the n-cop game. Section 2.1



1. WHAT IS THE SHANNON SWITCHING GAME? 8

of Chapter 2 begins with an intuitive definition of this variation. We will provide a formal

definition using recursion of the n-cop game which we will use to prove several fundamental

properties. The game has been formally described with the method that the robber claims

edges by marking them on his turn and the cop deletes edges on his turn. We will define

this game as the Deletion-Marking Game. However, we will also define a method involving

the robber contracting edges and the cop deleting edges. We will refer to this game as the

Deletion-Contraction game. We will include in this chapter an illustration showing that

these two methods result in the same game.

As the game can be played on any graph, we will restrict our attention to specific families

of graphs. As the n-cop game is a new variation to the Shannon switching game, before

it is possible to prove any generalization, we must first focus on one class of graphs. This

is because the task of discovering winning strategies for the n-cop game on an arbitrary

graph would be very difficult if no test studies were done. Therefore in Chapter 3 we will

explore the n-cop game on complete graphs in Section 3.1. Our aim will be to research the

winning conditions for the players and the relationship between different starting positions.

We will describe these conditions using functions and we will prove different results. After

exploring the game on complete graphs, we will further investigate the n-cop game played

on complete bipartite graphs in Section 3.2. Our goal here is similar as in the case of

complete graphs. However, our results will differ as complete bipartite graphs are also

unique. At the end of each section in Chapter 3, we will conclude it with observations and

questions related to the results obtained and conjectures that we believe to be true.

Chapter 4 investigates a game played on complete bipartite graphs where there are

multiple cops and multiple robbers of the same number. We will define this game as the n-

cop, n-robber game and aim to find results for this as well. We will also compare the results

found in this chapter to those found when playing the n-cop game. How advantageous is

it to have more robbers?
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1.2 Rules of the Game

The Shannon switching game has two players, the cop and the robber, and is played on a

graph. Given an undirected graph G = (V,E) with two distinguished vertices u and v, the

objective of the robber is to mark a path from vertex u to vertex v. The objective of the

cop is to prevent the robber from escaping by deleting edges to disconnect the robber’s

paths, prohibiting the robber from getting from u to v.

The two players alternate turns and either player may begin the game. The cop can

delete any edge as long as the robber has not previously claimed it. On the first turn,

suppose that the cop plays first. He may delete any edge of his choosing. The robber plays

next, marking his edge with red. The game ends once the robber has marked a complete

path from u to v and therefore escapes or the cop successfully blocks all paths between u

and v.

u w

vx

(a) Graph

u w

vx

(b) Cop’s first turn

u w

vx

(c) Robber’s first turn

u w

vx

(d) Cop’s second turn

u w

vx

(e) Robber’s second turn

u w

vx

(f) Cop’s third turn

u w

vx

(g) Robber’s third turn

Figure 1.2.1. Example of a Game

Figure 1.2.1 is an example of a game where the cop has played first. It shows the sequence

of turns. Let us now go through these plays from the figure to further explain how the

game works.
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(a) The original graph we are playing on.

(b) The cop has the first turn and chooses to delete the edge between vertices u and

v. This move is necessary for the cop to make in order to prevent the robber from

winning.

(c) The robber now plays second and chooses to mark the edge between vertices u and w.

(d) The cop now continues on his turn and chooses to delete the edge between vertices w

and v. The cop is forced to delete this edge as otherwise the robber can win on his

next turn.

(e) The robber now proceeds and chooses to mark the edge between vertices x and v.

(f) The cop is again forced to delete the edge between vertices u and x to prevent the

robber from winning.

(g) The robber now makes the final turn of the game and marks the edge between vertices

w and x. Now that the robber has successfully marked a path from vertex u to vertex v,

he has won the game.

1.3 Types of Games

On certain graphs, the robber will always be able to make an escape regardless of who

plays first. Shown in Figure 1.3.1 is a graph such as this where the robber will always win

even when the cop has the first turn. This is called a positive game [6].

Figure 1.3.1 is an example of a positive game. There are two dashed edges marked in

red shown in the graph. These two edges are between u and v so therefore there are two

direct paths between u and v. If the cop goes first, he may only delete one of these paths

therefore leaving the second path for the robber to mark on his turn. This is an example
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u

v

u

v

Figure 1.3.1. Example of a graph that is a Positive Game

of a positive game as it shows that the robber can win even when the cop has the first

turn.

Definition 1.3.1. A spanning tree in a graph G is a a selection of edges in G where there

are no cycles and the edges are all connected. We say two spanning trees are disjoint when

they share no common edges. 4

Theorem 1.3.2. Disjoint Spanning Tree Theorem

A game is positive if and only if there is a subgraph containing vertices u and v that has

two disjoint spanning trees [3].

The Disjoint Spanning Tree Theorem is basically a strategy for the robber to use to

guarantee his escape when playing on a positive game. Let us now prove this theorem and

therefore show the robber’s strategy. We will show this by using the following figure as

our graph where the blue and orange edges each represent the two disjoint spanning trees.

u v

Figure 1.3.2. Positive Game
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Example 1.3.3. The following illustrates the Spanning Tree Theorem

We will show using these two spanning trees and the following strategy that this is an

example of a positive game and that the strategy works for positive games. If the robber

can win playing second, he can also win playing first, (later proven in Proposition 2.3.4)

so it is only necessary to show that the robber can win when the cop goes first. Therefore,

the cop will always make the first move in this strategy.

Cop’s First Turn: From Figure 1.3.2, the cop should obviously delete the direct path

between u and v, edge b.

u v

b

Robber’s First Turn: The robber may now choose any edge a, except the edge that the

cop has previously deleted:

u v
a

Now the two spanning trees have one edge in common, a. We have made this edge green

to make it clear that this edge is now part of both spanning trees.

Cop’s Second Turn: Now the cop may choose any edge b available to delete:

u v

b
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Robber’s Second Turn: Now the robber must choose an edge a. The edge he chooses

must complete both spanning trees, which are now altered by the deletion of the edge b,

so that a is now part of both spanning trees. We have again changed its color to green to

show this:

u v
a

This strategy continues through the end of the game, guaranteeing that there is always

a path between u and v. Below are the rest of the steps, shown through the graphs:

u v u v

u v

u v u v

u v

b

a

b

a
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Thus we have shown the algorithm that guarantees the robber a successful escape in a

positive game. ♦

On other graphs, the cop will always be able to prevent the robber from escaping

regardless of who plays first, shown in Figure 1.3.3. A graph such as this where the cop

wins regardless of who plays first is called a negative game [6].

u vu

Figure 1.3.3. Example of a graph that is a Negative Game

Figure 1.3.3 is an example of a negative game. Notice that there are two edges in the

graph highlighted in blue. If the cop deletes any of these edges the graph is disconnected

and therefore the robber cannot escape. The cop’s objective is to disconnect the graph,

which would destroy all paths between u and v. Therefore if the robber goes first, the cop

will disconnect the graph on his second turn. If the cop plays first, he will immediately

disconnect the graph thus making this a negative game.

On other graphs, the winner of the game is determined by who plays first. A graph such

as this where either the cop or the robber wins contingently is called a neutral game [6].

u

v

Figure 1.3.4. Example of a graph that is a Neutral Game
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Figure 1.3.4 illustrates an example for a neutral game where the robber is trying to

mark a path between u and v. Let us now show why this is a neutral game by playing it

with the cop starting and then playing it with the robber starting.

u

v

Figure 1.3.5. Neutral Game where cop plays first

Figure 1.3.5 shows the graph with a highlighted blue edge. If the cop plays first, he

should delete this edge and therefore disconnect the graph. Thus the cop wins playing

first.

Figure 1.3.6 now shows the sequence of turns made by each player with the robber

starting. The edges have been labeled u, . . . , z and the robber is trying to get from u to v.

Here we are asserting that this is a neutral game. Other cases to consider for the cop’s

moves in each turn are not explicitly shown. Let us now go through these turns from the

figure to further explain.

(a) The robber on his first turn marks the edge between vertices v and z. This is a

necessary move as otherwise the cop can disconnect the graph on his following turn.

(b) The cop then chooses to delete the edge between vertices u and y. There are other

moves to consider however they do not increase his chances of winning.

(c) The robber now plays second and chooses to mark the edge between vertices w and x.
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u

v

w x y

z

(a) Robber’s first turn

u

v

w x y

z

(b) Cop’s first turn

u

v

w x y

z

(c) Robber’s second turn

u

v

w x y

z

(d) Cop’s second turn

u

v

w x y

z

(e) Robber’s third turn

u

v

w x y

z

(f) Cop’s third turn

u

v

w x y

z

(g) Robber’s final turn

Figure 1.3.6. Neutral game where robber plays first

(d) The cop now continues on his turn and chooses to delete the edge between vertices w

and u.

(e) The robber now proceeds and chooses to mark the edge between vertices x and u.

(f) The cop is now forced to delete two edges but only has one move so he deletes edge

between vertices x and z.

(g) The robber now makes the final turn of the game and marks the edge between vertices

w and z.

Now that the robber has successfully marked a path from vertex u to vertex v, the

robber has won the game.

Formal definitions of the types of game follow in the next chapter.



2
N-Cop Game

2.1 Introduction

The Shannon switching game is traditionally played with only two distinguished players:

one robber and one cop. In this chapter, we introduce a variation of the game involving

multiples cops and one robber. We refer to the multiple cops as n cops. Having n cops

intuitively means that one of the players has n moves per turn. Therefore when the n cops

play, it is equivalent to one cop having n moves and therefore deleting n edges on each turn.

Therefore in the n-cop game, the two players alternate turns, however on the cop’s turn,

he has n cops and therefore n moves. The n cops in this sense therefore move collectively

together to delete a total of n edges. The robber proceeds as before having only one move

per turn. Therefore the variation is consistent with the framework of combinatorial games

of having two players.

With this variation, a positive game is now a game where the robber still wins regardless

of whether the n cops play first. In a negative game, the n cops are able to win regardless

of if the robber starts. Neutral games remain the same such that the winner is determined

by whether the n cops start or the robber starts. Let us show an example of a game with



2. N-COP GAME 18

two cops and one robber. We will play the game on the complete graph K5 with the 2

cops playing first. For the purposes of explaining the game, the vertices have been labelled

u through y where the robber is trying to get from vertex u to vertex v.

u

v

w x

y

u

v

w x

y

u

v

w x

y

u

v

w x

y

u

v

w x

y

u

v

w x

y

u

v

w x

y

u

v

w x

y

Figure 2.1.1. 2-Cops

Figure 2.1.1 shows the game played on K5. On the cops’ first move they delete the edge

between vertices u and v as otherwise the robber wins. They also delete the edge between
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vertices u and y. Next, the robber marks with red the edge between vertices u and w. The

turns by the players continue until the final move shown in the last graph where the cops

have deleted the edge between vertices u and x. Here the cops did not even have to use

their second move in order to disconnect the graph and therefore win the game.

2.2 Deletion-Marking vs. Deletion-Contraction Game

The Shannon switching game is normally defined with the robber’s moves as marking

edges and the cop’s moves as deleting edges. When playing the game however, deleting

and marking edges for each player is equivalent to deleting and contracting edges also.

Therefore, when referring to the play of each player, either game can be used. The deletion-

marking game is a game where the robber’s moves are marking edges and the cop’s moves

are deleting edges. The deletion-contraction game is a game where the robber’s moves

involve contracting edges and the cop’s moves involve deleting edges. We will show in this

section why the two ways are the same.

Let us look at the complete graph K4. We will use this graph to illustrate that the two

games result in the same outcome. The first figure shows the complete graph K4. The

following figures show graph 1 and graph 2 where the deletion-marking game is played

on graph 1 (g1) while simultaneously the deletion-contraction game is played on graph 2

(g2).

u w

vx

Complete Graph K4: We will show
the two ways by playing on the
complete graph K4
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u w

vx

u w

vx
g1 g2

Cop’s first move: On g1 and g2 the
cop has chosen to delete the edge
between vertices u and v as otherwise
the robber will win.

u w

vx

g1 g2

u

v

w Robber’s first move: On g1, the
robber has chosen to mark with red the
edges between vertices u and x. On g2,
the robber has chosen to contract the
same edge between vertices u and x
resulting in the contracted graph.

u w

vx

g1 g2

u

v

w Cop’s second move: On g1, the cop
is forced to delete the edge between
vertices x and v otherwise the robber
will win. On g2, the cop deletes the
edge between vertices u and v as
otherwise the robber will win too.

u w

vx

g1 g2

u

v Robber’s second move: On g1 the
robber has chosen to mark with red the
edge between vertices w and v. On g2
the robber has chosen to contact the
same edge resulting in the contracted
graph.

u w

vx

g1 g2

u

v Cop’s third move: On g1 in order to
prevent the robber from creating a
path, the cop needs to delete two edges.
The edge between vertices x and w and
the edge between vertices u and w
however he only has one move and so
chooses to delete the edge between
vertices x and w. The same goes for g2
where two edges between vertices u and
v need to be deleted however the cop
can only delete one.
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u w

vx

g1 g2

u v=

Robber’s third move: On g2 the
robber has chosen to mark with red the
last remaining edge between vertices u
and w creating a direct path between
vertices u and v therefore winning the
game. On g2 the robber chose to
contract the last remaining edge
resulting in u = v. Therefore the robber
has also won go g2.

2.3 Formal Definitions and Propositions

In this section we provide a formal recursive definition of the n-cop game and prove several

basic theoretical propositions. In order for us to prove our results obtained in chapters to

come, we must first have a structured definition to reference. We use a recursive definition

as we are defining the game for a fixed number of cop size n. Therefore it is useful as it

can be applied repeatedly to all terms of this sequence of n for all n ∈ N.

Earlier in our introduction we intuitively discussed how the game works. Here we will

define the game using ordered triples. Formal definitions are very useful here because in

order for us to prove these propositions, we first need to have definitions that can provide

clarity and structure. This formality will also help us to understand other theorems in

Chapter 3. The types of games have been originally described as positive, negative and

neutral games. In this section however, we will formally define positive and non-negative

games. Intuitively the types of games are as follows:

• A non-negative game is a game where the robber can win when the robber starts.

• A positive game is a game where the robber can win when the cops start.

• A negative game is a game where the cop can win when the robber starts.

• A non-positive game is a game where the cop can win when the cop starts.
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• A neutral game is a game that is both non-negative and non-positive.

NOTE: In the following definitions and proofs, we will consider a fixed number of n

cops and one robber for all games mentioned. Therefore it can be assumed that we are

referring to n cops and one robber.

Definition 2.3.1. A game is an ordered triple (G, u, v) where G is a graph with edge

set E(G) and vertex set V (G) such that u, v ∈ V (G). By convention the game (G, u, v) is

equal to the game (G, v, u). 4

In our definition that follows, the notation (G− {e1, e2...en}) means that a distinct set

of n edges are deleted from G. The notation G/e means that the edge e is contracted in G.

Definition 2.3.2. Let (G, u, v) be a game. If u = v then the game is always positive and

non-negative.

If u 6= v then we define positive and non-negative games recursively as follows:

• (G, u, v) is a positive game if G has at least n edges and (G− {e1, e2...en}, u, v) is a

non-negative game for all distinct edges e1, e2 . . . en ∈ E(G).

• (G, u, v) is a non-negative game if there exists an edge e ∈ E(G) such that the graph

(G/e, u, v) is a positive game.

Note that if G has zero edges and u 6= v then the game is neither positive nor non-

negative. Also, ifG has fewer than n edges and u 6= v then the game cannot be positive. 4

Proposition 2.3.3. Let (G, u, v) be a game. Let H be a subgraph of G containing vertices

u and v.

1. If (H,u, v) is a non-negative game, then (G, u, v) is a non-negative game.

2. If (H,u, v) is a positive game, then (G, u, v) is a positive game.
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Proof. We will prove this by induction on the number of edges. Suppose it holds true for

G with fewer than m edges. We need to show it holds true for m edges. If u = v then it

follows that G is both positive and non-negative by definition. Therefore we can assume

u 6= v for a total of m edges.

For the first statement in the proposition, suppose (H,u, v) is a non-negative game.

Then by definition there exists an edge e ∈ E(H) such that (H/e, u, v) is a positive game.

However we know that the graph G/e has m− 1 edges and H/e is a subgraph of G/e. So

therefore by our induction hypothesis (G/e, u, v) is a positive game. Therefore by definition

since (G/e, u, v) is a positive game then (G, u, v) is a non-negative game.

For the second statement in the proposition, suppose (H,u, v) is a positive game. Then

by definition (H − {e1, e2, . . . , en}, u, v) is non-negative for all e1, e2, . . . , en ∈ E(H). Now

let e1, e2, . . . , en ∈ E(G). Therefore (G − {e1, e2, . . . , en}) has m − n edges. Suppose first

that e1, e2, . . . , en ∈ E(H). Since we know (H − {e1, e2, . . . , en}) is a subgraph of (G −

{e1, e2, . . . , en}) then by our induction hypothesis (G − {e1, e2, . . . , en}, u, v) is a non-

negative game. Therefore by definition since (G − {e1, e2, . . . , en}, u, v) is a non-negative

game then (G, u, v) is a positive game.

Suppose now that {e1, e2, . . . , en} are not all in E(H). This means that the edges

chosen by the cop to delete are not all in the subgraph H. Without loss of gener-

ality, we may assume that e1, . . . , ep ∈ E(H) and ep+1, . . . , en /∈ E(H) for some p

such that 0 < p ≤ n. Let d1, . . . , dn−p ∈ E(H) be different from e1, . . . , ep ∈ E(H).

These d1 . . . dn−p edges represent dummy moves made by the cop. Since (H,u, v) is

positive then (H − {e1, . . . ep, d1, . . . dn−p}, u, v) is a non-negative game. NOTE: We

know that (H,u, v) is positive therefore by definition, u 6= v so H has at least n

edges. Since (H − {e1, . . . ep, d1, . . . , dn−p} ⊆ (G − {e1 . . . , en} then this implies that

(G− {e1, . . . , en}, u, v) is also non-negative and therefore (G, u, v) is a positive game.
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Proposition 2.3.4. Let (G, u, v) be a game with n > 1 cops and one robber. If (G, u, v)

is a positive game, then (G, u, v) is a non-negative game.

This proposition is saying that if the robber can win playing second, then the robber

can win playing first.

Proof. Suppose (G, u, v) is a positive game. If u = v then by definition, (G, u, v) is a

non-negative game. Suppose u 6= v. Assuming (G, u, v) is positive then we know it has

at least n edges. Let d1, d2, . . . , dn be dummy moves such that d1, d2 . . . dn ∈ E(G). We

also know that (G − {d1, d2, . . . , dn}) is a subgraph of G. Since (G, u, v) is positive then

this implies (G−{d1, d2, . . . , dn}, u, v) is non-negative. Therefore by the first statement of

Proposition 2.3.3, (G, u, v) is a non-negative game.

Proposition 2.3.5. Let (G, u, v) be a game with n > 1 cops and one robber.

1. If (G, u, v) is a positive game with n+ 1 cops, then (G, u, v) is a positive game with

n cops.

2. If (G, u, v) is a non-negative game with n+ 1 cops, then (G, u, v) is a non-negative

game with n cops.

Proof . We will prove this by induction on the number of edges. Suppose it holds true for

G with fewer than m edges. We need to show it holds true for m edges. If u = v then it

follows that G is both positive and non-negative by definition. Therefore we can assume

u 6= v for a total of m edges.

For the first statement of the proposition, suppose (G, u, v) is positive with n + 1

cops then by definition (G − {e1, e2, . . . , en+1}, u, v) is a non-negative game for all

e1, e2, . . . , en+1 ∈ E(G). Let e1, e2, . . . , en ∈ E(G). Since (G, u, v) is positive with n + 1

cops then we know it has at least n + 1 edges. Suppose there exists d1 such that d1 is

a dummy move for d1 ∈ E(G). Let the robber choose d1 and e1, e2, . . . , en. Therefore
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(G−{e1, e2, . . . , en+1 +d1} is a subgraph of G. Therefore (G−{e1, e2, . . . , en+1 +d1}, u, v)

is a non-negative game. As the dummy move is a fake move, this is equivalent to saying

that (G−{e1, e2, . . . , en}, u, v) is non-negative for n cops. Therefore (G, u, v) is a positive

game fore n cops.

For the second statement of the proposition, suppose (G, u, v) is non-negative with n+1

cops then by definition there exists an edge e such that the graph (G/e, u, v) is a positive

game with n+ 1 cops. Therefore by our induction hypothesis, since (G/e, u, v) is positive

with n+1 cops then it follows that (G/e, u, v) is also positive for n cops. Therefore (G, u, v)

is a non-negative game with n cops.

Proposition 2.3.6. For a given graph (G, u, v), if there exists a direct edge between u

and v then the game is non-negative.

Proof. If a game is non-negative then this means the robber can win when the robber

starts. Thus on the robber’s first turn if there is a direct edge between u and v, the robber

can mark this edge and therefore win the game.



3
Families of Graphs

3.1 Complete Graphs

The Shannon switching game can be played on any graph G. There are many families of

graphs. Thus in order for us to learn how the n-cop game is related to graphs, we must

start with applying it to a specific class of graphs. In this section we therefore explore

the n-cop game played on complete graphs. The reason we need to specialize to complete

graphs is due to the fact that we cannot yet make any conjectures regarding the n-cop

game on an arbitrary graph. If we were to choose any arbitrary graph to study this game, it

would be very challenging to prove anything about it. Therefore in order to generalize this

variation to all graphs if possible, we must first start out small with test cases and prove

what we can find about the game on complete graphs before investigating a different class

of graphs. Studying the n-cop game on different types of graphs will contribute towards

understanding how the n-cop game relates to all graphs.

Definition 3.1.1. Let n ∈ N. A complete graph Kn is a graph where there are n vertices

and every vertex is connected to every other vertex in the graph. 4



3. FAMILIES OF GRAPHS 27

Figure 3.1.1. Complete Graph K5

NOTE: For all the games played on complete graphs in this section, we will assume

throughout that u 6= v. Therefore from Proposition 2.3.6, this indicates that every com-

plete graph is a non-negative game. Since we assume u 6= v then for all complete graphs,

due to automorphism as the graph has symmetry, the position of u and v does not affect

the game.

Definition 3.1.2. Let φ : N −→ N be the function defined by:

φ(n) = min{m | Km is positive with n cops and one robber}

4

We will denote each edge of a graph as a two element set {a, b} such that the edge is

between vertex a and vertex b.

Theorem 3.1.3. φ(1) = 4.

Proof. In order for us to illustrate this Theorem, we need to show that K4 is a positive

game and K3 is a non-positive game.

The following sequence of graphs illustrate that K4 is a positive game. The vertices are

labelled 1, 2, 3, 4. The robber is trying to get from 1 to 4. As we are trying to show that

this is a positive game, we must show that the robber wins when the cop starts.
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1

4 3

2 Complete Graph K4

1

4 3

2 Cop’s first turn: The cop is forced to delete
{1, 4} to prevent the robber from winning.

1

4 3

2 Robber’s first turn: The robber should mark
{2, 4}.

1

4 3

2 Cop’s second turn: The cop is forced to delete
{1, 2}.

1

4 3

2 Robber’s second turn: The robber should
mark {1, 3}.

1

4 3

2 Cop’s third turn: The cop is forced to delete
two edges: {2, 3} and {3, 4} but only has one
move. Therefore the robber wins on his next
turn.

We now need to show that K3 is a non-positive game. This means that the cop can win

if the cop starts. The following sequence of graphs illustrate this game. The goal of the

robber is to get from vertex 1 to vertex 3.
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1

2 3

Complete Graph K3

1

2 3

Cop’s first move: The cop should delete {1, 3}
to prevent the robber from winning.

1

2 3

Robber’s first move: The robber needs to
mark two edges: {1, 2} and {2, 3} but only has
one move. Therefore the cop will disconnect the
graph on his next turn and win the game.

Thus we have shown that φ(1) = 4.

Theorem 3.1.4. Kn+3 is a non-positive game for n cops and one robber for n ≥ 2.

Proof. Let the vertices of Kn+3 be labelled 1, . . . , n+ 3. Suppose the robber is trying to

get from 1 to n+ 3. We must show that the cops win when they start.

Cops’ First Turn: The cops should delete the edge {1, n+ 3}. With the remaining n− 1

moves, the cops should delete {2, n+ 3},. . . ,{n, n+ 3}.

Robber’s First Turn: The robber is forced to mark one of the two remaining edges

connected to vertex n + 3, say {n + 1, n + 3}. Due to symmetry it does not make a

difference if the robber chose the other edge.

Cops’ Second Turn: The cops are forced to delete the edge between vertex 1 and the

vertex the robber previously used so {1, {n+1}With the n−1 moves remaining, the cops

should delete n− 1 edges connected to vertex 1 so {1, 2},. . . ,{1, n}.

Robber’s Second Turn: The robber is forced to mark the last remaining edge connected

to vertex 1, say {1, n+ 2}.

Cops’ Third Turn: The cops are forced to delete the edge between the two marked

edges done by the robber so {n + 1, n + 2}. The cops are also forced to delete the edge
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between {n+ 3} and the vertex the robber just used so {n+ 2, n+ 3}. With the remaining

n− 2 moves, the cops should delete n− 2 edges connected to the vertex the robber used

to connect to 1. So therefore {n+ 2, 2},. . . ,{n+ 2, n− 1}.

Robber’s Third Turn: The robber is forced to mark the last remaining edge connected

to the vertex he connected to 1 so {n+ 2, n}.

Cops’ Fourth Turn: The cops should now delete the n − 1 edges remaining that are

connected to the vertex the robber previously used. Therefore the cops are deleting n− 1

edges connected to vertex n. The cops have now disconnected the graph and therefore

win.

Thus Kn+3 is non-positive.

Corollary 3.1.5. φ(n) > n+ 3.

Theorem 3.1.6. Km is a positive game for m = 2n2 +n+ 1 with n cops and one robber.

Proof. By Theorem 3.1.3 we know that φ(1) = 4 so we can assume here that n ≥ 2. Let

the vertices of Km be labelled 1, . . . ,m. Without loss of generality, suppose the robber is

trying to get from vertex 1 to vertex 2. We must show that the robber wins when the cops

start. We claim the robber wins on his n+ 2 turn.

Cops’ First Turn: On every turn, the cops will be deleting a total of n edges which uses

a total of 2n vertices. On his first move he is forced to delete edge {1, 2} to prevent the

robber from winning. The cops’ next moves will involve deleting edges using most 2n− 2

unused vertices.

Robber’s First Turn: The robber should now mark an edge between vertex 2 and an

unused vertex. Without loos of generality, we can assume {2, 3}.

Cops’ Second Turn: The cops are now forced to delete {1, 3}. With the cops’s remaining

n− 1 moves, they will use at most 2n− 2 unused vertices.
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The plays continue in this fashion until the end of the cops’ nth turn. The sequence of

plays continue for the robber where he is to mark an edge between his previously used

vertex to another unused vertex. Therefore without loss of generality, the robber is marking

{k+1, k+2} on his kth turn. This continues until he has marked a path of n−1 edges say

2, . . . , n and has made n− 1 turns. The cops also continue their sequence of plays and on

the kth turn, are forced to delete {1, k + 1}. The cops then continue to delete edges using

at most 2n− 2 unused vertices. After the cops have made their nth turn let us count the

number of vertices that have been used up this far.

• vertex 1 and 2 in the cops’ first turn

• 2n− 2 vertices in the cops’ first turn

• after the first turn, the cops have n − 1 turns and deleted at most 2n − 2 unused

vertices on each turn so used a total of (n− 1)× (2n− 2) vertices

• n− 1 vertices from the robber

This gives a total of 2 + (2n− 2) + (n− 1)× (2n− 2) + (n− 1) = 2n2−n+ 1 used vertices

thus far. Therefore there remain (2n2 + n+ 1)− (2n2 − n+ 1) = 2n unused vertices.

Robber’s nth Turn: The robber should now mark an edge between his previously used

vertex from his n−1 turn to one of the 2n unused vertices, leaving 2n−1 unused vertices.

Therefore the robber now has a path of (n− 1) + 1 = n edges.

Cops’ n+1 Turn: The cops are now forced to delete the edge between vertex 1 and the

previously used vertex by the robber to prevent the robber from winning. With the cops’s

remaining n− 1 moves, they will use at most 2n− 2 unused vertices.

Robber’s n+1 Turn: There now remain (2n1)− (2n−2) = 1 unused vertex. The robber

should mark the edge between vertex 1 and this unused vertex.
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Cops’ n+2 Turn: The cops are now forced to delete n+ 1 edges but only have n moves.

Therefore the robber wins on his n+ 2 turn.

Thus Km is a positive game for m = 2n2 + n+ 1.

Corollary 3.1.7. φ(n) ≤ 2n2 + n+ 1.

From Corollary 3.1.5 and Corollary 3.1.7, we can observe the following inequalities:

n+ 4 ≤ φ(n) ≤ 2n2 + n+ 1.

These inequalities provide lower and upper bounds for φ(n). The following table shows

numerical values for n+ 4 and 2n2 + n+ 1.

n 2 3 4 5

n+4 6 7 8 9

2n2 + n+ 1 11 22 37 56

The values indicate that φ(n) is somewhere between a wide range of values as n gets

larger. Let us look at the same table but for larger values of n.

n 100 200 300 400

n+4 104 204 304 404

2n2 + n+ 1 20,101 80,201 180,301 320,401

As we can see the larger the value of n, the wider the range for φ(n) becomes. We

can also observe that φ(n) lies in the range between a linear equation and a quadratic

equation. I believe φ(n) is a quadratic equation for larger values of n. Due to the fact that

n+ 3 is the value for which the game is non-positive and n+ 4 is very close to this value it

gives further reason to believe that φ(n) is closer to being quadratic especially for larger

values of n. It also seems as though for larger integer values of n, as the sequence goes

from n −→ ∞, the value of n does not depend on any number of finite numbers in the

sequence.

Conjecture 3.1.8. φ(2) ≤ 9 and φ(3) ≤ 14.
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The following are some questions that can be later on explored:

1. Is φ(n) linear or quadratic? For what values of n does φ(n) become quadratic?

2. What is the relationship, if any, between φ(n) and the Disjoint Spanning Tree The-

orem 1.3.2? Does φ(n) contain three or more disjoint spanning trees and how does

this affect the robber’s strategy?

3.2 Complete Bipartite Graphs

After playing on complete graphs and trying to find values for φ(n), it seemed time to

consider a different family of graphs to investigate. Complete bipartite graphs are similar

to complete graphs so therefore I chose to investigate the n-cop game on complete bipartite

graphs.

Definition 3.2.1. Let n ∈ N. A complete bipartite graph Km,n is a bipartite graph with

edges in two disjoint sets say A and B. All the vertices in A are connected to all the

vertices in B however the vertices within the same set are not connected. Here we only

consider complete bipartite graphs when m = n. 4

Given that the robber’s goal is to get from vertex u to vertex v and u 6= v, we may

consider two cases:

1. u and v are in the same set so u, v ∈ A or u, v ∈ B (same side)

2. u and v are in different sets so u ∈ A and v ∈ B (opposite side)

Definition 3.2.2. Let α, β, γ : N −→ N be the functions defined by:

α(n) = min{m | Km,m is positive with n cops and u, v on opposite side}

β(n) = min{m | Km,m is positive with n cops and u, v on same side}

γ(n) = min{m | Km,m is non-negative with n cops and u, v on same side} 4
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u

v

u

v

Figure 3.2.1. K3,3 with u and v on the same side and opposite side

NOTE: All graphs Km,m with u, v on opposite sides are non-negative by Proposi-

tion 2.3.6 as there will be a direct edge between the two vertices regardless of where

u, v are positioned. Therefore when investigating these games, the cops should always

start first as otherwise the robber wins.

Theorem 3.2.3. α(1) = 4.

Proof. For us to prove that α(1) = 4 we must show that K4,4 is positive and K3,3 is

non-positive for u, v on opposite sides. The following sequence of graphs illustrates that

K4,4 is a positive game using the deletion-contraction method. We must show that the

robber wins when the cop starts. The robber is trying to get from vertex 1 to vertex 4′.

So in this example vertices 1 = u and 4′ = v.

1 1'

2 2'

3 3'

4 4'

Complete Bipartite Graph K4,4

1 1'

2 2'

3 3'

4 4'

Cop’s first turn: The cop is forced to
delete the edge {1,4’} as otherwise the
robber can contract this edge and win
the game.

1/1'

2 2'

3 3'

4 4'

Robber’s first turn: The robber
should choose to contract an edge
between vertices 1 and an unused edge
in B say {1, 1′}. Now vertex 1 becomes
1/1′.
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1/1'

2 2'

3 3'

4 4'

Cop’s second turn: Cop chooses to
delete edge {4, 3′}

1/1'/2'

2

3 3'

4 4'

Robber’s second turn: The robber
should choose to contract an edge
between vertices 1 and an unused edge
in B say {1, 2′}. Now vertex 1/1′

becomes 1/1′/2′

1/1'/2'

2

3 3'

4 4'

Cop’s third turn: The cop chooses to
delete edge {3, 4′}

1/1'/2'

2

3 3'

4/4'

Robber’s third turn: The robber
should now contract an edge between
vertices 4′ and any unused vertex in A
say {4, 4′}. Now vertex 4 becomes 4/4′.

1/1'/2'

2

3 3'

4/4'

Cop’s fourth turn: At this point it is
clear the robber will win on his next
turn because the cop needs to delete
two edges but only has one move so
chooses to delete edge {1, 4′}.

1=4'

2

3 3'

Robber’s fourth turn: The robber
now wins by contracting the edge
between vertices 1 and 4′ thus 1 = 4′.

We now need to show that K3,3 is a non-positive game. We must therefore show that

the cop wins then the cop starts. Assume the robber is trying to get from 1 to 3′.

1 1'

2 2'

3 3'

Complete Bipartite Graph K3,3
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1 1'

2 2'

3 3'

Cop’s first turn: The cop is forced to
delete {1, 3′}.

1/1'

2 2'

3 3'

1

2/2'

3 3'

1'

g1 g2

Robber’s first turn: Without loss of
generality we can assume the robber
contracts either {1, 1′} or {2, 2′} (due to
symmetry any other move is equivalent
to one of these two moves). Graph g1
shows the graph for the first case and
g2 shows the graph for the second case.

1/1'

2 2'

3 3'

1

2/2'

3 3'

1'

g1 g2

Cop’s second turn: In either case the
cop should now delete an edge
connected to 3′ so {3, 3′} on both g1
and g2.

1/1'

2/3' 2'

3

1

2/2'/3'

3
g1 g2

1' Robber’s second turn: On both g1
and g2, the robber is forced to contract
{2, 3′} as it is the only remaining edge
connected to 3′.

1/1'

2/3' 2'

3

1

2/2'/3'

3

1'

g1 g2

Cop’s third turn: In either case, the
cop is now forced to delete {2, 1′}

1/1'

2/3' 2'

3

1

2/2'/3'

3

1'

g1 g2

Robber’s third turn: The robber
only has one edge available to contract
{2, 2′} on g1 and {2, 1′} on g2. However
on the cop’s next turn he will
disconnect the graph by deleting {1, 2′}
on g1 and {1, 1′} on g2 and therefore
the cop wins the game.

Theorem 3.2.4. β(1) = 4.

Proof. For us to prove that β(1) = 4 we must show that K4,4 is positive and K3,3 is

non-positive for u, v on the same side. The following graphs show the graph K4,4. By
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Theorem 1.3.2, to show that K4,4 is positive, me must show two disjoint spanning trees .

Assume the robber is trying to get from 1 to 4.

1 1'

2 2'

3 3'

4

1 1'

2'

3'

4'

2

3

4

1'

2'

3'

1

2

3

4

Figure 3.2.2. K4,4 is a positive game

Now we must show that K3,3 is a non-positive game with u, v on the same side. We

must show that the cop wins when the cop starts. Let the set A = {1, 2, 3} and the set

B = {1′, 2′, 3′}. The robber is trying to get from 1 to 3.

Turn Cop Robber

First {1, 1′} {2, 2′}
Second {1, 2′} {1, 3′}
Third {3, 3′} {2, 3′}
Fourth {3, 2′} {3, 1′}

Turn Cop Robber

First {1, 1′} {3, 3′}
Second {3′, 1} {1, 2′}
Third {2′, 3} {2, 2′}
Fourth {2, 3′} robber loses

The tables above show the sequence of moves for two different games played on K3,3. Due

to symmetry of the graph, without loss of generality the robber on his first turn may

choose to mark {3, 3′} or {2, 2′}. We will only be describing the moves for the first table.

However, the reader is invited to play the game following the sequence in table 2 on their

own. On the first turn the cop should delete {1, 1′}. The robber then marks {2, 2′}. The

cop on his second turn should delete {1, 2′} forcing the robber to mark {1, 3′} as this is the
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only remaining edge connected to 1. The cop on his third turn should delete {3, 3′} forcing

the robber to mark {3′, 2} as otherwise the cop on his next turn can delete it disconnecting

the graph. On the fourth turn, the cop should delete {3, 2′} forcing the robber to mark

{3, 1′} as this is the only remaining edge connected to 3. On the cop’s final turn, we should

delete {2, 1′} therefore winning the game.

Theorem 3.2.5. γ(1) = 3.

Proof. Assume we are playing on K3,3. We must show that the robber wins when the

robber starts. Let the set A = {1, 2, 3} and the set B = {1′, 2′, 3′}. The robber is trying

to get from 1 to 3.

Turn Robber Cop

First {1, 1′} {1′, 3}
Second {3, 3′} {3′, 1}
Third {3′, 2} {2, 1′}
Fourth {1, 2′} {2, 2′}

{3, 2′}

On the first turn the robber should mark {1, 1′} forcing the cop to delete {1′, 3}. The

robber on his second turn should then mark {3, 3′} forcing the cop to delete {3′, 1}. The

robber on his third turn should mark {3′, 2} forcing the cop to delete {2, 1′}. On the fourth

turn, the robber should mark {1, 2′}. The cop needs to delete {2, 2′} and {3, 2′} but only

has one move so therefore the robber wins on his next turn.

Now we must show that K2,2 is a negative game therefore the cop wins when the robber

starts. However, K2,2 is obviously a negative game as there exists two edges that once

deleted, disconnect the graph such as in Example 1.3.3.

Theorem 3.2.6. Km,m is a positive game when m = (n + 1)2 for n cops with u, v on

opposite sides.
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Proof. By Theorem 3.2.3 we know that α(1) = 4 so we can assume here that n ≥ 2. We

must show that the robber wins when the cops start. Let us assume the set A = {1, . . . ,m}

and the set B = {1, . . . ,m′}. The robber is trying to get from vertex 1 to vertex m′. The

game begins with n2 + 2n+ 1 unused vertices in each vertex set A and B respectively. We

claim that the robber wins on his n+ 3 turn.

Cops’ First Turn: The cops are forced to delete {1,m′} to prevent the robber from

winning. The cops can choose to delete any n− 1 edges and will use at most n− 1 unused

vertices from each set .

Robber’s First Turn: The robber should choose to mark an edge between vertex 1 and

any unused vertex in B. Without loss of generality we can assume {1, 1′}.

Cops’ Second Turn: The cops can choose to delete any n edges and will use at most n

unused vertices from each set .

Robber’s Second Turn: The robber should now choose to mark an edge between vertex

1 and any unused vertex in B. Without loss of generality we can assume {1, 2′}.

Cops’ Third Turn: The cops can choose to delete any n edges and will use at most n

unused vertices from each set .

The plays continue in this fashion until the end of the cops’ n+1 turn. This sequence of

plays continue for the robber where he is to mark an edge between vertex 1 and an unused

vertex in B. This continues until the robber has marked n edges from 1 to B. Therefore

without loss of generality we can assume his last marked edge in this sequence of plays

is {1, n′}. The cops also continue their sequence of plays until their n + 1 turn and will

delete at most n unused vertices.

After the cops have made their n+ 1 turn let us count the number of vertices that have

been used up thus far in A and B respectively:

Set A is as follows:
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• vertex 1 from the cop’s first move

• n− 1 vertices from the cop’s first move

• after the first turn, the cops at this point have n turns and deleted at most n unused

vertices on each turn so used a total of n2 vertices

This gives a total of 1 + (n− 1) + n2 = n2 + n used vertices thus far in A.

Set B is as follows:

• vertex m from the cop’s first move

• n− 1 vertices from the cop’s first move

• n vertices from the robber

• after the first turn, the cops at this point have n turns and deleted at most n unused

vertices on each turn so used a total of n2 vertices

This gives a total of 1 + (n− 1) + n+ n2 = n2 + 2n used vertices thus far in B.

The game started with a total of n2 + 2n + 1 vertices. Therefore after the cops’ n + 1

turn there remain (n2 + 2n+ 1)− (n2 + n) = n+ 1 unused vertices in A and (n2 + 2n+

1)− (n2 + 2n) = 1 unused vertex in B.

Robber’s n+1 Turn: The robber should now mark the edge between 1 and the one

remaining vertex in B. Let us refer to this vertex as unused. Therefore the robber marks

{1, unused}

Cops’ n+2 Turn: There now remain no unused vertices in B thus with the cops n moves

they will delete at most n unused vertices in A.

Robber’s n+2 Turn: There is now at least (n+ 1)− n = 1 unused vertex remaining in

A. The robber should mark the edge between m′ and this one remaining unused vertex in
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A. Without loss of generality we can assume this unused vertex is m. Therefore the robber

marks {m,m′}.

Now on the cops’ n+ 3 turn, they are forced to delete n+ 1 edges connected from m to

B but they only have n moves. Therefore the robber wins on his n+3 turn. Figure 3.2.3 is

an illustration of how this proof works. The robber’s n+ 2 turn is shown as the dotted red

lines from m′ to m. As you can see, the cop needs to delete {m, [{1′, . . . , n′} + unused]}

but only has n moves. Therefore the robber wins.

1 1'

2'

n'

unused

m m'

{n
Figure 3.2.3. Illustration of Theorem 3.2.6

Corollary 3.2.7. α(n) ≤ (n+ 1)2.

Theorem 3.2.8. Km,m is a positive game when m = (n+ 1)2 for n cops with u, v on the

same side.

Proof. By Theorem 3.2.4 we know that β(1) = 4 so we can assume here that n ≥ 2. We

must show that the robber wins when the cops start. Let us assume A = {1, . . . ,m} and

B = {1′, . . . ,m′}. The robber is trying to get from vertex 1 to vertex m. The game begins

with n2 + 2n+ 1 unused vertices in each vertex set A and B respectively. The robber wins

on his n+ 4 turn.
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Cops’ First Turn: The cops can choose to delete any n edges and will use at most n

unused vertices from each set .

Robber’s First Turn: The robber should choose to mark an edge between vertex 1 and

any unused vertex in B. Without loss of generality we can assume {1, 1′}.

Cops’ Second Turn: The cops are now forced to delete the edge {1′,m} to prevent the

robber from winning. The cops can choose to delete any n− 1 edges and will use at most

n− 1 unused vertices from each set .

Robber’s Second Turn: The robber should now choose to mark an edge between vertex

1 and any unused vertex in B. Without loss of generality we can assume {1, 2′}.

Cops’ Third Turn: The cops are now forced to delete {2′,m} to prevent the robber from

winning. The cops can choose to delete any n− 1 edges and will use at most n− 1 unused

vertices from each set .

The plays continue in this fashion until the end of the cops’ n + 2 turn.This sequence

of plays continue for the robber where he is to mark an edge between vertex 1 and an

unused vertex in B. This continues until the robber has marked n+ 1 edges from 1 to B.

Therefore without loss of generality we can assume his last marked edge in this sequence

of plays is {1, (n + 1)′}. The cops also continue their sequence of plays until their n + 2

turn where they are forced to delete {1, (n+ 1)′} and at most n− 1 unused vertices.

After the cops have made their n+ 2 turn let us count the number of vertices that have

been used up thus far in A and B respectively:

Set A is as follows:

• vertex 1 and m

• n vertices from the cops’ first turn
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• after the first turn, the cops have n + 1 turns and deleted at most (n − 1) unused

vertices on each turn so used a total of (n+ 1)× (n− 1) vertices

This gives a total of 2 + n+ (n+ 1)× (n− 1) = n2 + n+ 1 used vertices thus far in A.

Set B is as follows:

• n vertices from the cops’ first turn

• n+ 1 vertices from the robber’s turns

• after the first turn, the cops have n + 1 turns and deleted at most (n − 1) unused

vertices on each turn so used a total of (n+ 1)× (n− 1) vertices

This gives a total of n+ (n+ 1) + (n+ 1)× (n− 1) = n2 + 2n used vertices thus far in B.

The game started with a total of n2 + 2n + 1 vertices. Therefore after the cops’ n + 2

turn there remain (n2 + 2n+ 1)− (n2 + n+ 1) = n unused vertices in A and (n2 + 2n+

1)− (n2 + 2n) = 1 unused vertex in B.

Robber’s n+2 Turn: The robber should now mark the edge between m and the one

remaining vertex in B. Let us refer to this vertex as unused. Therefore the robber marks

{unused,m}

Cops’ n+3 Turn: The cops are forced to delete the {1, unused}. There now remain no

unused vertices in B thus with the cops n− 1 moves they will delete at most n− 1 unused

vertices in A.

Robber’s n+3 Turn: There is now at least n−(n−1) = 1 unused vertex remaining in A.

The robber should mark the edge between unused and this one remaining unused vertex

in A. Without loss of generality we can assume this unused vertex is (m − 1). Therefore

the robber marks {unused,m− 1}.

Now on the cops’ n + 4 turn, they are forced to delete n + 1 edges connected from

m − 1 to B but they only have n moves. Therefore the robber wins on his n + 4 turn.



3. FAMILIES OF GRAPHS 44

Figure 3.2.4 is an illustration of how this proof works. The robber’s n + 3 turn is shown

as the dotted red lines from unused to m− 1. As you can see, the cop needs to now delete

{m− 1, {1′, 2′, . . . , (n+ 1)′}} but only has n moves. Therefore the robber wins.

1 1'

2'

3'

(n+1)'

m

unused

m'

{n
m-1

Figure 3.2.4. Illustration of Theorem 3.2.8

Corollary 3.2.9. β(n) ≤ (n+ 1)2.

Theorem 3.2.10. Km,m is a non-negative game when m = n2 + n + 1 for n cops with

u, v on the same side.

Proof. By Theorem 3.2.5 we know that γ(1) = 3 so we can assume here that n ≥ 2. We

must show that the robber wins when the robber starts. Let us assume A = {1, . . . ,m}

and B = {1′, . . . ,m′}. The robber is trying to get from vertex 1 to vertex m. The game

begins with n2 +n+1 unused vertices in each vertex set A and B respectively. The robber

wins on his n+ 4 turn.

Robber’s First Turn: The robber should choose to mark an edge between vertex 1 and

any unused vertex in B. Without loss of generality we can assume {1, 1′}.
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Cops’ First Turn: The cops are now forced to delete the edge {1′,m} to prevent the

robber from winning. The cops can choose to delete any n− 1 edges and will use at most

n− 1 unused vertices from each set .

Robber’s Second Turn: The robber should now choose to mark an edge between vertex

1 and any unused vertex in B. Without loss of generality we can assume {1, 2′}.

Cops’ Third Turn: The cops are now forced to delete {2′,m} to prevent the robber from

winning. The cops can choose to delete any n− 1 edges and will use at most n− 1 unused

vertices from each set .

The plays continue in this fashion until the end of the cops’ n+ 1 turn. This sequence

of plays continue for the robber where he is to mark an edge between vertex 1 and an

unused vertex in B. This continues until the robber has marked n+ 1 edges from 1 to B.

Therefore without loss of generality we can assume his last marked edge in this sequence

of plays is {1, (n + 1)′}. The cops also continue their sequence of plays until their n + 1

turn where they are forced to delete {1, (n+ 1)′} and at most n− 1 unused vertices.

After the cops have made their n+ 1 turn let us count the number of vertices that have

been used up thus far in A and B respectively:

Set A is as follows:

• vertex 1 and m

• the cops have n+ 1 turns and deleted at most (n− 1) unused vertices on each turn

so used a total of (n+ 1)× (n− 1) vertices

This gives a total of 2 + (n+ 1)× (n− 1) = n2 + 1 used vertices thus far in A.

Set B is as follows:

• n+ 1 vertices from the robber’s turns
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• the cops have n+ 1 turns and deleted at most (n− 1) unused vertices on each turn

so used a total of (n+ 1)× (n− 1) vertices

This gives a total of (n+ 1) + (n+ 1)× (n− 1) = n2 + n used vertices thus far in B.

The game started with a total of n2 +n+1 vertices. Therefore after the cops’ n+1 turn,

there remain (n2 +n+1)−(n2 +1) = n unused vertices in A and (n2 +n+1)−(n2 +n) = 1

unused vertex in B.

Robber’s n+2 Turn: The robber should now mark the edge between m and the one

remaining vertex in B. Let us refer to this vertex as unused. Therefore the robber marks

{unused,m}

Cops’ n+3 Turn: The cops are forced to delete the {1, unused}. There now remain no

unused vertices in B thus with the cops n− 1 moves they will delete at most n− 1 unused

vertices in A.

Robber’s n+3 Turn: There is now at least n−(n−1) = 1 unused vertex remaining in A.

The robber should mark the edge between unused and this one remaining unused vertex

in A. Without loss of generality we can assume this unused vertex is (m − 1). Therefore

the robber marks {unused, (m− 1)}.

Now on the cops’ n+3 turn, they are now forced to delete n+1 edges from B connected

to vertex m− 1 but only has n moves. Therefore the robber wins on his n+ 4 turn.

Corollary 3.2.11. γ(n) ≤ n2 + n+ 1.

Proposition 3.2.12. If the graph Km,m is a positive game with n cops and u, v on opposite

side, then Km+1,m+1 is a non-negative game with n cops and u, v on the same side.

Proof. Assume Km,m is a positive game for n cops and u, v on the opposite side. Consider

the graph Km+1,m+1 with u, v on the same side. Let the disjoint sets be defined as A =

{1, . . . ,m + 1} and B = {1′, . . . , (m + 1)′}. The robber is trying to get from 1 to m + 1.
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Therefore u = 1 and v = m+1. Since we are trying to prove thatKm+1,m+1 is non-negative,

we must show that the robber wins when the robber starts. Let the robber’s first move

be to contract the edge e between vertices m+ 1 and m′. Therefore the resulting graph is

Km+1,m+1/e such that m+ 1 = m′. The new disjoint sets are now Anew = {1, . . . ,m} and

Bnew = {1, . . . , (m+ 1) = m′}. Thus in Km+1,m+1/e, every vertex in Anew is connected to

every vertex in Bnew. Therefore this resulting graph contains a subgraph that is isomorphic

to Km,m. Since m+ 1 = m′ then m+ 1 is now in Bnew and therefore on the opposite side.

Since we have assumed Km,m is a positive game for u, v on opposite sides which means the

robber wins when the cop starts, then this implies that Km+1,m+1 is non-negative with

u, v on the same side.

I have proven that Km,m is a non-positive game when m = n + 2 for u, v on the same

side and on opposite sides. These proofs are not included in the write up however it gives

us some lower bounds for α(n) and β(n) such that n+ 3 ≤ α(n) and n+ 3 ≤ β(n).

From the theorems we therefore know the following bounds for α, β and γ:

1. n+ 3 ≤ α(n) ≤ n2 + 2n+ 1

2. n+ 3 ≤ β(n) ≤ n2 + 2n+ 1

3. γ(n) ≤ n2 + n+ 1

The table below allows us to observe inputs for the inequalities of the functions:

n 2 3 4 5

n + 3 5 6 7 8

n2 + 2n+ 1 9 16 25 36

n2 + n + 1 7 13 21 31

The table therefore tells us that 5 ≤ α(2) ≤ 9, 6 ≤ α(3) ≤ 16, 7 ≤ α(3) ≤ 25,. . . ,103 ≤

α(100) ≤ 10, 201. The same applies for β. The sequence of bounds therefore has an in-

creasing difference of n2, n2 + 2, n2 + 3, . . . , n2 +∞. Therefore, with the same reasoning as
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in the case of complete graphs, I hold the assumption that α(n) and β(n) are quadratic

equations.

From Proposition 3.2.12 we know that if the graph Km,m is a positive game with n cops

and u, v on opposite side, then Km+1,m+1 is a non-negative game with n cops and u, v on

the same side. Therefore if m ≥ α(n) then m+ 1 ≥ γ(n). In particular, since α(n) ≥ α(n),

then this implies that α(n) + 1 ≥ γ(n). We also know that n2 + 2n + 1 ≥ α(n) therefore

it is true that n2 + 2n+ 1 + 1 ≥ α(n) + 1. Therefore n2 + 2n+ 2 ≥ α(n) + 1 ≥ γ(n).

Let us now look at the relationship between the results found for complete graphs and

the results found for complete bipartite graphs.

Something we have not proven but which is true is that Km,m ⊆ K2m. We know that

φ(n) ≤ 2n2 + n + 1, α(n) ≤ n2 + 2n + 1 and β(n) ≤ n2 + 2n + 1. Therefore from

Proposition 2.3.3 part 2, we know that if Km,m is positive, then K2m is also positive.

Therefore this means that if m ≥ α(n), then 2m ≥ φ(n). This implies that 2α(n) ≥ φ(n).

Since β and α are both complete bipartite graphs Km,m, the same applies to β(n). We

also know that n+ 3 ≤ φ(n) thus n+ 3 ≤ φ(n) ≤ 2α(n).

The following are some questions that can be explored:

1. For what values of n are α(n) and γ(n) quadratic?

2. What is a lower bound for γ(n)?

3. How does the game differ on bipartite graphs?

4. What is the relationship, if any, between α(n), β(n) and the Disjoint Spanning Tree

Theorem 1.3.2 for n-cop game?



4
N-Cop, N-Robber Game

After exploring the n-cop game, it seemed logical for us to investigate a game with multiple

robbers that we will call n robbers. This chapter explores the n-cop, n-robber game played

on complete bipartite graphs. Introducing n robbers is equivalent to one robber having n

moves. Therefore, like the n cops, the robbers are moving collectively together and mark

(or contract) a total of n edges on each turn. The n cops and n robbers alternate turns

until either the n cops have disconnected all paths in the graph or the n robbers have

marked a path from u to v. The definitions for the types of games remain the same,

however now the robber gets as many moves as the cop.

Theorem 4.1. Let ε, δ : N −→ N be the functions defined by:

ε(n) = min{m | Km,m is positive with n cops and n robbers and u, v on opposite sides}

δ(n) = min{m | Km,m is positive with n cops and n robbers and u, v on same side}

We already know from Section 3.2 that ε(1) = 4 and δ(1) = 4.
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Theorem 4.2. ε(2) = 4.

In order for us to illustrate this Theorem, we need to show that K4,4 is positive and

K3,3 is a non-negative game with u, v on opposite sides with 2 cops and 2 robbers.

The following is an illustration of a game played on K4,4 with two cops and two robbers.

We must show that this is a positive game so therefore the robbers win when the cops

start. The two robbers are trying to get from vertex 1 to vertex 4′.

1 1'

2 2'

3 3'

4 4'

Complete Bipartite Graph K4,4

1 1'

2 2'

3 3'

4 4'

Cops’ first turn: The cops delete the
edge {1, 4′}. They can now delete one
more edge (say {4, 3′}) that will delete
at most two unused vertices.

1 1'

2 2'

3 3'

4 4'

Robbers’ first turn: There are now
at least two unused vertices in B. The
robbers should mark these two unused
vertices to vertex 1. Thus marking
edges {1, 1′} and {1, 2′}.

1 1'

2 2'

3 3'

4 4'

Cops’ second turn: At this point it is
obvious that on the robbers’ next turn,
they can mark many edges that can
create a path between vertices 1 and 4′.
The cops choose to delete the edges
{4, 2′} and {4, 4′}.
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1 1'

2 2'

3 3'

4 4'

Robbers’ second turn: Now the
robbers will have at least one vertex in
A that can be marked to 4′ say {4, 4′}.
Then on second move connect this
vertex in A to one of the two vertices
they marked in B on their first turn say
{4, 2′}. The robbers have won thus the
game is positive.

We now need to show that K3,3 is a non-positive game. This means that the cops can

win if the cops starts. The following illustrates this game and therefore shows a strategy

for the cops to win on K3,3 against the two robbers. The goal of the robbers is to get from

vertex 1 to vertex 3′.

1 1'

2 2'

3 3'

Complete Bipartite Graph K3,3

1 1'

2 2'

3 3'

Cops’ first turn: Cops’ delete {1, 3′}
and should then delete an edge between
vertex 3′ and a vertex in set A say
{3, 3′}

1 1'

2 2'

3 3'

Robbers’ first turn: The robbers are
forced to mark {2, 3′} as it is the only
remaining edge connected to 3′. The
robbers are also forced the mark either
{1, 1′} or {1, 2′} as they are the only
remaining vertices connected to 1. Due
to symmetry, without loss of generality,
the robbers mark {1, 1′}.

1 1'

2 2'

3 3'

Cop’s second turn: Finally the cops
should delete the two edges connected
to vertex 2. At this point the cops win
as they have disconnected the graph.
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Theorem 4.3. ε(n) = n+ 1 for n ≥ 3 .

Proof. For us to prove that ε(n) = n + 1, we need to show that Km,m is positive for

m = n+ 1 with u, v on opposite sides for n cops and n robbers and we also need to show

that Km,m is non-positive when m = n. To show this is positive, we must show that the

robbers win when the cops start. In this game, we label the vertices as A = {1, 2, . . . ,m}

and B = {1′, 2′, . . . ,m′}.

Cops’ First Turn: The cops are forced to delete {1,m′} as otherwise the robber will

win. With the remaining n− 1 moves, the cops can delete any edge and will use at most

n− 1 unused vertices from each set.

Robbers’ First Turn: The robbers will now have at least one edge that they can mark

between vertices 1 and an unused vertex in set B. Then on the next move, the robbers

will have at least one unused vertex in A and and should mark the edge between this

vertex and the vertex previously used from B. So now the robbers have marked a path

from vertex 1 to another vertex in set A. From this point the robbers obviously win as

the robbers should now connect this vertex in A to vertex m′ therefore marking a direct

path from 1 to m′.

Now we must show that Km,m is a non-negative game with n cops and n robbers when

m = n for n ≥ 3 with u, v on opposite sides. We must therefore show that the cops wins

when they start.

The robbers are trying to get from vertex 1 to vertex m′. Therefore on the cops’ first

turn, they should choose to delete the n edges connected from vertex m′ to the n vertices

in set A. Since m = n, they have deleted all possible edges connected to m′ therefore

disconnecting the graph. Thus the cops win on first turn.
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Theorem 4.4. δ(n) = n+ 1 for n ≥ 2 .

Proof. For us to prove that δ(n) = n+ 1 for n ≥ 2, we must prove that Km,m is positive

when m = n+ 1 with u, v on the same side. We also must prove that Km,m is non-positive

when m = n. To show the game is positive, we must show that the robbers win when the

cops start. In this game, we label the vertices as A = {1, 2, . . . ,m} and B = {1′, 2′, . . . ,m′}.

The robbers are trying to get from vertex 1 to m.

Cops’ First Turn: The cops can delete any two edges. They will use at most n unused

vertices from each set A and B.

Robbers’ First Turn: The robbers will now have at least one edge that they can mark

between vertices 1 and an unused vertex in set B and should mark this edge. Then on

their next move, they should mark the edge between the unused vertex previously used

from B to vertex m. Thus the robbers win the game.

Now we must show that Km,m is a non-positive game with n cops and n robbers when

m = n for n ≥ 2 with u, v on the same side. This means we must show the cops can win

when they start.

The robber is trying to get from vertex 1 to vertex m. On the cops’ first turn, they

should choose to delete the n edges connected from vertex m to the n vertices in B. Since

m = n, they have deleted all possible edges connected to m therefore disconnecting the

graph. Thus the cops win on first turn and game is non-positive.

Now let us pose an interesting question:

Consider playing a game on K14,14 with u, v on the same side. Suppose the robber is

trying to get from vertex 1 to 12. If you were the robber and had the choice of the following,

which one would you choose to have this be a positive game?
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1. 2 robbers versus 13 cops or

2. 1 robber versus 6 cops

Let us now look at the results for ε and δ for different values of n.

n 2 3 4 5 100

ε(n) 4 4 5 6 101

δ(n) 3 4 5 6 101

As we can can see ε(2) 6= δ(2). Also notice that for δ(n), when n ≥ 2, the robbers win on

their first turn and only need 2 moves. Therefore for δ(n) ≥ 3, two robbers are sufficient

to win the game. Also notice that for ε(n), when n ≥ 3, the robbers win on their first

turn also and only need 3 moves. Therefore for δ(n) ≥ 4, three robbers are sufficient to

win the game. Therefore even when the robbers are up against 100 cops in the case of

δ(100), the robbers only need to use 2 of their men to escape successfully. This shows the

advantage of having more than one robber and how much easier it is to win the game. Let

us revisit the question posed in the beginning? Would you rather 1 robber versus 6 cops

or 2 robbers versus 13 cops. Since u, v are on opposite sides for K14,14 we must consider

δ(13) and β(6). We know that δ(13) = 14 therefore this means that 13 robbers can win

against 13 cops however we also know that only 2 of these robbers are needed to beat 13

cops. However, β(6) which means there are 6 cops against 1 robber, the range of values is

9 ≤ β(6) ≤ (49). This is a wide range of values to consider for the minimum for the game

to be positive, therefore with this reasoning it would be a safer bet to choose 2 robbers

versus 13 cops.

Further questions that can be explored are:

1. How does the n-cop, n-robber game relate to complete graphs?

2. What is the relationship, if any, between ε(n), δ(n) and the Disjoint Spanning Tree

Theorem 1.3.2 for n-cop, n-robber game?
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There is much more research that can be done investigating the Shannon switching game.

The Spanning Tree Theorem is a very interesting theorem solved. How does the number

of spanning trees in a given graph affect the n-cop game? What are other variations of

this game that can be explored? What are some results of the n-cop game when played on

other families of graphs? Mathematicians often study the Shannon switching game using

matroid theory. What if the n-cop game was studied using matroids? How does the study

on matroids relate to the game and other possible variations? The results in this project

only mark a start for the many variations that can further be explored.
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