
Implementation of the Solution to the
Conjugacy Problem in Thompson’s

Groups

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Nabil Hossain

Annandale-on-Hudson, New York
May, 2013

Abstract

In this project, we present an efficient implementation of the solution to the conjugacy
problem in Thompson’s group F , a certain infinite group whose elements are piecewise-
linear homeomorphisms of the unit interval [0, 1]. Our algorithm checks for conjugacy by
constructing and comparing directed graphs called strand diagrams. We provide a compre-
hensive description of our solution algorithm, including the data structure we used to hold
strand diagrams and the additional subroutines for manipulations of strand diagrams. We
prove that our algorithm theoretically achieves an O(n) bound in the size of the input,
and we present a O(n2) working solution as an executable JAR file, a web application,
and Java source code.

Contents

Abstract 1

Dedication 6

Acknowledgments 7

Introduction 9

1 Background 12
1.1 Conjugacy . 12
1.2 Directed Graphs Embedded on Surfaces . 15
1.3 Thompson’s Group F . 22

1.3.1 Dyadic Rearrangements . 23
1.3.2 Tree Diagrams . 24

1.4 Strand Diagrams . 26
1.4.1 Strand Diagram Manipulations . 28

2 Annular Strand Diagrams 31
2.1 Closing Strand Diagrams . 31
2.2 Reductions . 32
2.3 Concentric Components . 35
2.4 The Cutting Path . 40
2.5 Isotopy of Reduced Annular Strand Diagrams 43

3 Algorithm for the Conjugacy Problem in F 47
3.1 Algorithm Overview . 48
3.2 The Data Structure . 50

3.2.1 Background: Doubly Linked Lists . 50

Contents 3

3.2.2 Class: Edge . 51
3.2.3 Class: Vertex . 53
3.2.4 Class: Graph . 54
3.2.5 Class: Strand . 55
3.2.6 Class: Annular . 55

3.3 Strand Diagram Generation . 56
3.4 Reducing . 58

3.4.1 Keeping Track of Potential Future Reductions 60
3.4.2 Cutting Path Update and Free Loop Generation 61

3.5 Connected Component Labeling . 66
3.6 Encoding Annular Strand Diagrams into Planar Graphs 67

3.6.1 The Encoding Algorithm . 72
3.7 Retrieving Annular Strand Diagrams from Planar Graph Encodings 72
3.8 Isomorphism Checking . 74
3.9 Our Actual Implementation . 75

3.9.1 Isotopy Detector Given two Corresponding Vertices 76
3.9.2 Isotopy Detector Given two Connected Reduced Annular Strand

Diagrams . 78
3.10 Results . 79

3.10.1 Verification of Results . 80
3.10.2 Shortest Cyclically Reduced Word for the Identity 82

3.11 The Software . 82
3.11.1 The Variants and the Implementation Details 83
3.11.2 Using the Application . 84

4 Conclusion and Future Work 90

Appendix: Algorithm Descriptions 92

Bibliography 99

List of Figures

1.2.1 Homotopy of curves on the plane. 18

1.2.2 Isotopy of graphs on the plane. 19

1.2.3 A,B, and C are different embeddings of the same planar graph. None of
the embeddings are isotopic on the plane, but B and C are isotopic on the
sphere. 19

1.3.1 Generators for Thompson’s Group F . The right half of x1 is the same as x0. 24

1.3.2 The infinite binary tree of standard dyadic intervals in [0, 1] (image taken
from [2]). 25

1.4.1 A strand diagram, a merge, and a split (image taken from [3]). 26

1.4.2 Construction of the strand diagram for x0 from its tree diagram (image
taken from [3]). 27

1.4.3 Generators for F and their inverses. 28

1.4.4 The two reduction rules (image taken from [3]). 28

1.4.5 Composing elements of F by concatenating their strand diagrams. Note
that the concatenation makes a type II reduction move possible around the
vertex vs (image taken from [3]). 29

2.1.1 Annular strand diagram for x1 obtained by closing its strand diagram . . . 32

2.2.1 The reduction moves for annular strand diagrams. A type I move is allowed
when the shaded region is a topological disk. A type III move is allowed
when the space between the two free loops is a topological annulus contain-
ing no vertices (image taken from [3]). 32

2.2.2 A type I move reduces the central annular strand diagram to a free loop,
but a reduction II creates two concentric free loops. A reduction III on the
diagram in the right merges the two free loops, preserving unique normal
forms (image taken from [3]). 33

LIST OF FIGURES 5

2.2.3 Reducing an annular strand diagram. In the pictures, the green regions are
subject to type I moves, and the red and blue regions are each subject
to type II moves. The type II move on the red region in (a) breaks the
connected annular strand diagram into two connected components. 34

2.3.1 A reduction II move causing a connected component to split into two (each
shaded region represents a component). 36

2.3.2 Two reduced annular strand diagrams (A1 has been taken from [3]). 37
2.4.1 For a cutting path, the edge crossing in (a) is allowed and (b) is not allowed 40
2.4.2 Update of the cutting path for each reduction move. 41
2.4.3 Status of a cutting path (a) after closing a strand diagram (crosses edge ec),

(b) after performing a type II reduction, and (c) after the annular strand
diagram is reduced. The numbers denote the order of the edges in the
cutting path . 42

2.5.1 Three reduced annular strand diagrams in which A1 and A2 are isotopic. . 45

3.1.1 Overview of the solution algorithm for the conjugacy problem in F 49
3.2.1 The Java model of the data structure used for the solution to the conjugacy

problem in F . Note that all the linked lists are doubly linked. 52
3.4.1 (a) Reduction I and (b) reduction II, with labeled edges and the split in-

volved in the reduction labeled v. The green vertices can be splits or merges,
they may not be distinct from each other or from the yellow vertices. 58

3.4.2 Special cases for updating cuttingPath during a type II move. Refer to (b)
in Figure 3.4.1 for edge and vertex labels. 66

3.6.1 The encoding of s ∈ X when s is a free loop. φ(s) ∈ G is the planar graph
with a single vertex having a loop. 68

3.6.2 Different input and output types for edges. The vertex on the left is a merge,
and the one on the right is a split . 69

3.6.3 (a) shows the highlighted edge ek which is the lone output of a merge and
the lone input to a split. The encoding of ek produces the planar graph gk
in (b). 69

3.6.4 Encoding of x0x0 to its corresponding planar graph. 70
3.10.1A general structure for reduced annular strand diagrams with two vertices.

The red dashed circles show free loops. 80
3.11.1The user interface of the application for the conjugacy problem in F 83

Dedication

To my father, mother, brother, and sister, who all make my world magical

Acknowledgments

Most of the credits for this project’s success goes to my adviser James Belk, an excellent
researcher, a wonderful teacher, and a very good friend. I will be always surprised at how
he managed to advise four long senior projects simultaneously with ease. I also thank him
for the skeleton program in Mathematica that supports basic strand diagram drawing.

Special thanks to my other adviser Robert McGrail, whose expertise in algorithms, and
feedback on this writeup have been invaluable, and whose Friday barbecues were equally
phenomenal. Plus he has been a wonderful career adviser, helping me to identify my own
interests in science.

I would like to take this opportunity to thank all my teachers who have prepared me for
future endeavors. Specifically I mention the name of Keith O’Hara whose Intro to Object
Oriented Programming course got me to switch my major from Physics to Computer
Science. Sven Anderson, I greatly benefited from consulting with you about the Java
implementation issues regarding this project. And of course, Becky Thomas, whose classes
have cemented my foundations on computer science. Her Theory of Computation course
was fantastic, specially in the amount of material covered.

I thank all the friends who have supported me the last four years, making Bard feel
homely. Anis Zaman, you have been an incredible friend, and more than that, like a
brother. I will always remember the wonderful times we shared, and the way we stuck
together during times of frustrations. Azfar Khan, you are a great roommate, and the top
chef in the house without a question. Blagoy Kaloferov, I will not forget the late night
FIFA games during stressful times, and also the free car rides to my apartment. Weiying
Liu, Nazmus Saquib, and Prabarna Ganguly, you guys leave deep impressions sketched in
my mind that I will never forget.

I am grateful to my guardians in the USA - Anowar Hasan, Fauzia Parvin, Mustafizur
Rahman, and Mostofa Mohammad. Whenever I sought your help or advise, you offered
them without any hesitation.

8

By thinking about two wonderful siblings who are willing to give away everything for
me, I stay away from the wrong path and learn to be more responsible. I feel very lucky
to be their big brother, and I am equally proud of them.

Lastly, I can never repay the enormous debt I owe to my parents, who have made
unimaginable sacrifices towards my success. You show me hope in my distress, you teach
me to stand up and fight, you have faith in me in my darkest moments, and you are the
reason I am here today.

Introduction

Thompson’s groups are certain infinite groups that are considered interesting in the fields

of geometric group theory and homotopy theory. There are three such groups, called F,

T, and V, defined by Richard J. Thompson in the 1960s. The elements of F are piecewise

linear homeomorphisms of the interval [0, 1] with finitely many breakpoints satisfying

certain conditions, with function composition as the group operation. T and V are similar

to F except T consists of homeomorphisms of the circle, and V the homeomorphisms of

the Cantor set. For a comprehensive introduction to these groups, the reader is referred

to Canon, Floyd and Perry [4].

In a group, the conjugacy problem is the problem of determining whether any two

elements are conjugate. It was introduced by the mathematician Max Dehn in 1911 as

one of three fundamental algorithmic problems in the study of infinite groups [5]. The

conjugacy problem is not solvable in general [15], but solutions to the conjugacy problem

are known for many important classes of groups such as free groups, surface groups, braid

groups and so forth.

INTRODUCTION 10

Guba and Sapir [8, 9] provided a solution to the conjugacy problem in F using graphs

called diagrams. Building upon this solution, Belk and Matucci [3] introduced certain

directed graphs called strand diagrams, and showed the existence of a solution to the

conjugacy problem for all Thompson’s Groups using these strand diagrams.

In this project, based on the methods in [3], we make the solution to the conjugacy

problem in F precise, show that our solution executes in linear time, and present an

efficient implementation of this solution as an application.

Given two input elements of F , our solution algorithm efficiently constructs the corre-

sponding strand diagrams, modifies them using certain operations such as closing, con-

catenation, and reduction, and eventually compares the resulting strand diagrams to see

if they are the same. We also present an efficient data structure to hold and manipulate

strand diagrams in such a way that is geared towards achieving the fastest possible running

time of the algorithm.

We prove that the best algorithm solving the conjugacy problem in Thompson’s Group

F is of the order O(n), where n is the sum of the length of the two input elements compared

for conjugacy. However, note that this proof uses the linear time algorithm proposed by

Hopcroft and Wong [10] to determine whether two planar graphs are isomorphic, which

has not been implemented to date because of its complicated design. As a result, our

implementation replaces the isomorphism check between two planar graphs with an alter-

native method that directly compares two strand diagrams to determine whether they are

the same. Due to this change, our implementation takes quadratic time.

We release a Java implementation of our solution algorithm as a web application, an

executable JAR file, and the source code. As far as we know, this is the first implementation

of the solution to the conjugacy problem in F . We hope that it will be helpful to researchers

in studying Thompson’s Groups.

INTRODUCTION 11

The rest of this paper is organized as follows:

Chapter 1 provides all the relevant background information and the definitions which

will be used throughout the paper; Chapter 2 introduces and discusses the structure of

annular strand diagrams, which are obtained from strand diagrams, and used in our

solution algorithm; Chapter 3 provides a comprehensive description of the algorithm for

the conjugacy problem in F along with details on how to use our software; Chapter 4

concludes the paper, drawing attention to future work; and finally in the Appendix some

of the important sub-algorithms in our implementation are detailed.

1
Background

1.1 Conjugacy

Definition 1.1.1. In a group G, elements g1, g2 ∈ G are conjugate if there exists an

element h ∈ G such that g1 = hg2h
−1. In this case, we say that g1 is the conjugate of g2

by h, or h conjugates g1 to g2. 4

Conjugacy is an equivalence relation, which partitions G into equivalence classes, known

as conjugacy classes. Every element of a group belongs to one conjugacy class only, and

two elements g1 and g2 are conjugate if and only if they belong to the same conjugacy

class.

Example 1.1.2. Two permutations in the symmetric group Sn are conjugate if and

only if the permutations have the same cycle structure (See [6], Proposition 4.3.11). For

instance, the group S3 has 3! = 6 permutations of the set P = {1, 2, 3}. In cycle notation,

S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. There are three conjugacy classes of S3:

1. The identity (1) is conjugate only to itself: {(1)}

• (1) = (1)(1)(1)−1

1. BACKGROUND 13

2. The 2-cycles: {(1 2), (2 3), (1 3)}

• (1 2) = (1 3)(2 3)(1 3)−1

• (1 2) = (2 3)(1 3)(2 3)−1

3. The 3-cycles: {(1 2 3), (1 3 2)}

• (1 2 3) = (1 2)(1 3 2)(1 2)−1 4

For the following definition, we assume that the reader is familiar with the term gener-

ating set. Recall the definition of a word.

Definition 1.1.3. In a group G with a generating set S, a word in S is an arbitrary

product of elements of S and their inverses, and a reduced word in S is a word that

does not have any adjacent pair xx−1 or x−1x, for all x ∈ S. 4

Notice that a word represents an element of G. Since S is a generating set in G, every

element of G can be represented by a word in S.

In 1911, the German American mathematician Max Dehn formulated the following three

fundamental problems for groups [5]:

Definition 1.1.4. In a group G with a given generating set S, the word problem is the

decision problem of determining whether two given words w1 and w2 in S represent the

same element of G. 4

Definition 1.1.5. In a group G with a given generating set S, the conjugacy problem

is the decision problem of determining whether two given words w1 and w2 in S are

conjugate. 4

Definition 1.1.6. The isomorphism problem is the decision problem of determining

whether two given finite group presentations define isomorphic groups. 4

1. BACKGROUND 14

Dehn was hoping to obtain general solutions to word and conjugacy problems for any

finitely presented group as well as a general solution to the isomorphism problem. It has

since been shown that the word and conjugacy problems are undecidable for some finitely

presented groups [15], and that the isomorphism problem is undecidable in general [1,16].

Note that solving the conjugacy problem is trivial on finite groups because given a

finite group G and two elements g1, g2 ∈ G, we can try out all the other h ∈ G to

determine whether there exists any relationship g1 = hg2h
−1. However, this algorithm will

not terminate on infinite groups in the case where two elements are not conjugate. The

following example examines an infinite group called a free group in which the conjugacy

problem is decidable.

Example 1.1.7. A group G is called free if it has a generating set S with no relations

between the generators. Note that every element in G can be written uniquely as a reduced

word in S. For example, if S = {x, y}, then the elements of G are all of the reduced words

involving x, x−1, y, and y−1.

A word is cyclically reduced if it is reduced and its first and last elements are not

inverses of each other. We can cyclically reduce any reduced word by canceling all inverse

pairs from the beginning and the end. For example:

x−1yxy−1xxy−1x → yxy−1xxy−1 → xy−1xx

Note that the resulting cyclically reduced word is conjugate to the original reduced word:

x−1yxy−1xxy−1x = (x−1y)(xy−1xx)(x−1y)−1

If w1 and w2 are cyclically reduced words, it is not hard to show that w1 and w2 are

conjugate if and only if w2 is a cyclic permutation of w1. For instance, xy−1xx is conjugate

to xxxy−1 because

xxxy−1 = (xx)(xy−1xx)(xx)−1.

1. BACKGROUND 15

Therefore, we can determine whether any two words are conjugate by cyclically reducing

them and checking whether the results are cyclic permutations of each other. It follows

that the conjugacy problem in free groups is decidable.

Given two strings s and t over an alphabet Σ, the string matching problem is the

problem of determining whether s is a substring of t. It has been proven by Knuth,Morris

and Pratt [12] that this problem is decidable in linear time in the length of the input

strings. By reducing the problem of checking whether two cyclically reduced words are the

same to the string matching problem, Madlener and Avenhaus [13] have shown that the

solution to the conjugacy problem in free groups is solvable in O(n), where n is the sum

of the lengths of the two input words in the free group. ♦

As we will see later in this paper, the solution to the conjugacy problem in Thompson’s

Group F proposed by [3] is similar to the solution shown above for free groups. Instead of

using reduced words, their solution begins by cyclically reducing strand diagrams. Next,

instead of checking whether the results are cyclic permutations of each other, they check

whether the resulting annular strand diagrams are isotopic (see Definition 1.2.11).

1.2 Directed Graphs Embedded on Surfaces

In this section, we discuss graphs on a surface S. For our purposes in this project, we

restrict our discussions to the following surfaces: the Euclidean plane R2, the sphere, the

unit square, and the annulus. While the sphere can be thought of as R2 ∪ {∞}, both the

unit square and the annulus are subspaces of the Euclidean plane.

Definition 1.2.1. A directed graph is a 4-tuple G = (V,E, s, t) where:

1. V is the set of vertices,

2. E is the set of directed edges,

3. the function s : E → V assigns a source vertex to each edge, and

1. BACKGROUND 16

4. the function t : E → V assigns a target vertex to each edge. 4

Notice that Definition 1.2.1 allows a directed graph to have one or more loops from a

vertex to itself as well as multiple distinct directed edges between the same source and

the same sink.

Definition 1.2.2. Let G = (VG, EG) and H = (VH , EH) be undirected graphs. Then, an

isomorphism of G and H is a pair (φV , φE) where:

1. φV : VG → VH is a bijection, and

2. φE : EG → EH is a bijection

such that an edge e ∈ EG connects vertices v1 and v2 in VG if and only if φE(e) ∈ EH

connects φ(v1) and φ(v2) in VH .

An isomorphism of two directed graphs G and H is an isomorphism (φV , φE) such

that the source of each edge e in G corresponds to the source of φE(e) in H, and similarly

the target of e corresponds to the target of φE(e). 4

Two graphs G and H are said to be isomorphic if there exists an isomorphism between

them. Intuitively, two isomorphic graphs can be thought of as similar graphs because they

have certain common properties. In particular, any property that is true for an object in

G and is preserved by the isomorphism is also true for its corresponding object in H.

For our purposes, we consider embeddings of graphs on surfaces. For the following

definition, a curve on a surface S is any continuous, one-to-one function γ : [0, 1] → S,

where γ(0) is the begin point and γ(1) is the end point of the curve.

Definition 1.2.3. An embedding of a directed graph G = (V,E, s, t) on a surface S is

an ordered pair (f, c) where:

1. f : V → S is one-to-one,

1. BACKGROUND 17

2. c = {ce}e∈E is a collection of curves on S, one for each directed edge, that do not

intersect except at their begin points and end points, and

3. if e ∈ E, then ce is a curve with begin point f(s(e)) and end point f(t(e)).

An embedded graph is a graph together with its embedding on some surface S. 4

In essence, an embedding of G on S is a visual representation or a drawing of G on S.

In such a drawing, vertices are represented by points on S, each directed edge is a curve

on S, and the directed edges are allowed to intersect only at common end vertices. Notice

that it is possible for a directed graph to have several different embeddings on a surface.

Example 1.2.4. A planar graph is a graph that can be embedded on the plane. Fig-

ure 1.2.3 shows three different embeddings of the same planar graph. ♦

We need a formal notion of what it means to move a graph around on a surface. In order

to formulate this notion, we need to understand what it means to move a curve around a

surface.

Definition 1.2.5. A homotopy of curves on a surface S is a family of curves {γτ}τ∈[0,1] on

S such that the function f : [0, 1]×[0, 1]→ S defined by f(σ, τ) = γτ (σ) is continuous. 4

Intuitively, a homotopy is a way of “continuously deforming” a curve on a surface. We

can think of τ as the time during the deformation, and for each value of τ corresponding

to a curve C, σ represents the spatial coordinates along the length of C (i.e., where a

point is on C). Observe that we are allowing the end points of a curve to move during the

homotopy. Thus, any two curves on the plane are homotopic.

Example 1.2.6. In Figure 1.2.1.(a), at τ = 0 the curve is

γ0(σ) = (cos(πσ), sin(πσ)),

1. BACKGROUND 18

Τ=0

Τ=1

H1,0LH-1,0L H2,0LH-2,0L

Curve A

Curve B
0 0.5 1

0

0.5

1

(a) a semicircular curve centered at (0,0) (b) Deformation of curve B into A

Figure 1.2.1. Homotopy of curves on the plane.

and at τ = 1 the curve is

γ1(σ) = (2 cos(πσ), 2 sin(πσ)).

A homotopy for this semicircular curve is

{γτ (σ) = ((τ + 1) cos(πσ), (τ + 1) sin(πσ))}τ∈[0,1].

In (b), each of the curves represents a unique value of τ with σ continuously increasing

from 0 to 1. The blue, dashed curves show the deforming of curve B to curve A at discrete

values of τ , each leading to a unique γτ . The red crosses represent the pair (σ, 0) where

σ ∈ [0, 1] is unique for each red cross. The solid curve B corresponds to the range of

γ0, and the range of γ1 is the curve A. Thus, B is continuously deformed into A as τ is

increased from 0 to 1. ♦

Definition 1.2.7. An isotopy of directed graphs on a surface S is a family of embeddings

{(fτ , cτ)}τ∈[0,1] of a directed graph G = (V,E, s, t) on S such that:

1. for each v ∈ V , τ 7→ fτ (v) is continuous, and

2. for each e ∈ E, {(cτ)e}τ∈[0,1] is a homotopy of directed curves, where fτ (s(e)) =

(cτ (0))e and fτ (t(e)) = (cτ (1))e. 4

Isotopy can be visualized as the continuous deformation of an embedding on a surface.

Notice that isotopy is a consequence of the continuous deformation of the points on the

1. BACKGROUND 19

3 4

1 2e1

e3

e5
e2 e4

4 2

1

3

e1e2

e3 e4

e5

Embedding E0 Embedding E1

Figure 1.2.2. Isotopy of graphs on the plane.

surface representing the vertices, and the curves on the surface representing the edges, of

the embedded graph. Figure 1.2.2 shows an isotopy of a directed graph on the plane.

Definition 1.2.8. Let E0 and E1 be two embeddings of a directed graph G on a surface

S. Then E0 and E1 are isotopic if there exists an isotopy (fτ , cτ)τ∈[0,1] on S such that at

τ = 0 the embedding is E0, and at τ = 1 the embedding is E1. 4

Example 1.2.9. Figure 1.2.3 shows three embeddings A,B, and C of the same directed

graph on the plane. There is no way to move the vertices 1 and 4 in B into the circular

topological space between edges e3 and e4. This shows that B is not isotopic to A and C.

Because vertex 1 in A cannot be moved into the region enclosed by edges e3, e4, e5, and

e6, we can safely claim that A is not isotopic to C. Thus, none of these embeddings are

isotopic on the plane. ♦

1 2 4 3

e1
e2

e3

e4

e5
e6

1 2 3 4

e1
e2

e3

e4

e5

e6

2 1 4 3

e4

e2
e1

e3

e5
e6

Embedding A Embedding B Embedding C

Figure 1.2.3. A,B, and C are different embeddings of the same planar graph. None of the
embeddings are isotopic on the plane, but B and C are isotopic on the sphere.

1. BACKGROUND 20

If two directed graphs are isomorphic, and one of the graphs has an embedding E on

a surface, obviously this gives an embedding of the other graph on the surface. Stated in

a different way, we can “compose” the embedding E with the isomorphism to obtain an

embedding of the other graph. The following definition formalizes this notion.

Definition 1.2.10. Let G and G′ be directed graphs. Let E = (f, c) be an embedding

of G on a surface S, and let φ = (φV , φE) be an isomorphism from G′ to G. Then the

induced embedding of G′ on S is E ′ = (f ′, c′), where f ′ = f ◦ φV and c′ = c ◦ φE . We

say that E ′ is the embedding of G′ on S induced by φ. 4

We can use induced embeddings to define isotopy between two different graphs on a

surface.

Definition 1.2.11. Let G and H be directed graphs with embeddings EG and EH respec-

tively on a surface S. Then G and H are isotopic on S if there exists an isomorphism

φ : G→ H such that the induced embedding (EH ◦ φ) is isotopic to EG on S. 4

Intuitively, we can think of two directed graphs G and H as isotopic on a surface if H

is the image of G under some continuous deformation on the surface.

We will now discuss a simple algorithm that determines whether two embedded graphs

are isotopic. This involves the notion of the rotation system.

Definition 1.2.12. Let G be a directed graph with vertex set V and with embedding E

on a surface S. For each vertex v ∈ V , let ρv denote the counterclockwise order of the

edges connected to v. Then the set {ρv | v ∈ V } is called the rotation system of the

embedding E on S. 4

We need to clarify two major points about this definition:

1. The term “counterclockwise order” means the cyclic ordering of the directed edges

connected to a vertex v. This is a cyclic ordering, i.e., linear ordering up to cyclic

1. BACKGROUND 21

permutation. Note that the word “counterclockwise” assumes some standard ori-

entation of the surface S. In particular, we cannot define a rotation system for an

embedding on a non-orientable surface.

2. Because our directed graphs can be multigraphs, they can have loops, which are

edges from a vertex to itself. We need to distinguish the two appearances of the edge

that forms a loop, that is, whether the edge comes into the vertex before it goes out,

or the opposite. In this case, we need to mark the two occurrences of the edge in the

counterclockwise order so that there is no ambiguity in the ordering.

In the example below, we use ein to mark the incoming edge in the loop, and eout to

mark the outgoing edge in the loop.

Example 1.2.13. In Figure 1.2.3, observe that on the sphere B can be deformed into

C by translating B to the northern hemisphere (think of it as the rear of the sphere)

and then “pulling” the loops e1 and e6 towards the southern hemisphere (the front of the

sphere). Then this deformed embedding of B will appear the same as the embedding C.

Therefore, B and C are isotopic to each other on the sphere.

The rotation systems of the three directed graphs are:

• A → {(ein1 , eout1 , e2), (e4, e3, e2), (e3, e5, e4), (e
out
6 , ein6 , e5)}

• • B → {(eout1 , ein1 , e2), (e4, e3, e2), (e3, e4, e5), (e
out
6 , ein6 , e5)}

• C → {(eout1 , ein1 , e2), (e4, e3, e2), (e3, e4, e5), (e6, e6, e5)}

Notice that the rotation systems of B and C are exactly the same, but that of A is different

because in the counterclockwise order of the edges around vertex 1 for A starting at edge

e2, the input edge into the loop precedes the output edge in the loop. The opposite happens

for vertex 1 of both B and C where the loop is directed counterclockwise and thus the

output edge precedes the input edge in the loop. Furthermore, the counterclockwise order

1. BACKGROUND 22

of the edges around vertex 3 in A is not an element of the rotation systems of B and

C. ♦

Theorem 1.2.14. Two embeddings of a connected directed graph on a sphere are isotopic

if and only if both embeddings induce the same rotation system.

The proof of this theorem follows from Theorem 3.2.4 and Corollary 3.2.5 in Section 3.3

in [14].

This theorem allows us to use rotation systems to check for isotopy of directed graphs

on the sphere. Thus, in Example 1.2.13 we can immediately conclude that embeddings B

and C are isotopic on the sphere because their rotation systems are the same. However,

they are not isotopic on the plane. This is because the outer region in B corresponds to the

inside region in C enclosed by edges e3 and e4. Furthermore, neither B nor C is isotopic

to A on the sphere because the rotation system of A is different from those of B and C.

Corollary 1.2.15. Let G and H be connected directed graphs embedded on the sphere.

Then G and H are isotopic if and only if there exists an isomorphism φ : G→ H that pre-

serves the counterclockwise order of the edges connected to corresponding vertices between

G and H.

Note that the correspondence between the vertices are defined by the isomorphism.

Preserving the order means that the rotation systems for the corresponding vertex sets

are the same.

1.3 Thompson’s Group F

Most of the definitions in this section can be found in [2] and [4]. Thompson’s Group

F is one of the three Thompson’s Groups, and it is a certain group of piecewise-linear

homeomorphisms of the interval [0, 1] under the operation function composition. We now

describe this group, provide a generating set for it, and show how its elements can be

1. BACKGROUND 23

represented in graphs called tree diagrams. For a thorough introduction to F , the reader

is encouraged to look into [4].

1.3.1 Dyadic Rearrangements

Definition 1.3.1. A dyadic subdivision is any subdivision of the interval [0, 1] obtained

by:

1. choosing whether to divide the interval in half,

2. if chosen, then dividing the interval in half, and for each of the resulting intervals,

looping back to step (1). 4

For example, {[0, 12], [12 , 1]} and {[0, 18], [18 ,
1
4], [14 ,

1
2], [12 , 1]} are dyadic subdivisions. Note

that {[0, 1]} is also a dyadic subdivision.

A standard dyadic interval is an interval of the form: [k2n ,
k+1
2n], where k, n ∈ N and

k ≤ 2n−1. Therefore, all the intervals in a dyadic subdivision are standard dyadic intervals.

Moreover, a dyadic subdivision is the division of [0, 1] into standard dyadic intervals.

If d1 and d2 are two dyadic subdivisions having the same number of standard dyadic

intervals, then we can create a piecewise-linear homeomorphism f : [0, 1] → [0, 1] which

linearly maps each interval of d1 onto a corresponding interval of d2. Then f is called a

dyadic rearrangement of [0, 1]. For instance, Figure 1.3.1 shows two dyadic rearrange-

ments.

Theorem 1.3.2. Let f : [0, 1]→ [0, 1] be a piecewise-linear homeomorphism. Then f is a

dyadic rearrangement if and only if:

1. Each slope of f is a power of 2, and

2. Each breakpoint of f has dyadic rational coordinates

For the proof of this theorem, the reader is referred to [2].

1. BACKGROUND 24

1�4 1�2 1

1�2

3�4

1

1

2

5

8

3

4
1

1�2

3�4

7�8

1

(a) x0 (b) x1

Figure 1.3.1. Generators for Thompson’s Group F . The right half of x1 is the same as x0.

Corollary 1.3.3. The set F of all dyadic rearrangements forms a group under function

composition.

The resulting group is called Thompson’s Group F.

Proposition 1.3.4. (also Theorem 1.3.9 in [2]) The two dyadic rearrangements x0 and

x1 generate the group F with presentation

〈x0, x1 | x1x2 = x3x1, x1x3 = x4x1〉

where x2 = x0x1x
−1
0 , x3 = x20x1x

−2
0 , and x4 = x30x1x

−3
0 .

As mentioned in [2] and [4], this is a common presentation for F. Note that our algorithm

for the conjugacy problem in F only accepts input words in the generating set 〈x0, x1〉.

1.3.2 Tree Diagrams

We now show how certain graphs called tree diagrams can be used to describe elements

of F .

Proposition 1.3.5. Any dyadic subdivision d can be encoded into a finite rooted binary

tree T where:

1. the root of T represents the interval [0, 1],

2. each vertex of T is a standard dyadic interval,

1. BACKGROUND 25

ã

Ò!ß "Ó#
ã ã ã

Ò!ß"Ó

Ò!ß "Ó% Ò"ß "Ó#% Ò"ß $Ó%# Ò$ß "Ó%Ò"ß "Ó#
Figure 1.3.2. The infinite binary tree of standard dyadic intervals in [0, 1] (image taken
from [2]).

3. an edge of T is a pair of standard dyadic intervals (C,P) such that C is either the

left half of P and we get a left edge, or the right half of P in which case we get a

right edge, and

4. each leaf of T is an interval in d.

Another way of stating this proposition is that all dyadic subdivisions correspond to

finite subtrees of the infinite binary tree shown in Figure 1.3.2. Using this encoding, we

can identify any element of F as a pair of finite subtrees corresponding to the subdivisions

in the domain and the range respectively. Such a pair of subtrees makes up the tree

diagram for the element.

Example 1.3.6. The element x0 is a piecewise linear function that maps intervals of the

subdivision D which has breakpoints {0, 14 ,
1
2 , 1} onto the intervals of the subdivision R

which has breakpoints {0, 12 ,
3
4 , 1}. The subdivision D and its corresponding subtree are:

 ! " #
" % "

1. BACKGROUND 26

Similarly, the subdivision R and its corresponding subtree are:

 ! " #
$ % "

Therefore, the tree diagram for x0 can be obtained by pairing these two trees as shown

below:

Note that the two trees are arranged in a way such that the corresponding leaves are

vertically aligned. By convention, we place the subtree representing the domain above the

subtree representing the range (all images in this example have been taken from [2]). ♦

1.4 Strand Diagrams

output

left
input

right
input

input

left
output

right
output

Figure 1.4.1. A strand diagram, a merge, and a split (image taken from [3]).

In this section, we introduce a certain type of planar, directed graphs called strand

diagrams, which are derived from the tree diagrams that we described in Section 1.3.2.

Moreover, previous research by Belk and Matucci [3] shows that in each Thompson’s

1. BACKGROUND 27

Group there exists a solution to the conjugacy problem that involves strand diagrams,

and our algorithm for the conjugacy problem in F also uses strand diagrams.

Definition 1.4.1. A strand diagram is a finite acyclic digraph embedded on the unit

square with the following properties:

1. The graph has a source along the top edge of the square having an outgoing edge,

and a sink along the bottom edge with an incoming edge.

2. Any other vertex is:

(a) either a merge that has two incoming edges and one outgoing edge, or

(b) a split that has one incoming edge and two outgoing edges (see Figure 1.4). 4

Two isotopic strand diagrams are considered equal by convention.

A strand diagram corresponding to an element of F can be produced by gluing the

domain and the range subtrees of the element at their corresponding leaves and making

the edges directed from the domain subtree towards the range subtree. For instance,

Figure 1.4.2 shows how the strand diagram corresponding to x0 can be obtained.

Our implementation uses the generating set 〈x0, x1〉 to create words for elements of F .

Figure 1.4.3 shows the strand diagrams for the generators. Notice that the strand diagram

for x−10 can be produced by reversing the edge directions in the strand diagram for x0 and

then flipping the resulting strand diagram vertically. In general, given the strand diagram

Figure 1.4.2. Construction of the strand diagram for x0 from its tree diagram (image taken
from [3]).

1. BACKGROUND 28

(a) x0 (b) x−10 (c) x1 (d) x−11

Figure 1.4.3. Generators for F and their inverses.

S for an element f ∈ F , the strand diagram for f−1 can be obtained by reversing all the

edge directions in S, and then flipping S vertically.

1.4.1 Strand Diagram Manipulations

We now describe certain operations that are used to modify strand diagrams in our algo-

rithm for the conjugacy problem in F .

Definition 1.4.2. A reduction of a strand diagram is a simplification of the strand

diagram using one of the two moves shown in Figure 1.4.4. We say that a strand diagram

has been reduced if no reductions can be performed on it. 4

Notice that a type II reduction move is possible whenever there exists an edge from a

merge to a split.

Definition 1.4.3. The concatenation of two strand diagrams s1 and s2 is the strand

diagram created by by gluing the sink of s1 to the source of s2 and then removing the

resulting vertex of degree 2. In this case, we say that s1 has been concatenated to s2. 4

I II

Figure 1.4.4. The two reduction rules (image taken from [3]).

1. BACKGROUND 29

vs
vs

f x0 x0 ◦ f x0 ◦ f (reduced)

Figure 1.4.5. Composing elements of F by concatenating their strand diagrams. Note that
the concatenation makes a type II reduction move possible around the vertex vs (image
taken from [3]).

Concatenation of strand diagrams is equivalent to composition of corresponding ele-

ments in F .

Example 1.4.4. Figure 1.4.5 shows the concatenation of two elements f and x0, which

produces the strand diagram for the element x0 ◦ f , which has word x0f . Notice that a

concatenation immediately gives rise to a type II reduction move at the point of concate-

nation. ♦

The following theorem shows that the construction of a strand diagram is linear in

the length of the corresponding word, and it plays a significant role in proving that our

algorithm for the conjugacy problem in F is linear.

Theorem 1.4.5. Let n be the length of the input word in the generating set 〈x0, x1〉 for

a strand diagram S. Let VS and ES be the number of vertices and edges respectively in S.

Then VS + ES ≤ 15n+ 3.

Proof. Let the input word for S have length n. We will prove the theorem using induction

on n.

Base Case: Let n = 0. Then S is the strand diagram for the identity, which has a

source, a sink, and an edge connecting them. Thus VS + ES = 2 + 1 = 3 ≤ 3.

1. BACKGROUND 30

Inductive Case: Assume that for a strand diagram S corresponding to a word of length

n, we have VS + ES ≤ 15n+ 3.

Let S′ be a strand diagram for an input word w, of length n + 1. By the inductive

hypothesis, for the word with the first n characters in w, there exists a strand diagram S

such that VS +ES ≤ 15n+ 3. Let g be the strand diagram for the (n+ 1)th element in w.

Observe that g ∈ {x0, x−10 , x1, x
−1
1 }. We can create S′ by concatenating g to S. We have

two cases to consider.

Case 1: g = x0 or g = x−10 . Then Vg = 6 and Eg = 7. Since concatenation removes 2

vertices and 1 edge, we have

VS′ +ES′ = VS +ES +Vg +Eg−2−1 = 15n+3+6+7−2−1 = 15n+13 ≤ 15(n+1)+3.

Case 2: g = x1 or g = x−11 . Then Vg = 8 and Eg = 10. Again, since concatenation

removes 2 vertices and 1 edge, we have

VS′ +ES′ = VS +ES +Vg+Eg−2−1 = 15n+3+8+10−2−1 = 15n+18 ≤ 15(n+1)+3.

It follows that VS′ + ES′ ≤ 15(n+ 1) + 3.

2
Annular Strand Diagrams

Recall that our algorithm for the conjugacy problem in F involves the use of strand

diagrams. To be more precise, the solution proposed by Belk and Matucci [3] is directly

based on the manipulation of certain directed graphs called annular strand diagrams,

derived from strand diagrams.

In this chapter, we discuss annular strand diagrams, provide the solution to the conju-

gacy problem in F [3] that involves modifying and comparing these graphs, and describe

the strategies we use to dynamically monitor the structure of mutating annular strand

diagrams, with particular emphasis on the decomposition into multiple connected compo-

nents.

2.1 Closing Strand Diagrams

We can close any strand diagram embedded on the unit square by making the output

from the parent of its sink the input to the child of its source, and then removing the

source and the sink. This turns the strand diagram to a graph embedded in an annulus,

called an annular strand diagram. One such example is shown in Figure 2.1.1.

2. ANNULAR STRAND DIAGRAMS 32

Figure 2.1.1. Annular strand diagram for x1 obtained by closing its strand diagram

Definition 2.1.1. An annular strand diagram is a finite directed graph embedded in

the annulus, with the following properties:

1. Each vertex is either a merge or a split

2. Every directed cycle winds counterclockwise around the central hole. 4

Although we have defined an annular strand diagram as a directed graph, it can have

free loops, which are directed cycles without any vertices. From property (2) in Defini-

tion 2.1.1, it follows that every free loop winds counterclockwise around the central hole

of the annulus. Because free loops do not have end vertices, they are not allowed to be

present in directed graphs, however, they can exist in annular strand diagrams.

2.2 Reductions

Annular strand diagrams can be reduced using the three reduction moves shown in Fig-

ure 2.2.1. The third move merges two consecutive free loops with no vertices in the region

I II III

Figure 2.2.1. The reduction moves for annular strand diagrams. A type I move is allowed
when the shaded region is a topological disk. A type III move is allowed when the space
between the two free loops is a topological annulus containing no vertices (image taken
from [3]).

2. ANNULAR STRAND DIAGRAMS 33

III

Figure 2.2.2. A type I move reduces the central annular strand diagram to a free loop,
but a reduction II creates two concentric free loops. A reduction III on the diagram in the
right merges the two free loops, preserving unique normal forms (image taken from [3]).

between them into one free loop. This move is required to make reductions of annular

strand diagrams confluent so that every annular strand diagram reduces to a unique re-

duced annular strand diagram, as shown in the following example.

Example 2.2.1. The central annular strand diagram in Figure 2.2.2 is subject to both

type I and type II moves, but the two moves produce different annular strand diagrams.

A type III move reconciles the results, ensuring that the central annular strand diagram

reduces to a unique normal form. ♦

Example 2.2.2. Figure 2.2.3 shows an annular strand diagram and the reductions applied

to it until it reduces to a free loop. Notice that a type II move on (a) splits the connected

annular strand diagram into two connected components. The reductions applied to (d)

demonstrate that both type I and type II moves in annular strand diagram can result in

the formation of free loops. ♦

At this point we are prepared to comprehend the solution to the conjugacy problem in

F proposed by [3]. The solution, summarized in Theorem 2.2.3, involves reducing annular

strand diagrams and checking for isotopy.

2. ANNULAR STRAND DIAGRAMS 34

see

next

line

(a) an annular strand diagram, (b) splits into two components after
some type II moves,

(c) (d) (e) free loops (f) reduced

Figure 2.2.3. Reducing an annular strand diagram. In the pictures, the green regions are
subject to type I moves, and the red and blue regions are each subject to type II moves.
The type II move on the red region in (a) breaks the connected annular strand diagram
into two connected components.

Theorem 2.2.3. (Belk and Matucci). Let g and h be elements of Thompson’s group

F . Let G and H be strand diagrams for g and h, and let G′ and H ′ be the reduced an-

nular strand diagrams obtained by closing G and H and then reducing. Then g and h are

conjugate if and only if G′ and H ′ are isotopic.

For the proof of this theorem, the reader is referred to [3]. As will be shown in the

next chapter, our algorithm for the conjugacy problem in F fundamentally builds on this

theorem. The rest of this chapter provides insights into the structure of annular strand

2. ANNULAR STRAND DIAGRAMS 35

diagrams and explains the strategies we employ to keep track of the configuration of an

annular strand diagram before, during, and after it is reduced.

2.3 Concentric Components

Reduced annular strand diagrams can have multiple connected components. In this sec-

tion, we discuss how annular strand diagrams can decompose into two or more connected

components during reductions, showing that directed cycles and type II reduction moves

are directly responsible, and we also provide further insights into the structure of these

connected components.

Proposition 2.3.1. In any strand diagram, there is a directed path from every vertex to

the sink.

Proof. Let S be a strand diagram. Assume that there exists a vertex v ∈ S such that

there is no directed path from v to the sink. Construct a directed path P by arbitrarily

following an outgoing edge from v to a vertex v1 ∈ S which cannot be the sink. Expand P

by following an arbitrary outgoing edge of v1 to another vertex v2 ∈ S which is again not

the sink. Create an infinite path by repeatedly keep expanding P in this manner. Because

S has finitely many vertices, the infinite path P must have a cycle. But S is acyclic, which

contradicts the assumption that P has a cycle. Hence, P must be a directed path from v

to the sink.

Proposition 2.3.1 leads immediately to the following corollary.

Corollary 2.3.2. All strand diagrams are connected.

Since closing any strand diagram only “glues” the source and the sink, it follows that

closing does not split a strand diagram into two components. Thus, any annular strand

2. ANNULAR STRAND DIAGRAMS 36

diagram produced by closing a strand diagram is connected. Note that closing the strand

diagram for the identity produces a free loop.

However, a sequence of reductions can sometimes change the number of connected com-

ponents in an annular strand diagram. Observe that closing any strand diagram creates a

directed cycle, and an edge which is an output of a merge and an input to a split. Therefore

any annular strand diagram produced by closing a strand diagram is immediately subject

to a type II reduction move. As we have seen in Figure 2.2.3, reductions on annular strand

diagrams can result in the formation of multiple components as well as the merging of

multiple connected components. In particular, a type II move can split a connected annu-

lar strand diagram into two components if the edge from the merge to the split involved

in the reduction is the intersection of two directed cycles, as shown in Figure 2.3.1. Such

a reduction disconnects the strand diagram, making the cycles disjoint, and creating two

components. Furthermore, a reduction III move can merge two connected components into

one. Because reducing an annular strand diagram can modify the number of connected

components, we must keep track of the order of these components in order to correctly

construct the reduced annular strand diagram.

Figure 2.3.1. A reduction II move causing a connected component to split into two (each
shaded region represents a component).

2. ANNULAR STRAND DIAGRAMS 37

A1 (connected) A2 (disconnected)

Figure 2.3.2. Two reduced annular strand diagrams (A1 has been taken from [3]).

We will use the following terminologies to describe certain cycles in annular strand

diagrams:

• split loop - a directed cycle which has only splits

• merge loop - a directed cycle which has only merges

Example 2.3.3. Figure 2.3.2 shows two reduced annular strand diagrams A1 and A2. A1

is a connected graph having a merge loop as the inner and the outermost directed cycles,

and a split loop between them. Consecutive directed cycles in A1 are connected by trees

(colored blue). A2 has three components, where the second component is a free loop. The

two directed cycles in the first component in A2 are connected by reduced strand diagrams

(colored blue). Excluding the free loop, the directed cycles (colored black) in both A1 and

A2 are either merge loops or split loops. ♦

Proposition 2.3.4. In any reduced annular strand diagram R:

1. Each component C has at least one directed cycle.

2. Each directed cycle is either a split loop, a merge loop, or a free loop.

3. No directed cycle intersects another directed cycle or itself.

4. Every component surrounds the inside hole of the annulus.

2. ANNULAR STRAND DIAGRAMS 38

Proof.

1. Observe that if C is a free loop, then it has a directed cycle. Now assume that C

is not a free loop. Observe that each vertex in C has at least one output edge. In

C, construct an infinite path P using the same infinite path construction method

discussed in Proposition 2.3.1. Because C has finitely many vertices, eventually in

P a vertex vn will be repeated. Then the path P has a directed cycle starting at vn.

2. Assume that there exists a directed cycle with merges and splits. Then there must

be at least one merge with an outgoing edge to a split. It follows that R can still

undergo a reduction II move, which is a contradiction since R is already reduced.

3. Assume that two directed cycles intersect. Then the cycles must intersect at a merge

and then split apart, leading to a reduction II move, which is a contradiction since

R is already reduced. By using the same argument, we can show that a directed

cycle cannot intersect itself.

4. Because every component has at least one directed cycle D, and since every directed

cycle annular strand diagram winds counterclockwise around the inside hole (see

part (2) of Definition 2.1.1), it follows that D must go around the inside hole of the

annulus. Therefore, each component surrounds the inside hole.

Therefore, any reduced annular strand diagram has a finite number of disjoint directed

cycles winding counterclockwise around the central hole. Furthermore, consecutive directed

cycles in a connected component are held together by acyclic directed planar subgraphs,

consisting of splits and merges.

Proposition 2.3.5. In each component C with two or more directed cycles in a reduced

annular strand diagram, these cycles alternate concentrically between split loops and merge

loops.

2. ANNULAR STRAND DIAGRAMS 39

Proof. Let L and L′ be two concentric directed cycles in C. Assume without loss of gener-

ality that L is a split loop in C. Observe that for each split v in L, there exists an outgoing

edge that is not part of L. Since L and L′ are concentric and since they are present in the

same component C, there must be at least one edge e emanating from L into the annular

region between L and L′. Using the split v ∈ L which has the edge e as an output, con-

struct an infinite path P starting at e using the same infinite path construction method

discussed in Proposition 2.3.1. Because C has finitely many vertices, eventually in P a

vertex vn will be repeated. It follows that the path P has a directed cycle D 6= L starting

at vn. Either D = L′ or L′ is between L and D, and since L and L′ are concentric, in both

cases it follows that P must have hit at least one vertex v′ ∈ L′. But then v′ has another

edge that is part of the directed cycle L′. It follows that v′ is a merge, and therefore L′

must be a merge loop.

The case when L is a merge loop can be proved using a similar reasoning as above, and

we omit its details.

We have obtained deeper insights into the structure of connected components in an-

nular strand diagrams. In an annular strand diagram, the connected components are in

concentric order in the annulus, and each component is itself an annular strand diagram.

A component with exactly one directed cycle must be a free loop. For each component

excluding the free loop:

1. there exist at least two directed cycles,

2. the entire component lies in the annular region between its innermost and outermost

directed cycles.

This means that given an annular strand diagram A in the annulus, any straight line L

drawn from the inside of the annulus to the outside first intersects an edge that is part of

the innermost directed cycle in A, and L crosses the remaining directed cycles in concentric

2. ANNULAR STRAND DIAGRAMS 40

order until it reaches the outside of the annulus. The last edge crossed by L is an edge in

the outermost directed cycle in A.

2.4 The Cutting Path

In this section, we describe our strategy to keep track of the ordering of components in an

annular strand diagram. Our approach involves having a dynamic ordered list of some of

the edges in the annular strand diagram, and for this purpose we use the cutting path.

Definition 2.4.1. A cutting path, in an annular strand diagram A, is a directed path

from the inside hole of the annulus all the way to the outside such that it crosses at least

one edge of A, and the edge crossing rules in Figure 2.4.1 hold. 4

Theorem 2.4.2. Each annular strand diagram obtained by closing a strand diagram has

a cutting path, and its corresponding reduced annular strand diagram also has a cutting

path.

Proof. Let S be a strand diagram and let A be the annular strand diagram obtained

by closing S. It follows that A has a cutting path P which crosses the edge created

during closing (see Figure 2.4.3). Perform all possible reductions on A, and during each

Cutting Path

Edge in Annular

Strand Diagram

ALLOWED

Cutting Path

Edge in Annular

Strand Diagram

NOT ALLOWED

Figure 2.4.1. For a cutting path, the edge crossing in (a) is allowed and (b) is not allowed

2. ANNULAR STRAND DIAGRAMS 41

reduction, if P goes through a region of reduction as shown in Figure 2.4.2, then update

P as described below.

• Reduction I: P does not need to be updated if it goes through e1 or e4 since the

reduction will merge these edges accordingly. If P goes through the shaded disk, it

must enter the disk by crossing e3 and leave by crossing e2. In this case, replace e3

and e2 in P with e1 (same as e4).

• Reduction II: Again P does not require an update if it crosses all the other edges

except e3 since these edges will be modified by the reduction itself. If P goes through

e3, then after performing the reduction, it must go through the edge e1 (same as e5)

before the edge e2 (same as e4).

• Reduction III: Replace the two free loops in P with the new free loop.

Note that it is possible that P crosses more than once an edge which is involved in a

reduction, but this is not a problem if we use the same rule to update edges in P for all

such crossings. Observe that updating P during a reduction move does not violate the

edge crossing rules for a cutting path. Therefore, when A is reduced, it has the cutting

path P .

Example 2.4.3. Figure 2.4.3 shows the edges in an annular strand diagram that the

cutting path intersects before and after the annular strand diagram is reduced. ♦

I
e1

e2 e3

e4

e1 e4 II
e1 e2

e3

e4 e5

e1

e4

e2

e5

III

(a) reduction I (b) reduction II (c) reduction III

Figure 2.4.2. Update of the cutting path for each reduction move.

2. ANNULAR STRAND DIAGRAMS 42

1

ec

2

1 1

2
3

(a) (b) (c)

Figure 2.4.3. Status of a cutting path (a) after closing a strand diagram (crosses edge ec),
(b) after performing a type II reduction, and (c) after the annular strand diagram is
reduced. The numbers denote the order of the edges in the cutting path

The following proposition gives an important insight into how a cutting path can identify

the concentric order of components in a reduced annular strand diagram.

Proposition 2.4.4. Let C1, ..., CM be the components of a reduced annular strand diagram

A in concentric order. Let e1, ..., en be the sequence of edges crossed by a cutting path P .

Then e1, ..., en consists of one or more edges from C1 followed by one or more edges from

C2 and so forth, ending with one or more edges from CM .

Proof. Observe that the first edge that P intersects must be part of the innermost directed

cycle in A. It follows that e1 ∈ C1.

Because all the directed cycles in A are directed counterclockwise, if P has already

crossed an edge in such a directed cycle d, then it cannot cross an edge in d in the

opposite direction due to the edge crossing rules in Figure 2.4.1. As a result, P must go

through every directed cycle exactly once, and P must cross the directed cycles in A in

concentric order from the central hole to the outside of the annulus.

Every component has an innermost cycle and an outermost cycle (which are the same

for a free loop). Therefore, for each component Ci, the first edge P crosses is part of the

innermost cycle, and P keeps crossing edges in Ci until it crosses the outermost cycle. Once

P leaves the outermost cycle of Ci, it cannot get back into Ci because of the edge crossing

2. ANNULAR STRAND DIAGRAMS 43

rules for a cutting path. Therefore, P is not allowed to re-enter a connected component

which it has already entered once, and this forces P to continue to enter the concentric

components in order until it exits the annulus.

It follows that by keeping track of:

• the order of the edges the cutting path meets, and

• the connected components to which these edges belong,

the cutting path allows us to identify the concentric ordering of components in any annular

strand diagram, with very little computation and storage. Knowledge of the sequence

of connected components is essential for checking whether two reduced annular strand

diagrams are isotopic.

2.5 Isotopy of Reduced Annular Strand Diagrams

As proven by Belk and Matucci [3], two elements of F are conjugate if and only if their

corresponding reduced annular strand diagrams are isotopic (see Theorem 2.2.3). Hence,

our solution algorithm for the conjugacy problem in F must be able to deduce whether

two reduced annular strand diagrams are isotopic. In this section, we describe the term

isotopy in the context of annular strand diagrams.

Recall from Definition 1.2.12, in an embedding of a directed graph, the rotation system

is the family of the counterclockwise order of the edges connected to each vertex. For

an annular strand diagram, knowing the counterclockwise order of the edges connected

to a merge is the same as knowing the left and right inputs, and similarly the left and

right outputs in the case of a split. This constitutes a rotation system for annular strand

diagrams.

2. ANNULAR STRAND DIAGRAMS 44

The following theorem has a significant role in the design of our algorithm for the

conjugacy problem in F . However, its proof is beyond the scope of this project, so we

provide an outline of the proof and leave it to the reader to figure out the missing details.

Theorem 2.5.1. Two connected annular strand diagrams A1 and A2 are isotopic in the

annulus if and only if there exists a directed graph isomorphism between them that preserves

the rotation system.

Sketch of Proof. Observe that the annulus is a sphere with two holes in it:

1. the inner hole at (0,0), and

2. the outer hole at ∞.

It is not difficult to see that two directed graphs G and H are isotopic in the annulus if

and only if:

1. G and H are isotopic on the sphere, and

2. the inner and outer holes respectively lie in corresponding faces in G and H.

When G and H are connected annular strand diagrams, observe that their faces containing

inner and outer holes are the only faces whose boundaries are directed cycles. Moreover, the

directed cycle surrounding the inner hole goes counterclockwise and the one surrounding

the outer hole goes clockwise (since it appears counterclockwise on the plane).

Therefore, A1 and A2 are isotopic in the annulus if and only if they are isotopic on the

sphere. But by Corollary 1.2.15, we know that two connected annular strand diagrams

are isotopic on the sphere if and only if there exists a directed graph isomorphism that

preserves the rotation system.

Corollary 2.5.2. If two connected annular strand diagrams A1 and A2 represent different

embeddings of the same directed graph, and they agree for:

1. every merge on the left and right inputs, and

2. ANNULAR STRAND DIAGRAMS 45

2. every split on the left and right outputs,

then A1 and A2 are isotopic.

In other words, isotopy preserves the direction of the edges in addition to isomorphism.

For instance, in the case of two isotopic annular strand diagrams G and H, the left output

of a vertex in G corresponds to the left output of the corresponding vertex in H mapped

by the isomorphism. Furthermore, the counterclockwise order of input(s) and output(s) of

a vertex in G is the same as the counterclockwise order of input(s) and output(s) of the

corresponding vertex in H.

Example 2.5.3. Figure 2.5.1 shows three reduced annular strand diagrams A1,A2, and

A3. Observe that A2 can be obtained by applying a 180◦ rotation to A1 on the annulus.

Vertex v1 ∈ A1 would fall over vertex v2A2, and a depth first search from these corre-

sponding vertices will confirm the presence of an isotopy. On the other hand, A3 is not

isotopic to the A1 or A2. Observe that the left output from the left split in the tree in A3

has target v3, which has an outgoing edge to the outermost directed cycle. However, the

left output from the left split in the tree in A1 has a target vertex, which has an outgoing

edge to the innermost directed cycle. Similarly, A3 is not isotopic to A2. ♦

v1

v2

v3

A1 A2 A3

Figure 2.5.1. Three reduced annular strand diagrams in which A1 and A2 are isotopic.

2. ANNULAR STRAND DIAGRAMS 46

Corollary 2.5.4. Given two reduced annular strand diagrams G and H, where CG =

{g1, g2, ..., gn} and CH = {h1, h2, ..., hm} are the sets of connected components in G and

H respectively in concentric order from the inside of the annulus to the outside, then G

and H are isotopic if:

1. n = m, and

2. gi ∈ CG and hi ∈ CH are isotopic for each i ∈ {1, 2, ..., n}.

3
Algorithm for the Conjugacy Problem in F

In this chapter, we provide a comprehensive description of our algorithm for the conjugacy

problem in F , the biggest contribution in our research. We discuss our implementation

called ConjugacyF, with particular emphasis on key notes in each major step of the

algorithm, and analyze our solution algorithm to show that theoretically it executes in

O(n), where n is the sum of the lengths of the input words. We provide a tested, bug-free

Java implementation of ConjugacyF, showing evidence of correctness using our results,

and describe the user interface towards the end of this chapter.

The theoretical implementation reduces the problem of checking whether two reduced

annular strand diagrams are isotopic to the problem of determining whether two planar

graphs are isomorphic. It uses the O(|V |) algorithm proposed by [10] for the isomor-

phism problem in planar graphs, where |V | is the number of vertices in the input planar

graphs. However, as stated by the authors in [10], their algorithm is mainly theoretical and

too complicated to be implemented. Due to this reason, ConjugacyF directly determines

whether two reduced annular strand diagrams are isotopic, and as a result, it executes in

O(n2).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 48

Theorem 3.0.5. Given two input words w1 and w2 in 〈x0, x1〉 representing elements of F ,

the proposed algorithm for the conjugacy problem decides whether w1 and w2 are conjugate

in O(n), where n = |w1|+ |w2|.

The rest of this chapter proves this theorem. We emphasize that this theorem uses the

O(|V |) algorithm proposed by [10] for the isomorphism problem in planar graphs.

3.1 Algorithm Overview

In this section, we describe the major steps in the flow of the algorithm. A flowchart for

the algorithm is shown in Figure 3.1.1, and the steps are highlighted below:

1. The algorithm takes as input two words w1 and w2 in the generating set 〈x0, x1〉.

Hence, an input word is a string with a sequence of characters from the set

{x0, x1, x−10 , x−11 }.

2. The strand diagrams for these words are constructed, and they are closed to obtain

the corresponding annular strand diagrams (Section 3.3).

3. The annular strand diagrams are reduced (Section 3.4).

4. The connected components in each reduced annular strand diagram are labeled and

stored in a list in concentric order from the inside of the annulus to the outside

(Section 3.5).

5. For each reduced annular strand diagram, the components are encoded to planar

graphs, which are stored in lists in the same concentric order as that of the compo-

nents (Section 3.6).

6. Then the following procedure determines whether w1 and w2 are conjugate:

Let Pw1 = {g1, g2, ..., gn} and Pw2 = {g′1, g′2, ..., g′m} be the lists of planar graphs for

the elements w1 and w2 respectively. If n 6= m, then w1 and w2 are not conjugate.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 49

w1 w2

Strand Diagram
Creator

Annular Strand Diagram
Creator (i.e. Closing)

Reduce Connected Component Labeling

Encoding to Planar Graph

Sw1 Sw2

Aw1 Aw2

Rw1 Rw2

Cw1 Cw2

Pw1 Pw2

Return True if conjugate,
otherwise return False

Isomorphism
Checker

Figure 3.1.1. Overview of the solution algorithm for the conjugacy problem in F

Otherwise, for each i ∈ {1, 2, ..., n}, the algorithm checks whether gi and g′i are

isomorphic. If all such gi and g′i are isomorphic, then w1 and w2 are conjugate, and

not conjugate otherwise (Section 3.8).

In accordance with the sections mentioned above, the other major topics in this chapter

are organized as follows:

Section 3.2 describes the data structure; Sections 3.6 - 3.7 prove an important theorem

relating isotopy of strand diagrams to isomorphism of planar graphs; Section 3.9 describes

the subroutine in our Java program that compares the rotation systems of annular strand

diagrams to determine whether they are isotopic, proving that this subroutine causes the

running time of ConjugacyF to be quadratic; Section 3.10 analyzes the results we obtained

using ConjugacyF and provides evidence to show that the implementation is bug-free; and

finally Section 3.11 describes the software we created for the conjugacy problem in F using

Java, with details on how to use the interface.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 50

Furthermore, any section where part of the solution algorithm is discussed also presents

an analysis of that part of the algorithm towards proving that the overall algorithm is

linear in the length of the input words.

3.2 The Data Structure

3.2.1 Background: Doubly Linked Lists

To minimize the running time of the solution algorithm, on several occasions we use the

doubly linked list data structure. For a broader description of doubly linked lists, the

reader is referred to [17].

Definition 3.2.1. A doubly linked list is a data structure containing sequentially linked

nodes, each of which has:

• a data field holding a value,

• a previous field that refers to the previous node, and

• a next field that refers to the next node

in the sequential ordering of nodes in the data structure. 4

Conventionally, the previous field of the beginning node and the next field of the ending

node are set to null. Discussed below are certain methods that our solution algorithm

will invoke on a customized doubly linked list D. Note that all these methods take constant

time.

• add(<Type> a): creates a new node N containing a, and attaches N at the end of D.

• addAfter (<Type> a, <Type> b): creates a new node N containing b, inserts N

between the node p holding a and the node p+1, and creates new links between p,N,

and p+1.

• remove(Node N): removes N from D and and links its previous node to its next node.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 51

• remove(<Type> a): inquires the node field of a to find the node in which a belongs

in D. Then removes this node, and links its previous node to its next node.

• replace(<Type> a, <Type> b): creates a new node N containing b, substitutes the

node holding a with N, thus replacing the data a with the data b in D.

Note that it is important that the above operations each take constant time for Con-

jugacyF to execute in linear time. However, our Java implementation of ConjugacyF uses

the in-built LinkedList data structure for Java, which may not allow these operations in

constant time.

We now describe the data structure (as a Java model) for representation and manipu-

lation of strand diagrams and annular strand diagrams. Recall that strand diagrams for

elements of F have four kinds of vertices:

• a merge, which has two parents and one child

• a split, which has one parent and two children

• a source of degree 1, with an outgoing edge to a split, and

• a sink of degree 1, with an incoming edge from a merge

The source and the sink are involved only in concatenations (see Section 1.4.1) and

closing (see Section 2.1) . Annular strand diagrams have only merges and splits as vertices.

Note 3.2.2. All the linked lists in our data structure are doubly linked lists with constant

time access. ♦

3.2.2 Class: Edge

1. Each Edge object is directed from a source vertex to a target vertex.

2. Each Edge object has a unique ID.

3. The field class is an array of two integers that records the class to which the edge

belongs (see Section 3.6 for discussion of “class”). In this array, the first integer

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 52

Figure 3.2.1. The Java model of the data structure used for the solution to the conjugacy
problem in F . Note that all the linked lists are doubly linked.

denotes the input type and the second integer denotes the output type for the edge.

These integers can be the following:

• 0 → free loop

• 1 → left input or left output

• 2 → right input or right output

4. ConjugacyF involves insertion of edges into a linked list called cuttingPath, which

stores a dynamic subsequence of edges in the order in which they meet a particular

cutting path (see Section 3.2.5). The field node for an Edge object stores the container

node that holds the edge, if present, in cuttingPath, otherwise node is set to null.

5. The field flagged is required to mark edges during connected component labeling

of reduced annular strand diagrams (discussed in Section 3.5).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 53

6. Invoking the method makeFreeLoop() turns the edge into a free loop by setting

isFreeLoop to true, both elements of class to 0, and making the source and the

target vertices null.

7. Given an edge e1 with source vertex s, the combineEdge() method (see Algorithm 7

in the Appendix takes another edge e2 with target vertex t as input, and then merges

the two edges. As a result, both e1 and e2 are the same edge with source vertex s,

target vertex t, class[0] from old e1, class[1] from old e2, and:

• if both their node fields are null, then a fake Node having an empty data field

is constructed for e1, and the node for e2 is also assigned this Node.

• if neither of their node fields are null, then the node for e2 is destroyed first,

and then assigned the node for e1.

• if exactly one of the edges has a node that is not null, then the other edge has

its node set to the former’s node.

Note 3.2.3. In the description of the solution algorithm, for any Edge object e, if e.node

is null, then e.node is an unassigned or it is a fake Node. ♦

3.2.3 Class: Vertex

1. We use the field type to denote the vertex type, which can be any string in the

set {source, sink, merge, split}. Note that each Vertex object has four Edge objects

associated with it. Using the type field, we can safely decide which of these Edge

objects are allowed for a vertex, as shown in Table 3.2.1.

By convention, a vertex having a lone input edge has the edge stored in

leftParentEdge, and a vertex having a lone output edge has the edge stored in

leftChildEdge. By inquiring the associated Edge objects, the children and parents

of any vertex can be found, which are provided by the getter methods.

Nabil
Sticky Note
remove 'an'

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 54

2. Each vertex has a unique ID, required for creating and copying strand diagrams.

3. In (annular) strand diagrams, vertices will be stored in a linked list. In order to

remove vertices from this linked list in constant time during reductions, the container

node in which a vertex belongs is stored in the node for Vertex objects.

4. As will be shown later, during reductions, split vertices may be put into a stack

called stackReduceSplits in the Annular class, and the field inStack is used to

tell whether a vertex is currently on this stack.

5. During the isotopy check discussed in 3.9, each vertex in an annular strand diagram

will have its isPaired field set to true when its corresponding vertex in the other

annular strand diagram has been assigned, and the correspondent field is used to

hold this corresponding vertex.

Note 3.2.4. The Vertex data structure preserves the counterclockwise order of the edges

since it keeps track of the left and right parents of a merge, and similarly the left and the

right children of a split. ♦

3.2.4 Class: Graph

The Graph data structure is used to hold planar graphs that are generated from reduced an-

nular strand diagram components using the encoding algorithm (discussed in Section 3.6).

A list of the vertices and a list of the undirected edges are sufficient to represent planar

graphs. In the solution algorithm, Graph objects will be compared to determine whether

leftParentEdge rightParentEdge leftChildEdge rightChildEdge

source 7 7 3 7

target 3 7 7 7

merge 3 3 3 7

split 3 7 3 3

Table 3.2.1. The Edge objects associated with certain vertex types.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 55

they are isomorphic in order to decide whether two reduced annular strand diagrams are

isotopic (see Theorem 3.7.1).

3.2.5 Class: Strand

This data structure represents elements of F in strand diagram forms.

1. We construct a Strand object, representing a strand diagram, from its input word,

which is a string in the generating set 〈x0, x1〉.

2. We store the source and the sink vertices so that concatenations and closing can

be performed in constant time.

3. As each Vertex object stores the counterclockwise order of edges connected to it, the

field vertices, holding all the vertices in a strand diagram, has sufficient information

to correctly construct the strand diagram.

4. stackReduceSplits is a stack that stores a list of split vertices during concatena-

tions (discussed in Section 3.3).

5. The method concatenate() performs concatenation of two Strand objects (see

Algorithm 8).

6. Invoking the method close() on a Strand object turns it into an Annular object

that represents the corresponding annular strand diagram.

3.2.6 Class: Annular

This data structure is used to hold annular strand diagrams, which do not have a source

or a sink vertex. In addition:

1. An Annular object is created by invoking the method close() on a Strand object.

During the construction, the fields vertices (excluding the source and the sink)

and stackReduceSplits are copied from the corresponding Strand object.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 56

2. The field cuttingPath is a linked list that stores a subsequence of edges in a par-

ticular cutting path in the annular strand diagram.

3. The reduce() method performs all the possible reduction moves on an annular

strand diagram, thereby reducing it.

4. The getComponents() method returns a concentrically ordered list of the connected

components in the annular strand diagram. These connected components are also

Annular objects.

5. The method encodeToPlanarGraph() (see Algorithm 10) encodes connected com-

ponents to planar graphs, which are Graph objects.

Now that the data structure has been described, we present the algorithm for the con-

jugacy problem in Thompson’s Group F in Algorithm 1. The proof of this algorithm’s

correctness comes from Theorem 2.2.3 and Theorem 3.7.1. We now begin a thorough

discussion and analysis of this algorithm.

3.3 Strand Diagram Generation

This section covers Lines 1-3 of Algorithm 1. Recall that in the string denoting an input

word, each character is an element from {x0, x1, x−10 , x−11 }. Given an input word as a string

of size n, the Strand object for the word is constructed by:

1. going through each character in the input string from left to right,

2. creating a Strand object for each character encountered, and

3. concatenating these Strand objects.

The Strand object corresponding to each character in the input word is constructed

by creating at most 18 vertices and edges (see Theorem 1.4.5, note that each character

has a unit length). As shown in Algorithm 8, the method concatenate() performs the

Nabil
Sticky Note
See Algorithm 10 IN THE APPENDIX

new
Sticky Note
from right to left

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 57

Input: String w1, String w2

Output: Whether w1 and w2 are conjugate: true or false

1 for w in {w1, w2} do
// generate strand diagram from word w

2 Strand sd = new Strand(w)
3 Annular asd = sd.close() // obtain annular strand diagram

4 asd.reduce() // discussed in Algorithm 2

5 List<Annular> components = asd.getComponents(asd.cuttingPath)

6 Pw = new List<Graph>()

7 for c in components do
8 Pw.add(c.encodeToPlanarGraph()) // see Algorithm 10

9 end

10 end
11 if Pw1 .size() 6= Pw2 .size() then
12 return false
13 for i = 0 −→ Pw1 .size()− 1 do
14 Graph p1 = Pw1.get(i)

15 Graph p2 = Pw2.get(i)

16 if !(isIsomorphic(p1, p2)) then
// the linear algorithm proposed in [10]

17 return false

18

19 end
20 return true

Algorithm 1: Algorithm for the solution to the conjugacy problem in F .

concatenation of two strand diagrams in constant time. Because step (1) runs n times, it

follows that construction of the strand diagram takes O(n).

The corresponding Annular object is then produced by running the method close(),

which merges the source and the sink, and therefore closing happens in constant time.

This concludes that up to annular strand diagram generation, Algorithm 1 takes O(n).

Note 3.3.1. The edge ec, created by closing, is immediately added to the linked list called

cuttingPath that now represents a cutting path for the annular strand diagram (see (a)

in Figure 2.4.3 for visualization), and ec.node is assigned the Node that contains ec in

cuttingPath. Notice that ec is the first edge added to cuttingPath. ♦

Nabil
Sticky Note
refer to Algorithm 2 using the label so that the number 2 becomes blue.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 58

I
e1

e2 e3

e4

e1 e4

v

w

II
e1 e2

e3

e4 e5

e1

e4

e2

e5
v

w

Figure 3.4.1. (a) Reduction I and (b) reduction II, with labeled edges and the split involved
in the reduction labeled v. The green vertices can be splits or merges, they may not be
distinct from each other or from the yellow vertices.

Note 3.3.2. During the creation and closing of a Strand object, the stack stackReduceSplits

stores the list of split vertices at the point of concatenations (see Algorithm 8 in the Ap-

pendix, such as the vertex vs in Figure 1.4.5. The reason for keeping this list is that, right

after the concatenation, these split vertices are the only split vertices where a reduction

(reduction II to be exact) is possible. Thus, stackReduceSplits allows us to know all

possible locations of reductions upon creation of an annular strand diagram. ♦

3.4 Reducing

In this section we discuss Line 4, of Algorithm 1, that performs all possible reductions.

This section assumes that the input word for the annular strand diagram has length n.

Our algorithm to reduce annular strand diagrams is shown in Algorithm 2. Reduction I

and reduction II are further described in Algorithm 3 and Algorithm 4 respectively. We

also emphasize the necessity of efficiently check for reductions and updating the cutting

path.

The major steps in reducing an annular strand diagram are discussed below:

1. We perform a stack based reduction to speed up the reduction step. Recall that the

stack stackReduceSplits initially stores all the split vertices in the annular strand

diagram that take part in a reduction, which is a reduction II (see Note 3.3.2).

2. Until this stack is empty, we continue to pop a split from the top of the stack,

set its inStack field to false, and if the split is involved in a reduction I (Line 6,

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 59

// Algorithm to reduce annular strand diagrams:

1 while !stackReduceSplits.isEmpty() do
2 Vertex split = s.pop()

3 split.inStack = false

4 Vertex lchild = split.getLeftChild()

5 Vertex parent = split.getLeftParent()

6 if lchild.type == “merge” and split.leftChildEdge == lchild.leftParentEdge and

split.rightChildEdge == lchild.rightParentEdge then
7 reductionI(split) // See Algorithm 3

8 else if parent.type. == “merge” then
9 reductionII(split) // See Algorithm 4

10

11 end
// Perform Reduction III: Merge consecutive free loops

12 Node current = cuttingPath.getFirst()

13 while current.next 6= null do
14 if current.data.isFreeLoop and current.next.data.isFreeLoop then
15 current = current.next

16 cuttingPath.remove(current.previous)

17 else
18 current = current.next

19

20 end

Algorithm 2: The reduce() method for Strand objects. Note that reductionI() or
reductionII() may push splits into stackReduceSplits.

Algorithm 2) or a reduction II (Line 8, Algorithm 2), we perform the appropriate

reduction.

3. Notice that both reductions I and II happen around a split that is removed after

the reduction, that is, the vertex v in Figure 3.4.1. After a reduction I or a reduc-

tion II is performed, nearby split vertices may be put into the stack (discussed in

Section 3.4.1).

4. When the stack stackReduceSplits becomes empty, all the possible reductions I

and II have been performed.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 60

5. Since each of reduction I and reduction II removes two vertices, and since the total

number of vertices in the original annular strand diagram is O(n), it follows that

the total number of these reductions is also O(n).

6. Finally, we loop through all the edges in cuttingPath and merge concentrically

adjacent free loops using reduction III. Since the number of edges is O(n), it follows

that the number of reduction III moves in the worst case is bounded by O(n).

3.4.1 Keeping Track of Potential Future Reductions

We need to make sure that the number of checks for possible reduction I and reduction II

moves is bounded by O(n). An obvious algorithm to carry out all possible reductions is

to:

1. go through all the vertices in the annular strand diagram, checking for reductions,

and

2. whenever a reduction is possible, carrying it out, and

3. going to step (1) until no more reductions can be performed on the annular strand

diagram.

In the worst case, this algorithm runs O(n) times, and since there are O(n) vertices initially

that need to be checked for a possible reduction, the overall running time of this algorithm

is O(n2).

This is why we perform a stack based reduction which ensures that the overall number

of inquiries for possible reduction I and reduction II moves is bounded by O(n) . Notice

that whenever a reduction I or a reduction II is performed, this can give rise to a new

reduction at the split vertices around the current region of reduction. We efficiently keep

track of these possible reductions by:

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 61

1. pushing into stackReduceSplits all the neighboring split vertices, which can be all

of the green vertices in Figure 3.4.1.

2. setting the inStack field of any split to true when the split is put into the stack,

and to false when it is removed from the stack. This is an optimization to decide

in constant time whether a split that should be put on the stack is already in the

stack, and to avoid adding duplicates to the stack. Note that this step only affects

the overheads in the running time.

According to Figure 3.4.1, at most four vertices can be put on the stack due to a reduction I

or a reduction II. Because the total number of reduction I and reduction II moves is O(n),

it follows that the total number of items added to the stack until the annular strand

diagram is reduced is also O(n). Hence, the number of checks for possible reduction I and

reduction II moves until the strand diagram is reduced is O(n).

3.4.2 Cutting Path Update and Free Loop Generation

Here we show that updating the cutting path until the annular strand diagram is reduced

takes at most O(n), and discuss how our algorithm correctly detects all free loops arising

from reduction moves.

Note 3.4.1. cuttingPath does not store a cutting path, but stores an instance of a cutting

path. This instance has only one occurrence of each edge that the cutting path crosses,

and after the annular strand diagram is reduced, the sequence of edges in cuttingPath

is sufficient to correctly determine the concentric order of components. Furthermore, the

size of cuttingPath is bounded by O(n). ♦

A cutting path can cross an edge multiple times, but for our purposes, it suffices to

record only one crossing of each edge. Given a component C, if an edge ec ∈ C crosses the

cutting path multiple times, all these crossings will happen:

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 62

// Perform Reduction I (see (a) in Figure 3.4.1 for visualization):

Input: Vertex v, the split vertex that will be removed after the reduction
1 Vertex p = v.getLeftParent()

2 Vertex gc = w.getLeftChild() // grand child of v

3 if p == w then
4 e1.makeFreeLoop() // the condition for a free loop

5 else
6 e4 = e1.combineEdge(e4)
7 for nbr in {p, gc} do
8 if nbr.type == “split” and !(nbr.inStack) then
9 stackReduceSplits.push(nbr); nbr.inStack = true

10

11 end

12 // Cutting path update:

13 if e3.node 6= null then
14 if e1.node 6= null then
15 cuttingPath.remove(e3)
16 else
17 cuttingPath.replace(e3, e1)
18 cuttingPath.remove(e2)

19 vertices.remove(w); vertices.remove(v)

Algorithm 3: The reductionI() subroutine. Note that the replace() and remove()

methods take constant time (see Section 3.2.1).

• after the crossing of an edge from the innermost directed cycle in C, and

• before the crossing of an edge from the outermost directed cycle in C.

Therefore, we can arbitrarily record only one such occurrence of ec in cuttingPath and

still have a sequence of edges in cuttingPath that identify components in order. Because

the number of edges in the reduced annular strand diagram is bounded by O(n), it follows

that the maximum possible size of cuttingPath is also O(n).

Moreover, this is necessary to perform reductions in constant time. As will be shown in

this section, reductions modify edges, and if an edge is in cuttingPath multiple times, all

its occurrences in cuttingPath need to be updated, which is undesirable.

Note 3.4.2. cuttingPath only needs to be updated if it contains an edge that is removed

in a reduction, that is, any black edge crossed by the red edge in Figure 2.4.2. ♦

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 63

// Perform Reduction II (see (b) in Figure 3.4.1 for visualization):

1 if v.rightChildEdge == w.rightParentEdge then
2 e2.makeFreeLoop() // a free loop is created on the right edges

3 else
4 e5 = e2.combineEdge(e5)
5 if v.leftChildEdge == w.leftParentEdge then
6 e1.makeFreeLoop() // a free loop is created on the left edges

7 else
8 e4 = e1.combineEdge(e4)
9 for nbr in {e2.source,e2.target,e1.source,e1.target} do

10 if nbr 6= null and nbr.type == “split” and nbr.inStack == false then
11 stackReduceSplits.push(nbr); nbr.inStack = true

12

13 end
14 if e3.node 6= null then
15 red2CuttingUpdate() // Cutting path update (see Algorithm 5)

16 vertices.remove(v); vertices.remove(w)

Algorithm 4: The reductionII() subroutine.

Recall that the other edges in Figure 2.4.2 that may be contained in cuttingPath prior

to the reduction are modified during the reduction using the combineEdge() method,

which updates cuttingPath accordingly.

In the case of a reduction I (see (a) in Figure 3.4.1 for visualization):

• a free loop is generated only if e1 and e4 are the same edge prior to the reduction

(see Figure 2.2.2).

• cuttingPath does not need to be updated if it contains e1 or e4 because

combineEdge() ensures that there is at most one container node in cuttingPath

holding the edge created by merging e1 and e4 after the reduction.

• if cuttingPath contains e3, then it must also have a node holding e2 (see Fig-

ure 2.4.2). In this case, if e1.node is null, then we replace the adjacent nodes

containing e2 and e3 in cuttingPath with e1. Otherwise, we remove e3 and e2 from

cuttingPath.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 64

Recall that the node field for an Edge object stores the node that contains the edge in

cuttingPath (see Section 3.2.2). Therefore, given an edge e, the node in cuttingPath

containing e can be accessed in constant time, and consequently, updating cuttingPath

in reduction I (Lines 13 - 18 in Algorithm 3) takes a constant number of operations. It

follows that reduction I takes constant time.

// see (b) in Figure 3.4.1 for visualization

1 boolean replaced = false

2 if e2.node == null then
3 cuttingPath.replace(e3, e2)
4 replaced = true

5 if e1.node == null then
6 if replaced then
7 cuttingPath.addAfter(e2, e1)
8 else
9 cuttingPath.replace(e3, e1)

10

11 else if !replaced then
12 cuttingPath.remove(e3)
13

Algorithm 5: The red2CuttingUpdate() method, which updates cuttingPath dur-
ing a reduction II. See Section 3.2.1 for description of the methods invoked on
cuttingPath.

In the case of a reduction II (see (b) in Figure 3.4.1 for visualization):

• at most two free loops are created (see Figure 2.2.2) as shown in the cases below:

1. e2 = e5, or

2. e1 = e4 prior to the reduction.

• we do not need to update cuttingPath if it contains the edges e1, e2, e4, or e5 since

combineEdge() will update it accordingly.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 65

• However, cuttingPath requires an update if it contains the edge e3. In this case,

after the reduction the corresponding cutting path is expected to cross e2 before it

crosses e1. We have the following possible cases when updating cuttingPath:

1. If both e1 and e2 are not in cuttingPath, then we replace the node for e3 in

cuttingPath first with a node holding e2 followed by a node holding e1.

2. If both e1 or e2 are already in cuttingPath, then we simply remove the node

for e3.

3. If exactly one of e1 or e2 is not in cuttingPath, then we create a new node

holding this edge and replace the node for e3 with this node.

• Below we list three special cases where precaution need to be taken in updating

cuttingPath. The cases correspond to Figure 3.4.2.

(a) Prior to the reduction, the cutting path crosses e1 before it crosses e3: after the

reduction, the node for e1 must be contained in cuttingPath before the node

for e2.

(b) v.leftChildEdge = w.rightParentEdge: Make sure that the same edge is not

added twice in cuttingPath.

(c) v.rightChildEdge = w.leftParentEdge: Again, do not add the same edge

twice in cuttingPath.

Recall that the methods invoked on the doubly linked list cuttingPath each perform a

constant number of operations. It follows that the method red2CuttingUpdate(), which

updates the cutting path during a reduction II move, takes a constant number of opera-

tions. Thus, we can conclude that a single reduction II move executes in constant time.

At this point, we have shown that carrying out all the possible reductions I and II, that

is, the while loop starting in Line 1 of Algorithm 2, take O(n) in the worst case. Earlier in

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 66

II
II

II

(a) (b) (c)

Figure 3.4.2. Special cases for updating cuttingPath during a type II move. Refer to (b)
in Figure 3.4.1 for edge and vertex labels.

this section, we showed that all the reduction III moves (the while loop starting in Line

13 of Algorithm 2) are bounded by O(n). Therefore, the method reduce(), which is the

algorithm to reduce an annular strand diagram, is bounded by O(n).

3.5 Connected Component Labeling

This section describes how connected components are labeled in reduced annular strand

diagrams, which happens in Line 5 of Algorithm 1. Because each connected component is

a reduced annular strand diagram, it is represented using an Annular object. To construct

a connected component, it suffices to start with an edge belonging to the component and

performing a depth first search along its source and target to find all of the vertices in the

component. Below we discuss the major points regarding the method getComponents(),

which is comprehensively described in Algorithm 9 in the Appendix:

1. When the Annular object representing a connected component has no vertices but

has a single edge, it means that the component is a free loop.

2. getComponents() takes as input cuttingPath after the annular strand diagram has

been reduced. Recall that at this point cuttingPath is an ordered subsequence of a

cutting path for the reduced annular strand diagram, containing at least one edge

from each connected component.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 67

3. Given an edge e in cuttingPath, the algorithm proceeds by obtaining the source

vertex v of e, and then performing a depth first search on all the edges connected to

v to discover the whole component that contains e. Any edge e′ discovered during

this search has its flagged field set to true so that if e′ is in cuttingPath, a depth

first search is not performed on e′.

4. Similar to the reduce() method, we again use a stack of vertices and the inStack

field for Vertex objects to ensure that each vertex is queried only once during the

depth first search.

Analysis of Connected Component Labeling: We will analyze all the connected

component labeling in a reduced annular strand diagram R collectively. Let the original

strand diagram corresponding to R be S, which is produced from the input word of length

n. Let VS and ES be the number of vertices and edges respectively in S. Recall from

Theorem 1.4.5 that VS + ES ≤ 15n+ 3. It is easy to see that the number of vertices and

edges in R is also bounded by 15n+3. Therefore, from statement (4) above, it follows that

the while loop in Line 13 of Algorithm 9 executes O(n) times. Because each vertex in R

has a constant number of connected edges, it follows that one iteration of this while loop

performs a constant number of operations. Hence all the connected component labeling

are collectively bounded by O(n).

3.6 Encoding Annular Strand Diagrams into Planar Graphs

As mentioned in the beginning of this chapter, we reduce the problem of determining

whether two reduced annular strand diagrams are isotopic to the problem of determining

whether two planar graphs are isomorphic, and then use the linear time planar graph

isomorphism checker algorithm proposed in [10].

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 68

In this section, we cover Lines 6-9 of Algorithm 1, that is, the conversion of each con-

nected component in a reduced annular strand diagram to a corresponding planar graph.

We provide a function that encodes connected components to planar graphs, and we create

an algorithm that implements this encoding. Then we show that this algorithm is linear

in the number of vertices and edges in the reduced annular strand diagram, and therefore

linear in the length of the input word used to construct the annular strand diagram.

Let X be the set of all connected, reduced annular strand diagrams. Let G be the set

of planar graphs to which elements of X will be encoded. Let φ : X → G be the encoding

function. If s ∈ X is a free loop, then let φ encode s to the planar graph φ(s) shown in

Figure 3.6.1.

Consider the case when s is not a free loop. Observe that an edge e ∈ s is both an

output from a vertex, and an input to a vertex. As shown in Figure 3.6.2, e can be any of

the following input and output types:

Input Types for e Output Types for e

1. the lone input to a split 1. the lone output of a merge
2. the left input to a merge 2. the left output of a split
3. the right input to a merge 3. the right output of a split

Thus, there are nine unique output-input combinations, each of which defines an edge

class, which is a pair of integers (out,in) such that out represents the output type and in

represents the input type of the edge.

free loop

v

Figure 3.6.1. The encoding of s ∈ X when s is a free loop. φ(s) ∈ G is the planar graph
with a single vertex having a loop.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 69

output

left
input

right
input

input

left
output

right
output

Figure 3.6.2. Different input and output types for edges. The vertex on the left is a merge,
and the one on the right is a split

In order to achieve unique encoding of each s ∈ X, we will generate unique planar

graphs for each possible class of edge in s. Below we discuss how we generate these planar

graphs, and how the class to which an edge e belongs, uniquely identifies the corresponding

planar graph for e.

Class (1,1): Edge ek = (outk, ink) ∈ s is the output of a merge outk and the input of

a split ink. Produce the corresponding planar graph gk using the following steps:

1. Create a null graph gk having only the vertices outk and ink.

2. Add new vertices wk and uk to gk.

3. In gk, create an edge (outk, wk), two edges between wk and uk, and three edges

between uk and ink.

Then gk is the planar graph encoding of the edge ek. Figure 3.6.3 shows the encoding

of ek in graphical form. The other eight edge classes have encodings very similar to edge

outk

ink

ek
out,
in outk uw ink

(a) ek (b) the corresponding planar graph gk

Figure 3.6.3. (a) shows the highlighted edge ek which is the lone output of a merge and
the lone input to a split. The encoding of ek produces the planar graph gk in (b).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 70

class (1,1), except that they each differ in the number ne of edges created between uk and

ink in the corresponding planar graph. As the value of ne is unique for each class of edge

in the annular strand diagram, it follows that the encoding of each class of edge is unique.

The encodings of all the edge classes are described in Table 3.6.

We are ready to encode the reduced, connected, non-free loop annular strand diagram s.

Assume that E = {e1, e2, ...en} is the edge set of s. To obtain φ(s), follow the steps below:

1. Create a null graph g.

2. Copy all the vertices from s to g.

3. For each edge ek = (voutk , vink) ∈ E, create vertices wk and uk in g. Identify the

edge class in Table 3.6 to which ek belongs, and let this be the class C, where C ∈

{1, 2, 3} × {1, 2, 3}. Then create an edge (voutk , wk), two edges (wk, ek), and p edges

(uk, v
in
k) where p is the number of edges (u, v2) in the planar graph corresponding

to class C in Table 3.6.

Then, g = φ(s).

Example 3.6.1. Let s ∈ X be the reduced annular strand diagram for the word x0x0.

The encoding creates the corresponding planar graph φ(s) shown in Figure 3.6.4. ♦

v1 v2

v4v3

v1 v2

v3 v4

Figure 3.6.4. Encoding of x0x0 to its corresponding planar graph.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 71

Class (1,1): an edge is the output of a merge
v1 and the input of a split v2.
Solution: create 3 edges between u and v2

v1

v2

out,
in v1 uw v2

Class (1,2): an edge is the output of a merge
v1 and the right input of a merge v2.
Solution: create 4 edges between u and v2

v1

v2out,
left in

v1 uw v2

Class (1,3): an edge is the output of a merge
v1 and the right input of a merge v2.
Solution: create 5 edges between u and v2

v1

v2
out,

right in
v1 uw v2

Class (2,1): an edge is the left output of a
split v1 and the input of a split v2.
Solution: create 6 edges between u and v2

v1

v2

left out,
in

v1 uw v2

Class (2,2): an edge is the left output of a
split v1 and the left input of a merge v2.
Solution: create 7 edges between u and v2

v1

v2

left out,
left in

v1 uw v2

Class (2,3): an edge is the left output of a
split v1 and the right input of a merge v2.
Solution: create 8 edges between u and v2

v1

v2
left out,
right in

v1 uw v2

Class (3,1): an edge is the right output of a
split v1 and the input of a split v2.
Solution: create 9 edges between u and v2

v1

v2

right out,
in

v1 uw v2

Class (3,2): an edge is the right output of a
split v1 and the left input of a merge v2.
Solution: create 10 edges between u and v2

v1

v2

right out,
left in

v1 uw v2

Class (3,3): an edge is the right output of a
split v1 and the right input of a merge v2.
Solution: create 11 edges between u and v2

v1

v2

right out,
right in

v1 uw v2

Table 3.6.1. Different types of edges in the annular strand diagram, and their encodings
to planar graphs

new
Sticky Note
and the left input of v2

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 72

3.6.1 The Encoding Algorithm

We now describe our implementation of an algorithm to encode components of reduced

annular strand diagrams into planar graphs. Let X be the set of reduced connected

annular strand diagrams. As shown in Algorithm 10 (in the Appendix), the method

encodeToPlanarGraph() takes as input s ∈ X, applies the encoding function φ to s,

and returns the corresponding planar graph φ(s).

Analysis of the Encoding Algorithm: Note that this analysis covers Lines 7-9 in

Algorithm 1. We will analyze the encodings of all connected components collectively using

the same approach we used to analyze the running time of connected component labeling

in Section 3.5.

Recall that given an input word of length n, all the connected components together have

sum of vertices and edges bounded by O(n). Therefore, the for loops in Line 7 and in

Line 12 execute O(n) times and each iteration of both of these loops performs a constant

number of operations. It follows that the execution efficiency of Algorithm 10 is O(n).

3.7 Retrieving Annular Strand Diagrams from Planar Graph
Encodings

Now we will show that given ps ∈ G, the planar graph encoding of s ∈ X, we can decode ps

to derive s. Observe that the vertices in ps that also belong to s share at least three edges

with at least one vertex, and they cannot share exactly two edges with any other vertices.

Using these properties, we can construct all the vertices in s from the set of vertices in ps.

Since each class of edge in s has a unique corresponding planar graph encoding, conversely,

each of these planar graphs correspond to a unique class of edge in s. Let P = φ(X) be

the image of φ. Let ψ : P → X be the decoding function. Let ps ∈ P and ps = (V,E),

where V and E are the vertex and edge sets of g respectively. If ps is a graph with only a

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 73

single vertex having a loop, then ψ(ps) is the free loop. Otherwise we compute ψ(g) using

the steps below:

1. Create a null annular strand diagram s.

2. For each vk ∈ V , if there exists u,w ∈ V such that there exist exactly one edge

(vk, w) and exactly two edges (w, u) in E, then add vk to s.

3. For each vk in the vertex set of s, find all v′k ∈ s such that u,w ∈ ps, and there exist

exactly one edge (vk, w), exactly two edges (w, u), and at least three edges (u, v′k)

in E. For each v′k, if the total number of edges (u, v′k) is cn, then use cn to find

the corresponding edge class C in Table 3.6, and create in s a directed edge (vk, v
′
k)

whose output and input type are the same as that of the highlighted directed edge

in class C.

Then, s = ψ(ps). Algorithm 11 shows the decoding algorithm that produces s given ps.

Notice that it is the inverse of the encoding algorithm. We do not need to worry about

the execution efficiency of the decoding algorithm as this algorithm is not used in our

proposed solution to the conjugacy problem in F . We skip the analysis of the decoding

algorithm.

Theorem 3.7.1. Any two connected, reduced, and non-free loop Annular Strand Diagrams

s1 and s2 can be encoded into two planar graphs g1 and g2 respectively such that s1 and

s2 are isotopic if and only if g1 and g2 are isomorphic.

Proof. Let s1 and s2 be two connected, reduced, and non-free loop annular strand dia-

grams. Let the encoding be the function φ described in Section 3.6. In order to prove the

theorem, it suffices to show that the encoding is one-to-one. Let g1 = φ(s1) and g2 = φ(s2).

Assume that g1 = g2. Because of the nature of φ, it immediately follows that φ(s1) = φ(s2).

Also, by applying the decoding function ψ, described in Section 3.7, on g1 and g2, we get

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 74

the following:

s1 = ψ(g1) = ψ(g2) = s2

It follows that φ is one-to-one.

3.8 Isomorphism Checking

This section covers Lines 11-20 in Algorithm 1 and completes the analysis of the solution

algorithm. The relevant lines of code are very straightforward:

1. If the total number of planar graph encodings is not the same for both reduced

annular strand diagrams, then it immediately follows that the reduced annular strand

diagrams are not isotopic.

2. Otherwise, we take each planar graph encoding p1 and p2 corresponding to words

w1 and w2 respectively in order of increasing distance from the cutting path, and

then check whether p1 and p2 are isomorphic.

(a) If any such pair is not isomorphic, then the corresponding reduced annular

strand diagrams are not isotopic, and hence the words w1 and w2 are not

conjugate.

(b) If all pairs are isomorphic, then w1 and w2 are conjugate.

Analysis of Check for Isomorphism between Planar Graphs: Hopcroft and

Wong [10] have shown an algorithm that determines whether two planar graphs are iso-

morphic in O(|V |), where |V | is the sum of the number of vertices in the input planar

graphs. Their algorithm can also be applied on planar graphs which have loops and mul-

tiple edges between vertices such as our encoded planar graphs.

Because the total number of vertices from all our planar graph encodings are collectively

bounded by O(n), it follows that the worst case running time of the for loop starting in

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 75

Line 13 of Algorithm 1 (i.e., all the checks for isomorphism between planar graphs) is

O(n).

This proves Theorem 3.0.5 and confirms that the solution we presented to the conjugacy

problem in F is linear in the sum of the length of the input words.

3.9 Our Actual Implementation

To the best of our knowledge, the linear time algorithm that checks for an isomorphism

between two planar graphs proposed in [10] used in Line 16 in Algorithm 1 has not been

implemented yet. We believe that this is due to the complicated design of the algorithm.

Moreover, the authors of [10] stated that this algorithm is not practical. As a result, we

have not attempted an implementation of this algorithm, and instead programmed a direct

isotopy search as a substitute for the following steps:

1. planar graph encoding of each component in the two annular strand diagrams, and

2. checking for isomorphism between all corresponding pairs of planar graph encodings.

Because of this change, ConjugacyF takes O(n2). We implemented Algorithm 6, which

modifies Algorithm 1 by substituting the two steps above with a detector that checks the

rotation systems of two reduced annular strand diagrams to determine whether they are

isotopic. The rest of this section describes the isotopy detector, and analyzes its running

time.

Recall that our data structure provides the counterclockwise ordering of edges connected

to each vertex in an annular strand diagram. Using this information, we can create the

rotation system for two reduced annular strand diagrams, and then determine whether

one rotation system is a permutation of the other.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 76

Input: String w1, String w2

Output: Whether w1 and w2 are conjugate: true or false

1 for w in {w1, w2} do
// generate strand diagram from word w

2 Strand sd = new Strand(w)
3 Annular asd = sd.close() // obtain annular strand diagram

4 asd.reduce() // see Algorithm 2

5 List<Annular> Cw = asd.getComponents()

6 end
7 if Cw1 .size() 6= Cw2 .size() then
8 return false
9 for i = 0 −→ Cw1 .size()− 1 do

10 Annular c1 = Cw1 .get(i)
11 Annular c2 = Cw2 .get(i)
12 if !isIsotopic(c1, c2) then

// see Algorithm 13 in the Appendix

13 return false

14

15 end
16 return true

Algorithm 6: Our working implementation ConjugacyF

By convention, we obtain the edges for a merge starting with the left parent edge and

going counterclockwise. In the case of splits, we start with the left child edge and move

counterclockwise.

3.9.1 Isotopy Detector Given two Corresponding Vertices

First we discuss the method isotopyHelper(), our implementation to check whether

two two connected, reduced annular strand diagrams c1 and c2 are isotopic given two

corresponding vertices ref ∈ c1 and corr ∈ c2. A brief outline of the flow of this algorithm

is shown below, and a comprehensive description is provided in Algorithm 12 (in the

Appendix). Note that the term edge cycle refers to a counterclockwise order of edges

connected to a vertex.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 77

1. This algorithm proceeds by checking whether the edge cycles of the vertices ref and

corr are the same, which happens when these vertices are of the same type (i.e.,

both merges or both splits) and the vertex at the other end of an edge e ∈ ref is

of the same type as the vertex at the other end of its corresponding edge e′ ∈ corr,

for all edges in the edge cycle of ref.

2. If step (1) successfully checks out, then for each edge e in the edge cycle of ref,

the vertices v connected to e and v′ connected to its correspondent e′ in the edge

cycle of corr are marked using the field isPaired, v′ is set as the corresponding

vertex of v using the field correspondent, and v is added to a stack. The function of

isPaired is to avoid putting a vertex on the stack more than once, which guarantees

that each edge cycle in c1 is assigned exactly one corresponding edge cycle in c2, and

correspondent records the correspondence between an edge cycle in c1 and an edge

cycle in c2.

3. While the stack is not empty, a vertex v1 is popped from the stack, and the algo-

rithm loops back to step (1) with v1 as the reference and v1.correspondent as its

correspondent.

4. If each vertex v1 ∈ c1 is successfully assigned a unique corresponding vertex v2 ∈ c2

then the algorithm declares that c1 and c2 are isotopic.

Analysis of isotopyHelper(): Given that the sum of the vertices in c1 and c2 is N ,

since:

1. the total number of vertices added to the stack is less than N , and

2. there is a constant number of edges connected to each vertex

it follows that the execution of isotopyHelper() (see Algorithm 12) takes O(N).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 78

3.9.2 Isotopy Detector Given two Connected Reduced Annular Strand Diagrams

We now describe the method isIsotopic(), which determines whether two connected,

reduced annular strand diagrams c1 and c2 are isotopic. As shown in Algorithm 13 (in

the Appendix), this method proceeds by fixing a vertex reference ∈ c1 and then loop-

ing through all vertices v ∈ c2 to check whether c1 and c2 are isotopic with reference

corresponding to any such v, using isotopyHelper().

Analysis of isIsotopic(): Assuming that the sum of the vertices in c1 and c2 is N , in

the worst case, the for loop in Line 6 runs O(N) times. Each execution of Line 10 inside

this for loop takes O(N) in the worst case. It follows that the method isIsotopic(),

summarized in Algorithm 13 takes O(N2).

Analysis of the algorithm that determines whether two Reduced Annular

Strand Diagrams are Isotopic: We will analyze this step in the same way we analyzed

connected component labeling earlier, that is, we collectively analyze whether all corre-

sponding connected components of two reduced annular strand diagrams are isotopic.

Let A1 and A2 be two reduced annular strand diagrams each corresponding to an input

word of length O(n). Recall that the number of vertices in A1 and A2 is bounded by O(n).

The worst case happens when all corresponding components are isotopic except the last

ones, which are “almost” isotopic. For this case, let C1, ..., CM be the components of A1

in concentric order with such that for each Ci, the number of vertices is denoted by Vi.

Then, for each Ci, the call to isIsotopic() in Line 12 of Algorithm 6 takes O((Vi)
2).

Then all the calls to isIsotopic() collectively take

O((V1)
2) +O((V2)

2) + ...+O((VM)2) ≈ O((V1)
2 + (V2)

2 + ...+ (VM)2).

However, observe that (V1)
2 + (V2)

2 + ...+ (VM)2 < n2.

It follows that all the calls to isIsotopic() in the if statement in Line 12 are collec-

tively bounded by O(n2).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 79

Therefore, our working implementation ConjugacyF for the conjugacy problem in

Thompson’s Group F has running time O(n2).

3.10 Results

n p, the No. of vertices in reduced annular diagrams
0 2 4 6 8 10 12 14 16 18 20 22 24 26

1 0 4 0 0 0 0 0 0 0 0 0 0 0 0
2 0 6 6 0 0 0 0 0 0 0 0 0 0 0
3 0 6 10 8 0 0 0 0 0 0 0 0 0 0
4 0 8 16 14 12 0 0 0 0 0 0 0 0 0
5 0 8 26 40 22 16 0 0 0 0 0 0 0 0
6 0 8 34 58 56 34 28 0 0 0 0 0 0 0
7 0 8 44 98 124 98 62 40 0 0 0 0 0 0
8 0 8 56 156 240 234 194 106 72 0 0 0 0 0
9 0 8 60 228 452 536 476 368 202 120 0 0 0 0
10 1 8 68 314 756 1108 1148 954 742 378 216 0 0 0
11 1 8 68 386 1204 2136 2638 2434 1990 1474 730 376 0 0
12 1 8 72 480 1806 3790 5436 5794 5324 4160 2988 1472 704 0

Table 3.10.1. Each entry in the table shows the number of unique reduced annular strand
diagrams having p vertices obtained using words of length up to n.

In this section, we verify that the Java implementation of ConjugacyF is correct and

bug-free by using ConjugacyF on a large number of inputs and showing that the outputs

are free of error.

Notice that each conjugacy class in F corresponds to a unique reduced annular strand

diagram. In our experiment, first we computed all the cyclically reduced words starting

from length n = 1 up to n = 12, and sorted them into conjugacy classes using ConjugacyF.

Then, for each value of n. we tabulated the total number of unique reduced annular strand

diagrams with number of vertices in the set {0, 2, 4, ..., 26}. The results are summarized

in Table 3.10.1. Note that there exists no reduced annular strand diagram with an odd

number of vertices because the number of merge and splits have to be the same (i.e., both

odd or both even).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 80

3.10.1 Verification of Results

We will now analyze the total number of conjugacy classes with two vertices and with four

vertices obtained using our algorithm and verify that they are correct.

Conjugacy classes with two vertices: Observe that all reduced annular strand di-

agrams with two vertices can be generalized into the same basic structure shown in Fig-

ure 3.10.1. In this structure,

1. the edge connecting the two vertices can have two possible directions,

2. there can be a free loop in the innermost region, and

3. a free loop in the outermost region,

giving 2× 2× 2 = 8 unique reduced annular strand diagrams. This is in accordance with

the column p = 2 in Table 3.10.1, where the entries reach their maximum value 8 as n is

increased to 4. Furthermore, each of the following 8 words was the first input for which

ConjugacyF found a unique reduced annular strand diagram with 2 vertices:

x0 x1 x−10 x−11 x0x
−1
1 x1x

−1
0 x0x1x

−1
0 x−11 x0x

−1
1 x−10 x1

We verified these results by manually drawing and reducing the annular strand diagrams

corresponding to these words.

Figure 3.10.1. A general structure for reduced annular strand diagrams with two vertices.
The red dashed circles show free loops.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 81

General Structure Unique Reduced Annular Strand Diagrams Generated

1× 2 choices for edge directions
2× 2 choices for free loops
= 8 unique reduced annular strand diagrams

1× 2 choices for edge directions
2× 2 choices for free loops
= 8 unique reduced annular strand diagrams

1× 2 choices for edge directions
2× 2 choices for free loops
= 8 unique reduced annular strand diagrams

1× 2 choices for edge directions
2× 2 choices for free loops
= 8 unique reduced annular strand diagrams

1× 2 choices for edge directions
2× 2 choices for free loops
= 8 unique reduced annular strand diagrams

2× 2 choices for edge directions
2× 2× 2 choices for free loops
= 32 unique reduced annular strand diagrams

Total = 8 + 8 + 8 + 8 + 8 + 32
= 72 unique reduced annular strand diagrams

Table 3.10.2. Reduced annular strand diagrams with four vertices. The number of unique
reduced annular strand diagrams corresponding to each general structure is a power of 2.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 82

Conjugacy classes with four vertices: Table 3.10.2 shows the six general structures

for reduced annular strand diagrams with four vertices. These structures show that there

are 72 unique reduced annular strand diagrams that have four vertices. This also agrees

with Table 3.10.1 where the column p = 4 has its highest value at 72 when n = 12.

We note that this result can be further verified by increasing n beyond 12. However,

we already have a total of 32,035 conjugacy classes (the sum of entries in row 12 of

Table 3.10.1). At n = 13 there are 1,594,324 new cyclically reduced words, and we decided

that comparing them all with existing conjugacy classes is infeasible.

3.10.2 Shortest Cyclically Reduced Word for the Identity

The first occurrence of the free loop conjugacy class happens at n = 10 (and p = 0). Recall

that a free loop represents the identity. The first word that ConjugacyF sorted into the

free loop conjugacy class was

x0x0x1x
−1
0 x−10 x1x0x

−1
1 x−10 x−11 .

Observe that the shortest relation in the presentation for F shown in Proposition 1.3.4

is x1x2 = x3x1, where x2 = x0x1x
−1
0 and x3 = x20x1x

−2
0 . Then, the above word becomes,

(x20x1x
−2
0)x1(x0x

−1
1 x−10)x−11 = x3x1x

−1
2 x−11 = (x3x1)(x1x2)

−1

which is the identity.

In fact, the smallest cyclically reduced word in F representing the identity has length

10. This statement can be proved using forest diagrams [2], which are beyond the scope

of this paper.

3.11 The Software

In this section, we discuss the variants of our software for the conjugacy problem in F

that we have provided online, with directions on how to interact with the user interface.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 83

Figure 3.11.1. The user interface of the application for the conjugacy problem in F .

3.11.1 The Variants and the Implementation Details

We make ConjugacyF available as an executable JAR file on [11] that can be downloaded

freely and used offline. However, note that the application has been compiled on the

Windows 7 environment, and therefore it might not work properly on other operating

systems such as Unix or Mac OS. Users of these operating systems are advised to use the

alternative online application provided in the form of a Java applet on [11]. Note that for

ease of user interaction, our software accepts input files and creates output files, which Java

applets do not permit due to security reasons, and these features are not available on the

web application. A screen shot of the application’s user interface is shown in Figure 3.11.1.

We have also shared the source code on [11] to allow users the opportunity to customize

the software based on their own needs.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 84

3.11.2 Using the Application

Note 3.11.1. In the application, all input words must be in the alphabet {x0,x1,y0,y1},

where y0 represents the element x−10 and y1 represents the element x−11 . ♦

The application allows the following five functions (functions 4 & 5 are the same except

they take the input differently):

1. Input: two words (e.g. x0x0x1y0y1 and x0x0x1y0y1y0y1x0x1):

Output: whether the elements corresponding to these words are conjugate:

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 85

2. Input: a word (e.g. x1):

Output: the corresponding reduced strand diagram, described using vertices and

edges. Each vertex is uniquely numbered, its type is labeled, and its connected edges

are shown in counterclockwise order.

• For a split, the edges are listed starting with the lone parent.

• For a merge, the edges are listed starting with the left parent.

The output text is editable, so it can be selected and copied (use Ctrl+c).

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 86

3. Input: a word (e.g. x0x1y0y1):

Output: the corresponding reduced annular strand diagram, described using com-

ponents, vertices, and edges. Each component is uniquely numbered, and in each

component, each vertex is described as in function (2) above. Similar to function

(2), the output text is editable.

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 87

4. Input: a list of words separated by white spaces:

Output: a TXT file called “sorted wordlist.txt” (located in the directory that con-

tains the executable JAR) that has the input words sorted into conjugacy classes:

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 88

5. Input: a TXT file having a list of words that are separated by white spaces. This

file is selected using the “Upload” button. Next, the user has to press “Sort”:

3. ALGORITHM FOR THE CONJUGACY PROBLEM IN F 89

Output: a TXT file called “sorted wordlist.txt” (located in the directory that con-

tains the JAR application) that has the input words sorted into conjugacy classes:

Note that the web application neither accepts input files, nor produces output files. So,

it cannot perform function (5), but it can run function (4) where it creates an output

window instead of an output file.

4
Conclusion and Future Work

In this project, we presented a linear time algorithm that solves the conjugacy problem in

Thompson’s Group F using directed graphs called strand diagrams. We also provided an

efficient data structure for storing strand diagrams and perform operations on them.

The proposed algorithm converts strand diagrams into directed graphs embedded on the

annulus called annular strand diagrams, reduces these graphs, and then compares the two

reduced annular strand diagrams to see whether they are the same, or more appropriately,

whether they are isotopic. We believe that this is the fastest possible algorithm solving

the conjugacy problem in F .

Due to the impractical nature of the linear algorithm for the isomorphism problem in

planar graphs which is part of our solution algorithm, we implemented a quadratic solution

that directly determines whether two reduced annular strand diagrams are isotopic. As a

result, our implementation called ConjugacyF is quadratic in the length of the input.

We released our implementation in the form of a web application in a Java applet, and

a graphical interface programmed in Java that can be freely downloaded and run offline.

Furthermore, we provided the source code to allow users with more flexibility in using our

4. CONCLUSION AND FUTURE WORK 91

program. To the best of our knowledge, this is the first implementation of an algorithm for

the conjugacy problem in F . It is our hope that our software will be useful to the research

community in Thompson’s Groups.

For future work, we believe that it would not be too hard to modify our software to

create algorithms for the conjugacy problems in Thompson’s Groups V and T . The cutting

path used in the algorithm for F is representative of the cutting class [3] used in solving

the conjugacy problem in V . However, the algorithm for V is not expected to be linear

because checking whether two cutting paths represent the same cutting class requires

gaussian elimination [7] (i.e., row reduction), which possibly takes O(n5).

For Thompson’s Group T , there is no reason to believe that an algorithm solving its

conjugacy problem will be linear. Its strand diagrams are embedded on a cylinder, and its

conjugacy problem is solved using a similar approach as in V .

Appendix: Algorithm Descriptions

Input: Edge this (which invokes this method), Edge e2
Output: An Edge that merges this with e2

1 if this.node 6= null then
2 if e2.node 6= null then
3 e2.node.previous.next = e2.node.next
4 e2.node.next.previous = e2.node.previous

5 e2.node = this.node

6 else
7 if e2.node 6= null then
8 this.node = e2.node
9 else

10 this.node = new Node<Edge>()

11 e2.node = this.node

12

13 this.target = e2.target
14 this.class[1] = e2.class[1]
15 if e2.class[1] == 1 then
16 this.target.leftParentEdge = this

17 else if e2.class[1] == 2 then
18 this.target.rightParentEdge = this

19

20 return this

Algorithm 7: The combineEdge(Edge) method for Edge objects.

APPENDIX: ALGORITHM DESCRIPTIONS 93

Input: Strand this (which invokes this method) Strand s

Output: The Strand object which is the concatenation of this to s

1 Vertex merge = this.sink.getLeftParent()

2 Vertex split = s.source.getLeftChild()

3 merge.leftChildEdge.combineEdge(split.leftParentEdge)

4 this.vertices.remove(this.sink)

5 s.vertices.remove(s.source)

6 this.vertices.add(s.vertices)

7 this.sink = s.sink

8 this.stackReduceSplits.add(split)

9 split.inStack = true return this

Algorithm 8: The method concatenate() for Strand objects. Because vertices is
a linked list, the method add(), which joins two linked lists in this case, executes in
constant time.

APPENDIX: ALGORITHM DESCRIPTIONS 94

Input: LinkedList<Node> cuttingPath, the cutting path
Output: List<Annular> cc, the list of concentrically ordered connected components

1 LinkedList<Annular> cc = new LinkedList<Annular>()

2 Node current = cuttingPath.getFirst()

3 while current.next 6= null do
4 Edge e = current.data; current = current.next

5 if e.isFreeLoop then
6 cc.add(new Annular(new LinkedList<Vertex>()))

7 continue

8 if !e.flagged then
9 LinkedList<Vertex> ccVertices = new LinkedList<Vertex>()

10 Stack<Vertex> s = new Stack<Vertex>()

11 ccVertices.add(e.source)

12 s.push(e.source); e.source.inStack = true

13 while !s.isEmpty() do
14 Vertex v = s.pop()

15 if v.type == “merge” then
16 edgeSet = {leftParentEdge,leftChildEdge,rightParentEdge}
17 else
18 edgeSet = {leftParentEdge, leftChildEdge,rightChildEdge}
19 for E in edgeSet do
20 if !E.flagged then
21 if !E.source.inStack then
22 s.push(E.source); E.source.inStack = true

23 if !E.target.inStack then
24 s.push(E.target); E.target.inStack = true

25 E.flagged = true

26

27 end

28 end
29 cc.add(new Annular(ccVertices))

30

31 end
32 return cc

Algorithm 9: The getComponents() method to extract connected components from
reduced annular strand diagrams.

APPENDIX: ALGORITHM DESCRIPTIONS 95

Input: Annular c (the connected component which invokes this method)
Output: Graph pc, the corresponding planar graph encoding of c

1 Graph pc = new Graph()

2 if c.vertices.isEmpty() then
// the component is a free loop

3 Vertex v = new Vertex()

4 v.add(new Edge(v,v))

5 pc.vertices.add(v)
6 return pc
7 for id = 0 −→ c.vertices.size()− 1 do
8 pc.vertices.add(new Vertex (id))

9 c.vertices.get(id).setID(id) // ensures that vertices with the same

ID in pc and c correspond to each other

10 end
11 Set the flagged fields of all edges in c to false

12 for v in c.vertices do
13 if v.type == “merge” then
14 edgeSet = {leftParentEdge,leftChildEdge,rightParentEdge}
15 else
16 edgeSet = {leftParentEdge, leftChildEdge,rightChildEdge}
17 for e in edgeSet do
18 if !e.flagged then
19 e.flagged = true

20 Vertex v1 = e.source

21 Vertex v2 = e.target

22 Obtain corresponding vertices v′1 and v′2 in pc using the ID of v1 and v2
23 Create new vertices u and w in pc
24 Find which one of the nine classes (in Table 3.6) e falls into
25 Then perform the encoding by adding the edges to pc as described by that

class
26

27 end

28 end
29 return pc

Algorithm 10: The method encodeToPlanarGraph()

APPENDIX: ALGORITHM DESCRIPTIONS 96

Input: Graph ps
Output: Annular s, the corresponding annular strand diagram for ps

1 Annular s = new Annular()

2 if ps.vertices.size() == 1 then
3 create a free loop in s

4 return s

5 end
6 for v1 in ps.vertices do
7 for each vertex w which shares exactly 1 edge with v1 do
8 Find u such that u 6= v1 and (w,u) is an edge
9 Find v2 such that v2 6= w and (u,v2) is an edge

10 Compute cn = |u|-2 // cn = # of edges between u and v2
11 Add v1 and v2 in s if they are not in s

12 In s, add the highlighted directed edge (v1, v2), which belongs to the
corresponding class of cn in Table 3.6

13 end

14 end
15 return s

Algorithm 11: The algorithm to retrieve a connected, reduced annular strand diagram
given its planar graph encoding

APPENDIX: ALGORITHM DESCRIPTIONS 97

Input: Annular c1, Vertex ref, Annular c2, Vertex corr

Output: Whether c1 is isotopic to c2 given ref ∈ c1 corresponds to corr ∈ c2: true
or false

1 if ref.type 6= corr.type then
2 return false
3 Stack<Vertex> stack = new Stack<Vertex>()

4 stack.push(ref)

5 ref.correspondent = corr

6 ref.isPaired = true; corr.isPaired = true

7 while !stack.isEmpty() do
8 Vertex v1 = stack.pop()

9 Vertex v2 = v1.correspondent

10 if v1.type == “merge” then
11 vertexSet =

{v.getLeftParent(),v.getLeftChild(),v.getRightParent()}
12 else
13 vertexSet =

{v.getLeftChild(),v.getRightChild(),v.getLeftParent()}
14 for node in vertexSet do
15 v1n = v1.node; v2n = v2.node

16 if v1n.type 6= v2n.type then
17 return false
18 else if v1n.isPaired 6= v2n.isPaired then
19 return false
20 if v1n.isPaired == true then
21 if v1n.correspondent 6= v2n then
22 return false
23 else
24 v1n.isPaired = true; v2n.isPaired = true; stack.push(v1n)

25

26

27 end

28 end
29 return true

Algorithm 12: The method isotopyHelper(), which determines whether two con-
nected, reduced annular strand diagrams c1 and c2 are isotopic given vertices ref ∈ c1
and corr ∈ c2 as correspondents

APPENDIX: ALGORITHM DESCRIPTIONS 98

Input: Annular c1, Annular c2
Output: Whether c1 and c2 are isotopic: true or false

1 if c1.vertices.size() 6= c2.vertices.size() then
2 return false
3 else if c1.vertices.isEmpty() then
4 return true // both c1 and c2 are free loops

5 Vertex reference = c1.vertices.get(0)
6 for v in c2.vertices do
7 Set isPaired field of all vertices in c1 and c2 to false

8 Set correspondent field of all vertices in c1 to false

9 reference.correspondent = v

10 if isotopyHelper(s1,reference, s2, v)) then
// See Algorithm 12

11 return true

12

13 end
14 return false

Algorithm 13: The method isIsotopic()

Bibliography

[1] SI Adyan, Finitely presented groups and algorithms, Dokl. Akad. Nauk SSSR, 1957,
pp. 9–12.

[2] James Belk, Thompson’s group F, PhD thesis, Cornell University, 2004.

[3] James Belk and Francesco Matucci, Conjugacy and Dynamics in Thompson’s Groups,
preprint (2013).

[4] James W Cannon, William J Floyd, and Walter R Parry, Introductory notes on
Richard Thompson’s groups, Enseignement Mathématique 42 (1996), 215–256.

[5] Max Dehn, Über unendliche diskontinuierliche Gruppen, Mathematische Annalen 71
(1911), no. 1, 116–144.

[6] D.S. Dummit and R.M. Foote, Abstract Algebra, John Wiley & Sons Canada, Limited,
2004.

[7] Jack Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat.
Bur. Standards Sect. B 71 (1967), 241–245.

[8] Victor Guba and Mark V Sapir, Diagram groups, American Mathematical Soc., 1997.

[9] Victor Sergeevich Guba and Mark Valentinovich Sapir, On subgroups of R. Thomp-
son’s group F and other diagram groups, Sbornik: Mathematics 190 (1999), no. 8,
1077.

[10] John E Hopcroft and Jin-Kue Wong, Linear time algorithm for isomorphism of planar
graphs (preliminary report), Proceedings of the sixth annual ACM symposium on
Theory of computing, 1974, pp. 172–184.

[11] Nabil T Hossain, Algorithm for the Conjugacy Problem in Thompson’s Group
F , 2013, http://www.asclab.org/asc/nhossain/conjugacyF. Online; accessed 30-
April-2013.

[12] Donald E Knuth, James H Morris, and Vaughan R Pratt, Fast pattern matching in
strings, SIAM journal on computing 6 (1977), no. 2, 323–350.

http://www.asclab.org/asc/nhossain/conjugacyF

Bibliography 100

[13] Klaus Madlener and Jürgen Avenhaus, String Matching And Algorithmic Problems
In Free Groups, Revista colombiana de matematicas 14 (1980), 1-16.

[14] Bojan Mohar and Carsten Thomassen, Graphs on surfaces, Vol. 2, Johns Hopkins
University Press Baltimore, 2001.

[15] PS Novikov, Unsolvability of the conjugacy problem in the theory of groups.(Russian),
Izv. Akad. Nauk SSSR. Ser. Mat 18 (1954), 485–524.

[16] Michael O Rabin, Recursive unsolvability of group theoretic problems, Ann. of Math
67 (1958), no. 2, 172–194.

[17] Mark Allen Weiss and Susan Hartman, Data structures and problem solving using
Java, Vol. 204, Addison-Wesley Reading, 1998.

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background
	Conjugacy
	Directed Graphs Embedded on Surfaces
	Thompson's Group F
	Dyadic Rearrangements
	Tree Diagrams

	Strand Diagrams
	Strand Diagram Manipulations

	Annular Strand Diagrams
	Closing Strand Diagrams
	Reductions
	Concentric Components
	The Cutting Path
	Isotopy of Reduced Annular Strand Diagrams

	Algorithm for the Conjugacy Problem in F
	Algorithm Overview
	The Data Structure
	Background: Doubly Linked Lists
	Class: Edge
	Class: Vertex
	Class: Graph
	Class: Strand
	Class: Annular

	Strand Diagram Generation
	Reducing
	Keeping Track of Potential Future Reductions
	Cutting Path Update and Free Loop Generation

	Connected Component Labeling
	Encoding Annular Strand Diagrams into Planar Graphs
	The Encoding Algorithm

	Retrieving Annular Strand Diagrams from Planar Graph Encodings
	Isomorphism Checking
	Our Actual Implementation
	Isotopy Detector Given two Corresponding Vertices
	Isotopy Detector Given two Connected Reduced Annular Strand Diagrams

	Results
	Verification of Results
	Shortest Cyclically Reduced Word for the Identity

	The Software
	The Variants and the Implementation Details
	Using the Application

	Conclusion and Future Work
	Appendix: Algorithm Descriptions
	Bibliography

