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Abstract

In this paper we investigate Cayley graphs, which provide a geometric structure to al-
gebraic groups. Specifically, we apply this structure to Thompson’s group F , which is
a certain group of piecewise linear homeomorphisms typically seen as generated by two
elements. We include a third generator and examine the effect this generator has on the
Cayley graph of F . With respect to the new generating set, we then find a length formula
for elements of F , and show that the Cayley graph of F has no dead ends. Finally, we show
that there exists a non-constant bounded harmonic function on this graph, and provide
some lower bounds for it.
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1
Background

1.1 Cayley Graphs

Given a finitely generated group G, the Cayley graph of G is a graph which describes the

structure of the group. Informally, a Cayley graph has one vertex for element of a group,

and edges representing multiplication by generators of the group.

Definition 1.1.1. Let G be a group generated by a finite set X. The Cayley graph

Γ = Γ(G,X) is a directed graph constructed as follows.

1. The vertices of Γ are the elements of G.

2. If g, g ∈ G, then g and h are connected by an edge in Γ if and only if h = gx for

some x ∈ X. 4

If g is a vertex of a Cayley graph, it can be seen that for each generator x of G, g will

have an edge going from g to gx. Likewise, for each generator there will be an edge from

gx−1 to g. As such, if X is our generating set, each vertex will have 2|X| edges extending

from it.
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Cayley graphs are interesting primarily because they give a geometric structure to a

group, which in turn allows us to use geometric techniques to analyze algebraic objects.

Specifically, a Cayley graph on a group provides a metric, or a notion of distance, on the

group.

Definition 1.1.2. Let v, w be vertices of a Cayley graph Γ. The distance between v and

w is the number of edges on the shortest path between them. 4

This concept of distance then allows us to ask some interesting questions about a given

Cayley graph, such as: what is the formula which computes the number of elements within

a given distance of the identity?

Definition 1.1.3. Let Γ be a Cayley graph. If n ∈ N, the n-ball of Γ is the set B(n) of all

vertices within n edges of the identity. The growth function for Γ is the function g : N→ N

defined by

g(n) = |B(n)|

4

We will now give some examples of Cayley graphs and growth functions on them.

Example 1.1.4. Consider the group C∞ = 〈x〉. As this group has one generator, the

Cayley graph of this group is a singe line extending infinitely in both directions. A portion

of this Cayley graph is shown below. The growth function for Γ(C∞) is straightforward

to compute. When n = 1, we have 3 elements in our 1-ball. When n = 2, we have 5. In

general, |B(n)| = 2n+ 1.

C∞ = 〈x〉

♦
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Figure 1.1.1. 〈x, y〉

Example 1.1.5. Consider the free group on two generators, F2 = 〈x, y〉. This group

has no relations, that is, there is no non-trivial reduced word which equals the identity.

Thus, we see that the Cayley graph of this group will have trees branching infinitely in all

directions. A picture of a portion of this graph is shown in figure 1.1.1.

We will now consider the growth function g on this graph. It is evident that g(1) = 5,

since we have i, x, y, x−1 and y−1 in the set B(1). We can then compute g(2) = 17 as

follows; in addition to the 5 vertices of B(1), we see that each of x, y, x−1, y−1 have 3

edges extending from them, and thus the total number of elements within 2 edges will be

5 + 4(3) = 17. It turns out that the growth function for this group is actually

g(n) = 1 +
n∑
i=1

3i−1 · 4 = 2 · 3n − 1

This is an example of an exponential growth function.

♦

Example 1.1.6. Consider the group Z × Z, with presentation 〈x, y | xy = yx〉. Like the

free group in the previous example, this group is generated by two elements. However,

this group is distinguished from the free group by the relation xy = yx. This addition of

commutativity to our group changes the structure of the Cayley graph to the one seen



1. BACKGROUND 8

below. Specifically, we now see that traveling first along an x edge, and then along a y

edge, will take us to the same place as if we first travel along a y edge, and then an x edge.

〈x, y | xy = yx〉

For the growth function of this graph, we see that g(1) = 5 and g(2) = 13. The image

below shows a portion of Γ(Z× Z), with the 2-ball of the graph within the diamond.

Comparing the values of the growth function for Γ(Z × Z) with those for Γ(F2), we see

that for a given n ∈ N (n ≥ 2), the size of an n-ball in Γ(Z×Z) is smaller than that of an

n-ball in Γ(F2). This is due to the relation xy = yx which is present in Z×Z. Whereas in

F2 the elements xy and yx are distinct, in Z × Z these elements are the same, and thus

only add one to the cardinality of an n-ball. The growth function for Γ(Z× Z) is in fact

g(n) = 1 +
n∑
i=1

4i = 2n2 + 2n+ 1

♦
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Example 1.1.7. Consider the group 〈x, y | x3 = y4 = i〉, where i is the identity (the free

product of Z3 and Z4). This group has two relations, namely x3 = i and y4 = i. Since

x3 = i, we know that multiplying any element by x three times will bring us back to that

element. This can be represented by drawing a triangle from each element to describe

multiplication by x three times. Likewise, since y4 = i, we know that multiplying any

element by y four times will bring us back to that element. This can be represented by

drawing a square from each element to describe multiplication by y. A portion of the

Cayley graph of this group can be seen below.

〈x, y | x3 = y4 = i〉

Note that each square is connected to four triangles, and each triangle to three squares.

These triangles and squares branch off infinitely in all directions, and thus constitute a

graph which is in some sense similar to Γ(F2) shown above. Like Γ(F2), this graph has

exponential growth. . ♦

Because the free group has an exponential growth function, the growth function of any

finitely generated group is at most exponential. Roughly speaking, the finitely generated

groups fall into two classes: those with exponential growth and those with polynomial
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growth (there are also groups with intermediate growth, although we are not concerned

with these). This is the most basic geometric classification of groups. For a more in depth

discussion of growth functions, see [Me].

A more subtle geometric property of groups is the notion of amenability.

Definition 1.1.8. Let G be a finitely generated group with Cayley graph Γ(G). If S is a

finite subset of G, the boundary of S, denoted δS, is the number of edges leading from a

vertex in S to a vertex outside of S. |δS| denotes the number of elements in the boundary

of S.

A group G is amenable if

glb
|δS|
|S|

= 0

where S ranges over all finite sets of vertices in the Cayley graph of G. 4

Intuitively, a graph Γ(G) is amenable if, as one considers larger and larger subsets S of

Γ(G), the number of edges leading out of S get arbitrarily small relative to the number of

elements in S.

Example 1.1.9. We return to Γ(C∞). Recall that we found g(n) = 2n+1 for this Cayley

graph. It is also easy to see that any n-ball will have two elements in its boundary. If we

let S be an n-ball, we then see

|∂S|
|S|

=
2

2n+ 1

Note that lim
n→∞

2
2n+ 1

= 0, and thus Z is amenable. ♦

Example 1.1.10. We now reconsider Γ(Z × Z). Recall that the growth function for

Γ(Z× Z) is

g(n) = 1 +
n∑
i=1

4i

Thus, for any n ∈ N, we can calculate g(n)−g(n−1) = 4n. Thus we see that 4n vertices

of our n-ball will have edges leading out of the ball. Furthermore, a look at Γ(Z×Z) shows
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us that exactly four of these vertices will have 3 edges leading out of the n-ball, while the

rest will have 2. We can then calculate ∂B(n) = 4n · 2 + 4 = 8n+ 4. We then see

∂B(n)
|B(n)|

=
8n+ 4

2n2 + 2n+ 1

Clearly lim
n→∞

8n+ 4
2n2 + 2n+ 1

= 0, and thus Γ(Z× Z) is amenable. ♦

As exemplified by the previous example, any group with polynomial growth is amenable,

as the relative size of
∂B(n)
|B(n)

will go to 0 as n increases. For groups with exponential growth,

the relative size of
∂B(n)
|B(n)|

will not go to zero. However, there may sets other than n-balls

which can be used to show amenability for groups with exponential growth. It known that

any group which is not amenable has exponential growth, although there are known groups

which have exponential growth and are also amenable. See [Wag] for more information on

amenability.

Growth functions and amenability are relatively simple to compute for most groups.

There are, however, some groups which are easy to describe, but quite difficult to determine

the amenability of. One such group is Thompson’s group F , a group with exponential

growth. We will now give an overview of F and introduce some of the as-yet unsolved

problems stemming from it.

1.2 Thompson’s Group F

Definition 1.2.1. Thompson’s Group F is the group of all piecewise-linear homeomor-

phisms f : [0, 1]→ [0, 1] such that:

1. Each linear segment of f has a slope which is a power of 2.

2. The breakpoints of f have dyadic rational coordinates. 4
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The image above shows a typical element of Thompson’s group. This element is defined

as

f(x) =


2x 0 ≤ x ≤ 1

4

1
2x+ 3

8
1
4 ≤ x ≤

3
4

x 3
4 ≤ x ≤ 1

Thompson’s Group F was first described by Richard Thompson in the 1960’s, and later

rediscovered by topologists Freyd and Heller in 1969 (see [Fr] and [FrHe]). It has since

become an important object of study in topology and geometric group theory (see [CFP]

or [Be] for a comprehensive introduction to F ). Though we have described F as acting

on the unit interval, there are other ways of thinking about elements of F . One such

way is through forest diagrams, which were introduced by Belk and Brown [BeBr]. Forest

diagrams interact particularly well with the generators of F . To understand how forest

diagrams are constructed, we will first describe how F can be though of as acting on the

real line.

Theorem 1.2.2. Thompson’s group f is the group of all piecewise-linear homeomorphisms

f : R→ R, which satisfy the following conditions:

1. Each linear segment of f has a slope which is a power of 2.

2. The function f has finitely many breakpoints, and each breakpoint has dyadic rational

coordinates.

3. The leftmost segment of f is of the form f(t) = t−m, and the rightmost segment is

of the form f(t) = t− n for m,n ∈ Z.
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Elements of F can be described by their action on certain subdivisions of the real line.

Definition 1.2.3. A dyadic subdivision of the real number line is a division obtained as

follows:

1. Divide the real line into intervals of the form [n, n+ 1] for n ∈ N.

2. Divide some finite number of those intervals in half.

3. Divide some finite number of the intervals just obtained in half again.

4. Continue dividing such intervals in half some finite number of times.

The result will be a dyadic subdivision of R. 4

Every interval of the subdivision will be of the form [ k2n ,
k+1
2n ] for k ∈ Z and n ∈ Z with

n ≥ 0. These intervals are easily represented by binary trees. Each tree represents one of

the intervals [n, n+1] for n ∈ N, and each leaf of a tree represents an interval of the dyadic

subdivision of [n, n+ 1].

The pointers in the domain and codomain of our function represent the interval [0, 1].

The first and second conditions ensure that each linear segment of f will map one such

interval linearly onto another one, stated in the following theorem.

Theorem 1.2.4. Every element of F maps linearly between the intervals of two dyadic

subdivisions.

This theorem allows us to represent elements of F through pairs of opposing dyadic

subdivisions. By convention, the domain appears on the bottom and the codomain on

the top. The pointers in the domain and codomain of our function represent the interval

[0, 1]. It is clear that through such diagrams, any piecewise-linear map from one dyadic

subdivision to another can be obtained, and thus all elements of F are representable as

such.
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The set of all such forests as described above is F . While not obvious, it turns out that

all such forests are generated by two elements, labeled x0 and x1. For any forest diagram

f , the action of x0 on f is represented by the forest diagram obtained by moving the

pointer in the codomain of f , or the upper pointer, one interval to the right. This is shown

below.

Likewise, x−1
0 moves the upper pointer one interval to the left, as seen below.

The generator x1 attaches a caret which connects the tree that the top pointer is on

and the tree to the right of the top pointer. The top pointer then points to the new tree

made by the caret. This is shown in below.

The generator x−1
1 actually attaches a “negative caret” to the position the top pointer

of f . If the top pointer of f is currently on a non-trivial tree, then x−1
1 f removes the top

caret of that tree, as seen below.
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If the top pointer of f is on a trivial tree, then x−1
1 f drops a caret to the domain forest

of f , shown below.

The group F has traditionally been viewed with regards to these two generators, x0

and x1. However, it is possible to describe F in terms of three generators as well: x0, x1

and y, where y = x1x
−1
0 . The introduction of y as a generator serves to make F more

“symmetrical”, in that trees to the left of the top pointer can now be made as easily

as trees to the right of the top pointer. The figure below displays the action of y on an

element of f . Since y = x1x
−1
0 , we must have y−1 = x0x

−1
1 . As such, y−1 has the effect of

first acting on an element f by x−1
1 , and then moving one space to the right. In this sense

again we see that the y generator balances out the left and right movements of the top

pointer.
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Example 1.2.5. To get a better sense of how forest diagrams are constructed, consider

f = x−2
0 x2

1x0y. Since we are using left multiplication, we would start to construct f by

first diagraming the action of y on the identity. We would then move the top pointer one

interval to the right, representing the action of x0 on y. After this, we construct two carets,

one on top of the other, as dictated by x2
1. Finally, we move to the left two times. The

construction of f is diagramed below.

♦

We stated previously that F is finitely generated. With respect to the three element

generating set, F has presentation

F = 〈x0, x1, y | y = x1x
−1
0 , x−1

0 x1x0y = yx−1
0 x1x0, x

−2
0 x1x

2
0y = yx−2

0 x1x
2
0〉

It should be noted that the growth function of F is currently unknown, although it

has been shown that F has exponential growth. Likewise, it is unknown whether F is

amenable or not. The Cayley graph of F is in fact very poorly understood on the whole,
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and it is to that end that we next develop a length formula for F in terms of the 3-element

generating set.



2
Lengths of Elements of F

2.1 Length Formula For The Three Element Generating Set

Given a group G, a length formula for an element gives the length of the shortest word

representing that element. The following definition is equivalent. In terms of a Cayley

graph, a length formula for a vertex v ∈ V (Γ) will tell you how many distinct vertices you

must travel through on the shortest path from i to v.

Example 2.1.1. For example, in the Cayley graph of the free group on 2 generators, a

length formula l : G → N would tell us l(y2x3) = 5. This can be confirmed by looking at

the Figure 2.1.1, in which the shortest (and only non-reducible) path from the identity to

y2x3 is represented by a dotted line. ♦

In general, parts of words which are not reduced correspond to cycles on a Cayley graph,

and thus can artificially inflate the length formula.

Belk and Brown [BeBr] have already found a length formula in terms of forest diagrams

for the {x0, x1} generating set for F . To find this formula, rather than investigating the

little-understood Cayley graph of F , they looked at forest diagrams and the effect that

generators have on these diagrams. We will follow in their footsteps and prove a length
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Figure 2.1.1.

formula for the {x0, x1, y} generating set by examining forest diagrams for this three

element generating set.

Before stating the length formula, we will provide some definitions.

Definition 2.1.2. A space in a forest diagram is the area between one interval and the

next. An interior space is a space which is underneath a caret. An exterior space is a space

which is not interior. The support of a forest diagram of an element f ∈ F is the portion

of the diagram corresponding to the linear segments of f which are not the leftmost nor

the rightmost segments. 4

Informally, the support of a diagram is the section of the diagram where trees exist. All

spaces to the right of the rightmost tree, and to the left of the leftmost tree, are not in

the support of the diagram.

Definition 2.1.3. The weight of a space in a forest diagram f is the number of times the

top pointer will have to cross over that space in constructing f in the shortest manner

possible. 4
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To calculate the length formula, we must weight each space in the support of a forest

diagram. Let f ∈ F , and let f be its reduced forest diagram. Label the spaces of each

forest of f as follows:

1. Label a space LR if it is exterior, to the left of the pointer, and immediately to the

right of some caret.

2. Label a space L0 if it is exterior, to the left of the pointer, and not already labeled

LR.

3. Label a space RL if it is exterior, to the right of the pointer, and immediately to the

left of some caret.

4. Label a space R0 if it is exterior, to the right of the pointer, and not already labeled

RL.

5. Label a space ILR if it is interior, immediately to the left of some caret, and imme-

diately to the right of some caret.

6. Label a space IL if it is interior, immediately to the left of some caret, and not already

labeled ILR.

7. Label a space IR if it is interior, immediately to the right of some caret, and not

already labeled ILR.

8. Label a space I0 if it is interior and not already labeled ILR, IL, or IR.

We can then weight the spaces in the support of f according to their labels, using the

following chart:
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L0 LR R0 RL I0 IL IR ILR

L0 2 2 1 1 0 0 1 1

LR 2 2 1 1 1 1 1 1

R0 1 1 2 2 0 1 0 1

RL 1 1 2 2 1 1 1 1

I0 0 1 0 1 − 0 0 1

IL 0 1 1 1 0 0 1 1

IR 1 1 0 1 0 1 0 1

ILR 1 1 1 1 1 1 1 1

Note that a space labeled I0 can never be opposite another space labeled I0 in a reduced

forest diagram, as that would correspond to two opposing carets, which by definition do

not exist in a reduced forest digram.

Our chart has the interesting and intuitively reasonable feature of being symmetric

along the diagonal, so that the weight of label A over label B is the same as the weight of

label B over label A for any labels A,B. This is a consequence of the symmetry of the top

and bottom forests in a forest diagram, and in a more general sense, represents the fact

that an element f ∈ F and its inverse f−1 are both the same distance from the identity.

Another interesting symmetry exists between the L and R labels. That is, if all L’s

in the chart are replaced by R’s, and vice versa, the chart will remain the same. This

is a consequence of the newfound symmetry between left and right movements on forest

diagrams obtained by adding the y generator. Specifically, creating a caret to the left of

the top pointer now requires only one generator, whereas before it required two. This

removes the rightward “bias” in terms of lengths of elements.

Using the above chart, the length formula is as follows:



2. LENGTHS OF ELEMENTS OF F 22

Theorem 2.1.4. Let f ∈ F , and let f be its reduced forest diagram. Then the {x0, x1, y}-

length of f is

l(f) = l0(f) + l1(f)

where:

1. l0(f) is the sum of the weights of all spaces in the support of f.

2. l1(f) is the total number of carets in f.

To prove that this is a length formula for F , we use the following proposition, given by

Fordham [Ford].

Proposition 2.1.5. A function l : F → N is a length formula with respect to the {x0, x1, y}

generating set if and only if:

1. For any f ∈ F and x ∈ {x0, x1, y}, we have |l(xf)− l(f)| ≤ 1.

2. For any non-identity f ∈ F , there exists some x ∈ {x0, x1, y} such that l(xf) < l(f).

The proofs of these statements will be deferred until we have provided a multitude of

theorems and lemmas about the effect of various generators on elements of F .

Definition 2.1.6. Let f be a forest diagram of an element f ∈ F . The current tree of f

is the tree which the top pointer points to. The left(right) space of f is the exterior space

directly to the left (right) of the top pointer. Likewise, the double left (double right) space

of f is the exterior space to the left (right) of the left (right) space of f. 4

We will use the notation R to represent a space which has either R0 or RL for a label.

Likewise, we will use the notation L to represent a space which has either L0 or LR for a

label, and I to represent a space with IR, IL, ILR, or I0.

Also, throughout the following proofs we will frequently distinguish between the current

tree of f being trivial or non-trivial. Note that if the current tree of f is trivial, then the

right space of f must have top label L0 in x0f . This is shown below.
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Likewise, if the current tree of f is non-trivial, then the right space of f will have top label

LR in x0f , as can be seen below .

In general, knowing whether the current tree of f is trivial or not gives some useful

information about what the labelings of the left and right spaces of f will be in xf for

some x in the three element generating set of F .

Before beginning our proof, we will provide an example of using the length formula to

compute the length of an element of F .

Example 2.1.7. Consider the element f ∈ F with support shown below. After labeling

each space and calculating the weights for each opposing pair of spaces, we see that

l0(f) = 4, and that l1(f) = 6. Thus, we have l(f) = l0(f) + l1(f) = 10. This is confirmed

by noting that x0x1yx
−2
0 yx−1

0 x1y
−2 is a reduced word for f .
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♦

We now prove some propositions which in turn allow us to prove Theorem 3.5.

Proposition 2.1.8. Let f ∈ F . Then |l(x0f) − l(f)| ≤ 1. Specifically, l(x0f) = l(f) + 1

if and only if one of the following conditions hold:

1. x0f has larger support than f .

2. The right space of f has bottom label L, and left-multiplication by x0 does not remove

this space from the support.

3. The right space of f has label
[

R0

IR

]
.

4. The current tree of f is non-trivial and the right space of f has label
[

R0

I0

]
.

Also, l(x0f) = l(f) if and only if one of the following conditions hold:

1. The right space of f has label
[

RL

IR

]
.

2. The right space of f has bottom label ILR.

3. The right space of f has top bottom label IL and the current tree of f is non-trivial.

4. The right space of f has label
[

RL

I0

]
, and the current tree of f is non-trivial.

5. The right space of f has label
[

R0

I0

]
, and the current tree of f is trivial.

Finally, l(x0f) = l(f)− 1 if and only if one of the following conditions hold:

1. x0f has smaller support than f .

2. The right space of f has bottom label R.

3. The right space of f has bottom label IL and the current tree is trivial.

4. The right space of f has label
[

RL

I0

]
and the current tree is trivial.

It is obvious that l1(x0f) = l1(f), since x0 neither adds nor removes a caret from f .

Furthermore, we see that the only space whose label changes in x0f is the right space of

f , and that only the top label of that space will change.
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Case 1: Suppose that x0f has larger support than f . Then the right space of f is

unlabeled, but has label
[

L
R

]
in x0f . The space will have this label because it will be

to the left of the top pointer, since x0 moves the top pointer one space to the right, and

because it will necessarily be to the right of the bottom pointer, or else it would have

previously been in the support of f . Note that
[

L
R

]
always has weight 1, and thus

l0(x0f) = l0(f) + 1.

Case 2: Suppose that x0f has smaller support than f . Then the right space of f has

label
[

R
L

]
in f , since it is clearly to the right of the top pointer and to the left of the

bottom pointer. Again, note that
[

R
L

]
always has weight 1. This label will be destroyed

in x0f , and thus l0(x0f) = l0(f)− 1.

Case 3: Suppose that x0f has the same support as f . Then the right space of f has

top label R, but top label L in x0f . The relevant rows of the weight table are:

L0 LR R0 RL I0 IL IR ILR
L0 2 2 1 1 0 0 1 1
LR 2 2 1 1 1 1 1 1
R0 1 1 2 2 0 1 0 1
RL 1 1 2 2 1 1 1 1

It is first apparent from the table that for any space with top label R, switching that

label to L will change the weight by at most 1. Thus |l(x0f) − l(f)| ≤ 1. Specifically,

we see that if the bottom label is an R, then x0f will always reduce the length by 1, so

l(x0f) = l(f)− 1. If the bottom label is an L, then x0f will always increase the length by

1, so l(x0f) = l(f) + 1.

When the bottom label is an I of some sort, determining the effect of x0 on f becomes

a bit more complicated. However, it is evident that the only ways that x0 can increase the

length is if the right space of f has top label R0, bottom label I0, and the current tree is

non-trivial, or if the right space of f has top label R0 and bottom label IR.
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Likewise, the only ways that x0 can decrease the length is if the right space of f has

top label R, bottom label IL, and the current tree of f is trivial, or if the right space of

f has top label RL, bottom label I0, and the current tree is trivial.

Finally, we see that x0 keeps the length constant when: the right space of f has bottom

label ILR, or when the right space of f has label
[

RL

IR

]
, or when the right space of

f has bottom label IL and the current tree is non-trivial, or when the right space of f

has bottom label I0 and top label RL if the current tree is non-trivial, or label R0 if the

current tree is trivial.

We will now provide a corollary concerning x−1
0 , which follows directly from the first

four conditions of Proposition 2.1.8.

Proposition 2.1.9. l(x−1
0 f) = l(f)− 1 if:

1. x−1
0 f has smaller support than f .

2. The left space of f has label
[

L
L

]
.

3. The left space of f has label
[

L
IR

]
and the current tree is trivial.

4. The left space of f has label
[

LR
I0

]
and the current tree is trivial.

For our next theorem, we introduce some new terminology. Let the double right space

of f be the space to the right of the right space of f . Likewise, let the double left space of

f be the space to the left of the left space of f .

Proposition 2.1.10. Let f ∈ F . If left multiplying f by x1 cancels a caret in the bottom

forest, then l(x1f) = l(f)− 1.

First, note that l1(x1f) = l1(f)−1, since we are assuming that x1 removes a caret from

f . We will now show that l0(x1f) = l0(f). Since left multiplication by x1 cancels a caret

in the bottom forest, we know that the right space of f is destroyed. That space must

have been labeled
[

R0

I0

]
, since if it did not have top label R0, then x1 would have built
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onto the caret to the right of the top pointer instead of canceling a bottom caret. Note

that this space has weight 0, and thus its destruction does not affect the l0 weight of x1f .

Note that both the left space of f and the double right space of f could have their labels

affected by x1 multiplication. We first consider the effect of x1 on the left space of f . If

this space is not in the support of f , then it remains outside of the support of x1f , and

thus does not affect l0. Otherwise, we see that its top label must be L0 or LR in both f

and x1f . Consider the relevant row of the weight table :

L0 LR R0 RL I0 IL IR ILR
L0 2 2 1 1 0 0 1 1
LR 2 2 1 1 1 1 1 1

If the bottom label of the left space of f is an L, then that label will not be changed

by cancelling a caret in the bottom forest, and thus the weight will remain the same. If

the bottom label is an R, it is possible that the label could be changed from an RL to an

R0 when the caret is canceled. However, both of these labels have the same weight when

there is an L label on top, and thus the weight would still remain the same.

We also know that if the bottom label of the left space of f was an I of some sort, it

must have been either an IL or an ILR, since it must have been to the left of the caret

which was destroyed. If the bottom label was an IL, then it will be changed to an I0, since

it will no longer be to the left of a caret. Note that both IL and I0 have the same weight

in the above rows, so changing from IL to I0 will not affect l0. If the bottom label was an

ILR, then it will become an IR. Note that ILR and IR both have the same weight in the

above rows as well, so changing from ILR to IR will not affect l0.

We now consider the affect of x1 on the double right space of f . Firstly, if the double

right space of f is not in the support of f , then it remains outside of the support of x1f ,

and thus does not affect l0. Otherwise, we know that the top label of the double right

space of f must be R, for if it were not then multiplying by x1 would have added onto the

caret which existed there. It is also important to note that multiplication by x1 will not



2. LENGTHS OF ELEMENTS OF F 28

change the top label of the double right space of f for the following reason: if the label is

an R0, then multiplication by x1 will not add a caret to the left of the double right space,

nor will it create a caret over it, so the space will retain its label. Likewise, if the label is

an RL, multiplication will not remove the caret to the left of the double right space, nor

will it create a caret over it. Thus the top label of the double right space of f will remain

unchanged.

First suppose that the bottom label of the double right space of f is an L. It is easily

deduced that if the bottom label of the double right space of f is an L, it must be LR, since

it is to the right of the caret which is destroyed by x1. We then see that multiplication by

x1 could leave that space with label LR if the bottom current tree of f consists of more

than one caret, or it could be changed to L0 if the bottom current tree is only one caret.

In either situation, we can see that the weight of any R opposite any L will always be 1,

and thus the weight of the double right space of f will remain unchanged.

Now suppose that the bottom label of the double right space of f is an R. Then removing

a caret to the right of that space will not change it to an L or an I. Note that an R opposite

an R will always have weight 1, and thus the weight of the double right space of f will

remain unchanged.

Finally, suppose that the bottom label of the double right space of f is an I. Note that

the label must have been either an IR or an ILR, as the space was directly to the right

of the caret which was destroyed. If the bottom label of the space was IR, then it will be

labeled either IR or I0 in x1f , since multiplication by x1 will certainly not add a caret to

the right of the space. Note that both
[

R
I0

]
and

[
R
IR

]
have the same weight for a fixed

value of R. Thus changing the bottom label of the double right space of f from an IR to

an I0 will not change the weight of the space.

If the bottom label of the double right space of f was an ILR, then it will be labeled

either ILR or IL in x1f , as x1 will not change whether the space is to the left of a caret
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or not. We then see that both
[

R
ILR

]
and

[
R
IL

]
are of weight 1. Thus changing the

bottom label of the right space from ILR to IL will not change the weight of the space.

We have heretofore shown that the weights of both the left space of f and of the double

right space of f will not change when f is multiplied by x1. We can therefore conclude that

l0(x1f) = l0(f). We also know that l1(x1f) = l1(f)− 1. Thus, we see l(x1f) = l(f)− 1.

Proposition 2.1.11. If left multiplication by y removes a caret from the bottom forest,

then l(yf) = l(f)− 1.

Clearly, l1(yf) = l1(f) − 1. The rest of the proof is practically identical to the above

proof, except that we consider the effects of y on the right space and double left space of

f , as opposed to the left space and double right space.

Proposition 2.1.12. Let f ∈ F , and suppose that left multiplying by x1 creates a caret

in the top forest. Then |l(x1f)− l(f)| ≤ 1. Specifically, l(x1f) = l(f)− 1 if and only if the

right space of f has label
[

R0

R0

]
. Also, l(x1f) = l(f) if:

1. The right space of f has bottom label L0 or IL, and the current tree is trivial.

2. The right space of f has top label RL and bottom label R0.

3. The right space of f has bottom label RL.

4. The right space of f has top label RL, bottom label I0, and the current tree is trivial.

Finally, l(x1f) = l(f) + 1 if:

1. The current tree of f is trivial, the right space of f has top label R0, and bottom label

LR, IR, or ILR.

2. The current tree of f is trivial, the right space of f has top label RL, and bottom label

LR, IL, or ILR.

3. The current tree of f is non-trivial, the right space of f has top label R0 or RL, and

bottom label L or I.

4. The right space of f is not in the support of f .
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It is evident that l1(x1f) = l1(f) + 1. As far as l0, we will show that left multiplication

by x1 can only change the label of the right space of f . First, we consider the effect of x1

on the left space of f . If the left space of f has top label L0, then that space will remain

L0 in x1f , since left multiplication by x1 will not add a caret to the double left space of

f . If the left space of f has top label LR, then multiplication by x1 surely will not remove

a caret to the left of the left space of f , so the label will remain LR. We now consider the

effect of x1 on the double right space of f . If the top label of the double right space of f

is RL, then multiplication by x1 will not change whether there is a caret to the right of

the double right space of f , so the label will remain RL. Finally, if the top label of the

double right space of f is R0, then multiplication by x1 cannot add a caret to the right

of the double right space of f , so the label will remain R0.

We will now go through 5 cases which comprise the entirety of ways in which x1 could

affect the length of f .

Case 1: Suppose that x1f has a larger support than f . Then the right space of f is

unlabeled, but has label
[

I0

R0

]
in x1f . Note that such a label has weight 0, and thus

does not affect l0.

Now suppose that x1f has the same support as f . Note that the right space of f must

have top label R0 or RL. If the right space has label R0, then it must be labeled either

I0 or IR in x1f . If the right space has label RL, then it must be labeled IL or ILR in x1f .

For each case we will include the relevant rows of the weight table.

Case 2:

L0 LR R0 RL I0 IL IR ILR
R0 1 1 2 2 0 1 0 1
I0 0 1 0 1 − 0 0 1

Suppose that the right space of f has top label R0, and that the current tree of f is

trivial. Then that space will be labeled I0 in x1f . We see that if the right space of f has



2. LENGTHS OF ELEMENTS OF F 31

bottom label R0, then the right space of f will have weight 2 in f , but weight 0 in x1f ,

and thus l0(x1f) = l0(f)− 2, so l(x1f) = l(f)− 1. If the right space of f has bottom label

L0, RL, or IL, then it is likewise clear that the weight of the space will be decreased by 1

when R0 changes to I0, so l(x1f) = l(f). Finally, if the right space of f has bottom label

LR, IR, or ILR, then the weight of the that space will stay the same when the top label

changes to I0, so l(x1f) = l(f) + 1.

Case 3:

L0 LR R0 RL I0 IL IR ILR
R0 1 1 2 2 0 1 0 1
IR 1 1 0 1 0 1 0 1

Suppose that the right space of f has top label R0, and that the current tree of f is

non-trivial. Then the right space of f will have top label IR in x1f . It is then evident

that if the right space of f has bottom label R0, then that space will have weight 2 in

f , but weight 0 in x1f , and thus l(x1f) = l(f) − 1. If the right space of f has bottom

label RL, then that space will have weight 2 in f , but weight 1 in x1f , and thus we see

l(x0f) = l(f). In all other cases, namely when the right space of f has bottom label L

or I, we see that changing R0 to IR will not change the weight of the space, and thus we

have l(x0f) = l(f) + 1.

Case 4:

L0 LR R0 RL I0 IL IR ILR
RL 1 1 2 2 1 1 1 1
IR 1 1 0 1 0 1 0 1

Suppose that the right space of f has top label RL, and that the current tree of f

is trivial. Then that space will be labeled IL in x1f . Looking at the table, we see that

if the right space of f has bottom label L0, R, I0, or IL, then changing the top label

from RL to IL will reduce the weight of the space by 1, and thus for those cases we have

l(x1f) = l(f). On the other hand, when the right space of f has bottom label LR, IL, or
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ILR, then changing the top label from RL to IL will not change the weight of the space,

so l(x1f) = l(f) + 1.

Case 5:

L0 LR R0 RL I0 IL IR ILR
RL 1 1 2 2 1 1 1 1
ILR 1 1 1 1 1 1 1 1

Suppose that the right space of f has top label RL and that the current tree of f is

non-trivial. Then that space will be labeled ILR in x1f . Looking at the table, we see that

if the right space of f has bottom label R then it will have weight 2 in f , but weight 1 in

x1f , and thus l(x1f) = l(f). Alternatively, if the right space of f has bottom label L or

I, then changing the top label to ILR will have no effect on the weight of the space, and

thus l(x1f) = l(f) + 1.

We now state a corollary which follows directly from the above theorem.

Proposition 2.1.13. Let f ∈ F , and suppose that left multiplying f by y creates a caret

in the top forest. Then |l(yf) − l(f)| ≤ 1. Specifically, l(yf) = l(f) − 1 if and only if the

left space of f has label
[

L0

L0

]
. Also, l(yf) = l(f) if:

1. The left space of f has bottom label R0 or IR, and the current tree is trivial.

2. The left space of f has top label LR and bottom label L0, and the current tree is

non-trivial.

3. The left space of f has bottom label LR.

4. The left space of f has top label LR, bottom label I0, and the current tree is trivial.

Given the Propositions which we have proven so far, we are now able to prove the

following theorem.

Theorem 2.1.14. Let f ∈ F , and let x be any generator from the set {x0, x1, y}. Then

|l(xf)− l(f)| ≤ 1.



2. LENGTHS OF ELEMENTS OF F 33

Proof. Let f be an element of F , and let x ∈ {x0, x1, y}. If x = x0, then Proposition

2.1.8 tells us that |l(x0f) − l(f)| ≤ 1. This immediately implies that if x = x−1
0 , then

|l(x−1
0 f) − l(f)| ≤ 1 as well. Now suppose that x = x1. It is evident that x1 will either

remove a caret in the bottom forest of f or create a caret in the top forest of f . If x1 removes

a caret in the bottom forest, then Proposition 2.1.10 gives us l(x1f)− l(f) = −1. On the

other hand, if x1 creates a caret in the top forest, then Proposition 2.1.12 tells us that

|l(x1f) − l(f)| ≤ 1. These immediately imply that |l(x−1
1 f) − l(f)| ≤ 1 as well. Likewise,

Propositions 2.1.11 and 2.1.13 show that |l(yf)− l(f)| ≤ 1 and that |l(y−1f)− l(f)| ≤ 1.

This proves our theorem.

Theorem 2.1.15. Let f ∈ F be a nonidentity element.

1. If the current tree of f is nontrivial, then either l(x−1
1 f) < l(f) or l(x0f) < l(f).

2. If left-multiplication by x1 would remove a caret from the bottom tree, then l(x1f) <

l(f).

3. Otherwise, either l(x0f) < l(f) or l(x−1
0 f) < l(f) or l(yf) < l(f).

Proof. Case 1: First, suppose that the current tree of f is nontrivial. Thus x−1
1 will

remove a caret from the upper forest of f . Suppose that l(x−1
1 f) > l(f). From Proposition

2.1.12, we see that l(x−1
1 f) > l(f) only when the right space of x−1

1 f has label
[

R0

R0

]
.

Thus we know that the right space of f has label
[

R
R

]
. Proposition 2.1.8 then tells us

that l(x0f) < l(f). On the other hand, if l(x−1
1 f) = l(f), then we see from Proposition

2.1.12 that either the right space of f has top label RL and bottom label R0, or that the

right space of f has bottom label RL. Proposition 2.1.8 then gives us l(x0f) < l(f).

Case 2: This follows directly from Proposition 2.1.10.

Case 3: Suppose that l(x0f) > l(f). By Proposition 2.1.8, we see that there are 4

conditions which could cause this. However the fourth condition assumes that the current
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tree is non-trivial, which contradicts our first assumption. We will now present subcases

for each of the three possible conditions:

Subcase 1: Suppose that x0f has larger support than f , so that the right space of f is

not in the support of f . Note that the current tree of f must be trivial by assumption. If

the left space of f has bottom label IR, then the left space of f will have label
[

L
IR

]
,

and thus l(x−1
0 f) < l(f) by Proposition 2.1.9. If the left space of f has bottom label I0,

we also know that the top label must be either LR or L0. If the top label is LR, then by

Proposition 2.1.9 we see that l(x−1
0 f) < l(f). If the top label is L0, then it is evident that

multiplication by y will remove the bottom caret, and thus by Proposition 2.1.11 we see

that l(yf) < l(f). If the left space of f has bottom label L, then the left space of f will

be labeled
[

L
L

]
, and thus l(x−1

0 f) < l(f) by Proposition 2.1.9. If the left space of f has

bottom label R, then it is evident that multiplication by x−1
0 will remove the left space of

f from the support of f , and thus by Proposition 2.1.9 we see that l(x−1
0 f) < l(f).

Subcase 2: Suppose that the right space of f has bottom label L, and that left multi-

plication by x0 does not remove this space from the support. Recall that the current tree

of f is trivial by assumption. We then see that the left space of f must have bottom label

L, I0, or IR, and top label L. If the bottom label of the left space is L or IR, then we see

by Lemma 3.4 that l(x−1
0 f) < l(f). If the bottom label of the left space is I0, then it is

evident that multiplication by y will remove the caret from the bottom forest of the left

space of f , and thus l(yf) < l(f) by Proposition 2.1.12.

Subcase 3: Suppose that the right space of f has label
[

R0

IR

]
. Then the left space of

f will have top label LR or L0 and bottom label IR or I0. If the top label is LR, then

Proposition 2.1.9 tells us that l(x−1
0 f) < l(f). If the top label is L0 and the bottom label

is IR, then we see again by Proposition 2.2.9 that l(x−1
0 f) < l(f). If the top label is L0

and the bottom label is I0, then it is evident that multiplication by y will remove the
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caret from the bottom forest of the left space of f , and thus l(yf) < l(f) by Proposition

2.1.12.

2.2 Dead Ends

Definition 2.2.1. An element f ∈ F is a dead end if multiplication on f by any of the

three generators of F decreases the length of f , or equivalently, if l(xf) < l(f) for all

x ∈ {x0, x1, y, x
−1
0 , x−1

1 , y−1}. 4

The terminology ”‘dead end”’ makes sense when viewed in context of the Cayley graph of

F , where moving in any direction from such an element will bring you closer to the identity.

Cleary and Taback [ClTa2] proved that there exist dead ends in the {x0, x1} generating

set for F . However, the addition of the y generator ensures that, for any element f ∈ F ,

there will always be some xf which is no farther from the identity than f is. The proof is

as follows.

Theorem 2.2.2. There exist no dead ends in F given the {x0, x1, y} generating set for

F .

Proof. We will prove the result by contradiction: assume that there exists some f ∈ F

such that f is a dead end. It is evident that multiplication by x1 will either remove a

caret from the bottom forest of f or create a caret in the top forest of f . If multiplication

by x1 removes a caret from the bottom forest of f , then the right space of f must have

bottom label I0,top label R0, and the current tree must be trivial. However, we then see

by Proposition 2.1.8 that if the right space of f has label
[

R0

I0

]
, and if the current tree

is trivial, then l(x0f) = l(f), which contradicts the fact that f is a dead end.

Now suppose that multiplication by x1 creates a caret in the top forest of f . We then

see by Proposition 2.1.12 that the only way in which multiplication by x1 could decrease

the length of f would be if the right space of f had label
[

R0

R0

]
. Given this, there are
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two ways in which y could decrease the length of f : if multiplication by y removes a caret

from the bottom forest, or if the left space of f has label
[

L0

L0

]
. First, suppose that

multiplication by y removes a caret from the bottom forest. Then the left space of f must

have bottom label I0, and the current tree must be trivial. We then see by Proposition

2.1.9 that in order for x−1
0 to decrease the length of f , we must have the top label of the

left space of f be LR. However, if the left space of f has top label LR, then multiplication

by y will not remove a caret in the bottom forest of f , which provides a contradiction.

Now suppose that the left space of f has label
[

L0

L0

]
. We will now show that the current

tree must be non-trivial. Suppose that the current tree is trivial. Then it is evident that

multiplication by x−1
1 will create a caret in the bottom forest of f . However, as an obvious

corollary to Proposition 2.1.10, we see that if multiplication by x−1
1 creates a bottom caret,

then l(x−1
1 f) = l(f) + 1. Thus the current tree must be non-trivial. Since the current tree

is non-trivial, it is clear that multiplication by x−1
1 or y−1 will remove a caret from the

current tree. We now have two cases.

First, suppose that the current tree of f is comprised of one caret. Considering the

bottom label of the current space of f , we see that this label cannot be I0, since we are

assuming that f is reduced. Also, since the space immediately to the right of the current

bottom space has label R0, the current bottom space cannot have label IL. Likewise,

since the space immediately to the left of the current bottom space has label L0, we know

the current bottom space cannot have label IR, and thus it cannot have ILR either. The

same line of reasoning tells us that the current bottom space cannot be a RL, since the

space to the right of it is labeled R0. Nor can it be a LR, since the space to the left of

it is labeled L0. Thus the label of the current bottom space must be either L0 or R0. If

the current bottom label is L0, then multiplication by y−1 will remove the top caret and

change the label of the upper space from I0 to L0. Clearly, removing a caret will mean

l1(y−1f) = l1(f)−1. We can then see an I0 opposite a L0 has weight 0, but an L0 opposite
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a L0 has weight 2. Thus l0(y−1f) = l0(f) − 2. We can then compute l(y−1f) = l(f) + 1,

and therefore f is not a dead end. If the current bottom label is R0, then multiplication

by x−1
1 will have the same effect as y−1 in the previous lines, and will increase the length

by 1.

Now suppose the current tree is comprised of multiple carets. If we multiply f by either

x−1
1 or y−1, then the top caret of the current tree will be removed. Removing this caret

will create an additional space, either to the right or the left of the current tree depending

on which generator was last used to make the caret. Suppose that removing the top caret

creates an additional space to the right of the current tree. We then see that the space

“opened up” by the removal of that caret must have had upper label IR in f . We will now

go through some subcases which address the different possibilities for the lower label of

the space which was just “opened up”.

Subcase 1 First suppose that the space ”opened up“ by removing a top caret has bottom

label L. We then see that y−1 will change the top label of that space from IR to LR. Note

that IR opposite L will always have weight 1, but LR opposite L will always have weight

2. Thus l0(y−1f) = l0(f) + 1. Since we are removing a caret with y−1, we know that

l1(y−1f) = l1(f) − 1. Thus we see that l(y−1f) = l(f), which contradicts the fact that f

is a dead end.

Subcase 2 Now suppose that the bottom label of the space “opened up” by removing a

top caret has bottom label R. Recall that the space immediately to the right of this space

has bottom label R0, and thus this space cannot have bottom label RL. Thus the bottom

label of this opened space must be R0. We then see that multiplication by y−1 will change

the top label of the opened space from IR to LR. Note that an IR opposite an R0 has

weight 0, but an LR opposite an R0 has weight 1. Thus we see that l0(y−1f) = l0(f) + 1.

Since multiplication by y−1 removes a caret from f , we also know l1(y−1f) = l1(f) − 1.

Thus l(y−1f) = l(f), which contradicts the fact that f is a dead end.
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Subcase 3 Now suppose that the bottom label of the space opened up is an I of some

sort. Note that the space to the right of this opened space has label R0, and thus we know

that the opened space cannot have label IL. Thus it has label I0 or IR. We then see that

multiplication by y−1 will change the top label of the opened space from IR to LR. Note

that an IR opposite an I0 or an IR will have weight 0, but an LR opposite an I0 or an

IR will have weight 1. Thus l0(y−1f) = l0(f) + 1. Since multiplication by y−1 removes a

caret from f , we also know l1(y−1f) = l1(f)− 1. Thus l(y−1f) = l(f), which contradicts

the fact that f is a dead end.

Thus we see that there are no dead ends in F .



3
Harmonic Functions

3.1 Background on Harmonic Functions

Another currently unanswered question concerning F pertains to the existence of a non-

constant, bounded harmonic function on the Cayley graph of F .

Definition 3.1.1. Let Γ be a graph with vertices V (Γ). A Harmonic function is a function

f : V (Γ)→ R such that

f(v) =
f(v1) + f(v2) + · · ·+ f(vn)

n

where v1, . . . , vn are all the vertices adjacent to v.

4

In other words, the value assigned to each vertex by a harmonic function is the average

of the weights of all vertices which share an edge with it. Clearly, such a function can

be obtained merely by assigning the same value to each vertex in G. However, we are

interested in non-constant harmonic functions, as these are closely related to the geometry

of the Cayley graph of F , and by extension the amenability of F .
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To describe the relation between harmonic functions and amenability, we must first

speak about random walks and the Poisson boundary of a Cayley graph. A random walk

on a graph Γ is what one would likely expect it to be — a path on the graph that is

determined randomly. To formalize this concept we have the following definition.

Definition 3.1.2. Let Γ be a graph with V the set of vertices of Γ. A random walk on Γ

is a sequence v1, v2, v3, . . . of elements of V , where v1 is called the starting vertex of the

random walk, and where vi is chosen randomly from the neighbors of vi−1 for all i > 1. 4

As a random walk has no final vertex, we cannot talk about the end of a random walk.

However, we can talk about the section of a Cayley graph which a random walk will almost

surely (with probability 1) go to “at infinity”. Central to this is the concept of a Poisson

boundary.

The Poisson boundary of a Cayley graph is a certain measure space, which can be

thought of as a “boundary at the infinity” of a Cayley graph. A Poisson boundary rep-

resents the outcome, or finishing point, of a transient random walk on Γ. Transient, as

opposed to recurrent random walks, are random walks which do not repeat themselves

after a finite number of vertices. Although we will not define the concept of a Poisson

boundary rigorously, we will provide an example of a Poisson boundary to elucidate this

concept.

Example 3.1.3. We return to F2. Below we see a small portion of the Cayley graph of F2.

The dotted lines around the edge of the graph correspond to the Poisson boundary of F2.

Note that the Poisson boundary is first separated into four sections: an upper, lower, left,

and right section. These sections correspond, respectively, to the set of all random walks

which end in the upper, lower, left, and right sections of the Cayley graph. Likewise, each

of these four sections are split into three additional sections. For a given quadrant of the

Cayley graph, these three additional sections of the Poisson boundary correspond to the
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subsections of that quadrant. For example, if a random walk starting at the center vertex

first travels up, then to the right, and never travels back, then it will be represented by

the upper right section of the Poisson boundary (which we have circled for convenience).

It turns out that the Poisson boundary of F2 is in fact isomorphic to the Cantor set.

♦

This idea of random walks being represented by sections of the Poisson boundary is

supported by the next theorem, which provides us with a direct relation between harmonic

functions on a Cayley graph and the Poisson boundary of that Cayley graph.

Theorem 3.1.4. Let Γ be a Cayley graph with Poisson boundary P . There there is a one-

to-one correspondence between bounded harmonic functions on Γ and bounded measurable

(i.e. L∞) functions on P .

Thus information about the Poisson boundary can inform us about harmonic functions

on Γ, and vice versa. Importantly, if we know that there exists a bounded measurable

function on the Poisson boundary, then there must also exist a bounded harmonic function
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on Γ. This theorem, in conjunction Theorem 3.1.6, explains our search for a harmonic

function on the Cayley graph of F .

The next theorem relates Poisson boundaries with the concept of amenability.

Theorem 3.1.5. Let P be the Poisson boundary of the Cayley graph Γ(G) for some group

G. If P is trivial (i.e. consists of a single point), then G is amenable.

This theorem should seem intuitively reasonable, as a trivial Poisson boundary would

imply that all random walks “end up” in the same place. Thus if we consider a large

subgraph of Γ, all edges leading out of this subgraph will be headed towards this ending

place, and thus would vanish proportional to the size of our subgraph. Of course, one of

the defining features of F is its resistance to common methods of proving amenability, and

in this respect it does not disappoint us here.

Theorem 3.1.6. The Poisson boundary of F is non-trivial.

It is important to note that the converse of Theorem 3.1.6 is untrue - there are known

groups with non-trivial Poisson boundaries which are amenable. While the Poisson bound-

ary of F cannot be used with regards to Theorem 3.1.5 to prove amenability, the non-

triviality of this boundary leads us on a search for a harmonic function on F .

Creating a harmonic function on a Cayley graph of a group so complicated as F from

thin air would be difficult. Thankfully, the following theorem provides us with just such a

function, although it tells us little about the values that the function takes. Before stating

the theorem, however, we will discuss what it means for two random walks to have the

same tail.

Definition 3.1.7. If R and S are two random walks where R = v1, v2, . . . and S =

w1, w2, . . ., then R and S have the same tail if there exists m,n ∈ N such that vm+i = wn+i

for all i ∈ Z with i ≥ 0. 4
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Therefore, two random walks have the same tail if, after some point, they follow the

exact same path from vertex to vertex. We can now state a theorem which will assist us

greatly in finding a harmonic function on F .

Theorem 3.1.8. Let Γ(G) be a Cayley graph. Let E be an event (in the sense of probability

theory) that depends only on the tail of a random walk. Define f : V (Γ)→ R by

f(v) = P (E occurs for a random walk starting at v)

where v is any vertex of Γ. Then f is a bounded harmonic function on Γ.

Thus, to find a harmonic function on F , we need only to find an event which does

not depend on any finite number of moves in a random walk. In the next section we will

provide an example of one such event.

3.2 Existence of and Lower Bounds for a Harmonic Function on F

Example 3.2.1. We again look at F2. Consider the following event E, consisting of all

random walks eventually lying in the right quadrant of the Cayley graph of F2 at infinity.

Clearly, this event depends only on the tail of a walk. Thus, the probability that a random

walk starting at any vertex v ends in the right quadrant provides a harmonic function on

Γ(F2).

For a reason that such a function need be harmonic, suppose that the probability of

E happening starting at some vertex v is p. Let v1, v2, v3, v4 be the vertices adjacent

to v. In a random walk, it is clear that we have a 1
4 probability of first moving to v1.

If we let p1 denote the probability of E starting a v1, then one-fourth of the time, p

will equal p1. Repeating the same argument for v2, v3, and v4, and noting that v will

necessarily move to one of those four vertices in a random walk starting at v, shows us

that p = 1
4p1 + 1

4p2 + 1
4p3 + 1

4p4. ♦
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Such events which depend only on the tails of random walks are not difficult to come

by. For F , one such event is as follows:

Definition 3.2.2. Let E be the event consisting of all random walks on Γ(F ) such that

the bottom pointer eventually always points to a trivial caret. Let V be the set of all

vertices of Γ(F ). We define σ : V → R as

σ(v) = P (E occurs for a random walk starting at v)

4

Any element f ∈ F for which the bottom pointer points at a trivial caret will be

referred to as “empty′′. Clearly E does not depend on any finite number of moves, and

thus Theorem 5.8 tells us that assigning the probability of such an event happening to

each vertex will induce a harmonic function on Γ(F ). Thus σ is harmonic. Determining

σ exactly for elements of F is not an easy task. Our original goal in exploring harmonic

functions was to find a formula for computing σ. Unfortunately, we were unable to find

such a formula. However, we were able to obtain some lower bounds for what values such

a function could take. To explain how these bounds were obtained, we first introduce

another concept, that of automata.

Definition 3.2.3. An automaton is a directed graph with probabilities assigned to each

edge, such that the sum of the probabilities of the edges directed out of each vertex equals

1. 4

In an automaton, vertices are often called “states”, and edges “transitions”. If there is

a directed edge leading from one state s to another t, we say that s transitions to t. We

will adopt this convention as well, to distinguish our discussion of automaton from one

concerning graphs.
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Definition 3.2.4. Let A be an automaton, with states S. A function φ : S → R is har-

monic if

φ(s) = p1φ(s1) + p2φ(s2) + · · ·+ pnφ(sn)

where s1, s2, . . . , sn are the states which s transitions to, and pi is the probability assigned

to the transition from s to si. 4

This definition of a harmonic function closely resembles our previous definition for Cay-

ley graphs. The difference is that, for any given vertex v, a harmonic function on a graph

gives the unweighted average of its values on all vertices adjacent to v. On an automaton,

the average provided by a harmonic function is weighted according to the probabilities

assigned to each transition. To use automata in the context of F , we create an automaton

in which each state represents a set of vertices of Γ(F ) on which σ is constant. Note that σ

can remain constant on elements of F in a few ways. One such way is through the addition

or removal of “inessential” carets, or carets which are not part of a tree which is in either

the top or bottom space pointed to by the bottom pointer.

Example 3.2.5. Consider the elements f, g ∈ F shown as forest diagrams below. Note

that g is obtained from f precisely by removing the trees to the left of the top and bottom

pointer, neither of which are in the top or bottom space pointed to by the bottom pointer.

Thus g is obtained from f by the removal of inessential carets, and σ(f) = σ(g). It is clear

that the addition and removal of such spurious carets to f will not change σ(f). In our

automaton, f and g are represented by the same state.



3. HARMONIC FUNCTIONS 46

The element h ∈ F , however, is not represented by the same state as f or g. To see

this, note that the configuration of the trees pointed to by the bottom pointer in h is

totally different from the configurations in f and g. The only way to move from h to f ,

for example, is by the deletion and addition of essential carets. Thus we have no reason

to expect σ(h) = σ(f).. ♦

Another way in which σ can remain constant on elements of f pertains to the location

of the top pointer. Specifically, if f ∈ F is an element for which the top pointer is in a

position where it can only add or remove a “spurious” caret, then moving it to either

side will not change σ(f). Also, if moving the top pointer to the left (or right) will result

in an element for which the top pointer can only add or remove a spurious caret, then

σ(f) = σ(x−1
0 f) (or σ(x0f) = σ(f)).

Example 3.2.6. Consider the elements f, g ∈ F shown as forest diagrams below. It is

obvious that multiplication of f by any generator will only add or remove a “spurious”

caret, and thus will not affect σ(f). Note that g is obtained from f by moving the top

pointer one space to the right. As such, we see that σ(f) = σ(g). Both f and g are then

represented by the same state in our automaton.
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Now consider the element h ∈ F . We see that the top pointer of g is in a position where

it can create an non-spurious caret (via multiplication by x1). Furthermore, we see that

moving the top pointer of g one space to the right will not result in an element for which

the top pointer can only create spurious carets. As h is obtained from g by moving the

top pointer one space to the right, we then have no reason to expect σ(g) = σ(h). The

elements h and g are represented by different states in our automaton. ♦

We provide a final example to highlight the difference between essential and inessential

carets.

Example 3.2.7. Consider the element f ∈ F shown below. We have bolded the essential

carets while reducing the size of the inessential carets.

♦

Our automata will be made up of states, each of which represent sets of elements of F

as described above. Note that each of these states will have a unique element f for which

• f has a minimal number of carets, and

• the top pointer of f is in a position where it can make non-spurious carets.
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We represent our states by these elements. For each of these states s we create a transition

to another state t if the element used to describe t can be reached from the element used

to describe s via multiplication through one generator. We then assign a probability of 1
n

to each transition, where n is the total number of transitions leaving the state.

Although each state represents an infinite number of elements of F , it is nonetheless

clear that there are an infinite number of states — for example, there will be a unique

state represented by x−n1 for each n ∈ N. To make the task of finding a harmonic function

on our automata easier, we therefore consider only a finite subgraph of our automata.

Definition 3.2.8. Let γ be a subgraph of a graph Γ with vertices Vγ . Then the boundary

∂Vγ is the set of all vertices of γ which are adjacent to some vertex v /∈ Vγ . 4

We next introduce a theorem which enabled us to find our lower bounds.

Theorem 3.2.9. σ(i) ≤ .5

Proof. Figure 1

We prove the theorem by looking at automata, as described above. First consider Figure

1, which shows an automaton. The circled numbers in this figure represent states with

that number of carets on top of the bottom pointer. For example, the “1” state represents
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elements of F with one caret on the top space pointed to by the bottom pointer, and no

carets in the bottom space. The “0” state represents the identity. The “S” state to the side

of the “1” state represents a state where there is one caret on top of the bottom pointer,

and the top pointer is to the side of that caret. It is evident that, starting at the 1 state,

either x0 or x−1
0 will take you to the S state. Thus, on a random walk, you would have a

1
3 probability of moving from 1 to S, which is denoted by transition from 1 to S with 1

3

next to it. All of the transitions in the diagram are likewise labeled. For reasons described

above, we only consider states from which essential carets can be added or removed by

multiplication by a generator.

Figure 2

It is then clear that Figure 2 can be obtained from Figure 1 by combining the probabil-

ities S states into the probabilities for the numbered states and normalizing. In the same

manner, Figure 3 can be obtained from Figure 2 by removing the redundant transitions

and recalculating the probabilities for the numbered states.
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Figure 3

The probability that a random walk starting at the zero state will never build a lower

caret is easy to find on Figure 3 — note that a random walk on a given numbered state will

have a 2
3 probability of moving up to the next higher number, and a 1

3 chance of moving

down to a lower number. Then, for any state with number n, we have µ(n) =
2n+1 − 1

2n+1
.

Clearly this function is harmonic, and thus α = µ(0) = 1
2 . Note that this is the probability

that a random walk starting at the identity will never build a lower caret. As it is possible

for a random walk to build a lower caret and later remove it, we must have µ(i) ≤ σ(i),

and thus σ(i) ≥ 1
2 .

Definition 3.2.10. Let V be the set of vertices of some finite subgraph Γ, and let ∂V

be the set of boundary vertices. Then a function φ is harmonic on Γ if it harmonic on all

vertices v ∈ V such that v /∈ ∂V , that is, if it is harmonic on all interior vertices. 4

Since an automaton is a directed graph, we can consider subgraphs of it the same way

we would subgraphs of any other graph. Thus a harmonic function on our sub-automaton

would be a function that is harmonic on all non-boundary states. We now define explicitly

the elements of our automaton. Let A be our automaton. Then the states of A are all sets
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of elements of f represented by elements with length less than or equal to 5, and such that

if e is the element of F representing a state, then either e = i (where i is the identity)

or e is reached from i by first multiplying by x−1
1 . Our boundary consists of all states

represented by elements of length 5, together with the state represented by the identity

element.

To see how such an automaton produces lower bounds for our harmonic function σ, we

introduce the following theorem.

Theorem 3.2.11. Let V be the set of vertices of some finite graph Γ with boundary

∂V . Then every function f : ∂V → R extends to a unique harmonic function f on V .

Furthermore, if f, g : ∂V → R are two such functions such that f(v) ≤ g(v) for all v ∈ ∂V ,

then f(v) ≤ g(v) for all v ∈ V .

In other words, Theorem 3.2.11 states that, given a finite graph with a boundary, the

values that a harmonic function takes on the boundary vertices determine the values that

the function takes on all vertices. Also, given two such functions defined on the boundary

of a graph, if one function always outputs lower values than the other, the extension of that

function to the entire graph will likewise always output lower values than the extension of

the other.

To use Theorem 3.2.11 with respect to A, we define a new harmonic function µ by

assigning to all boundary states represented by elements of length 5 the value of zero.

Intuitively, these elements are of distance 5 from the identity, and thus would require

multiplication by 5 generators to reach the identity. Since each of these elements also has

at least one caret in the bottom space pointed to by the bottom pointer, it is reasonable

that the probability of having the bottom pointer point always at a trivial caret for a

transient random walk is relatively low. However, note that σ represents a probability,
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and thus cannot give negative values. Thus we see that for all such boundary states s, we

have µ(s) = 0 ≤ σ(s). The only other element of our boundary is the identity.

We prove in Theorem 3.2.9 that the value of the actual harmonic function at the identity

is greater than 0.5, that is σ(i) ≥ 0.5. Thus we set µ(i) = 0.5 ≤ σ(i). Theorem 3.2.11 then

tells us that extending µ to the entire sub-automaton will give us a harmonic function

such that for all s ∈ S, µ(s) ≤ (s). This function µ will therefore provide lower bounds for

our real harmonic function σ.

To obtain these lower bounds, we use the definition of a harmonic function, as well as

the boundary values, to obtain a system of n linear equations in n unknowns, where n is

the number of non-boundary states of our automaton. We then use linear algebra to solve

these equations. The results of these bounds are listed in the Appendix.

We now consider the state of our automaton represented by yx−1
1 . Note that, since

σ(i) ≥ 0.5, the probability that the top caret will not exist after a random walk on F

must be less than 0.5. Thus 0.5 provides an upper bound for σ(yx−1
1 ). We also see from

the Appendix that 0.5679 is a lower bound for the state represented by x0. Thus we have a

lower bound for σ which is greater than an upper bound for σ, which gives us the following

theorem.

Theorem 3.2.12. There exists a non-constant bounded harmonic function on F .
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Appendix

Element Lower Bound

identity 0.459901
x0 0.567921
x−1

1 0.135841
yx−1

1 0.052054
x−1

0 x−1
1 0.0939477

x−2
1 0.0383416

y−1x−1
1 0.0349629

x−1
0 yx−1

1 0.0353425
y2x−1

1 0.018631
x0yx

−1
1 0.0143956

x1yx
−1
1 0.0141656

x−1
0 x−2

1 0.0260323
yx−2

1 0.0137231
x−3

1 0.010162
y−1x−2

1 0.00932762
x−1

1 y−1x−1
1 0.0083245

y−2x−1
1 0.0083245

x0y
−1x−1

1 0.00947271
x1y
−1x−1

1 0.00947271

Element Lower Bound

x0y
2x−1

1 0.0037262
x1y

2x−1
1 0.0037262

x−1
0 y2x−1

1 0.0118561
y3x−1

1 0.00508119
x1x0yx

−1
1 0.00479852

x2
0yx
−1
1 0.00959704

x−1
1 x0yx

−1
1 0.00287911

y−1x0yx
−1
1 0.00287911

yx1yx
−1
1 0.00386334

x2
1yx
−1
1 0.00283312

x0x1yx
−1
1 0.00283312

x−1
0 x1yx

−1
1 0.00901447

y2x−2
1 0.00374267

x−1
0 yx−2

1 0.00873289
x0yx

−2
1 0.00274462

x1yx
−2
1 0.00274462

x−1
0 x−3

1 0.00646675
yx−3

1 0.00277146
x−4

1 0.00203241
y−1x−3

1 0.00203241

Element Lower Bound

x−1
1 y−1x−2

1 0.00186552
y−2x−2

1 0.00186552
x0y
−1x−2

1 0.00186552
x1y
−1x−2

1 0.00186552
yx−1

1 y−1x−1
1 0.0016649

x−1
0 x−1

1 y−1x−1
1 0.0016649

x−2
1 y−1x−1

1 0.0016649
y−1x−1

1 y−1x−1
1 0.0016649

x1y
−2x−1

1 0.0016649
x0y
−2x−1

1 0.0016649
x−1

1 y−2x−1
1 0.0016649

y−3x−1
1 0.0016649

y−1x0y
−1x−1

1 0.00189454
x−1

1 x0y
−1x−1

1 0.00189454
x2

0y
−1x−1

1 0.00602809
x1x0y

−1x−1
1 0.00258347

yx1y
−1x−1

1 0.00189454
x−1

0 x1y
−1x−1

1 0.00189454
x2

1y
−1x−1

1 0.00258347
x0x1y

−1x−1
1 0.00602809
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