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Abstract

Chaos is studied in terms of bird vocalizations. Zebra Finch song is analyzed for chaos
using methods from non-linear dynamics. Mainly through recurrence analysis and delay
plot analysis, it is shown that the aperiodic sections analyzed in the song are most likely
exhibiting periodic behavior with added noise and are thus not chaotic. A model of the
syrinx, the bird’s sound production organ, is then analyzed for chaos. The model is found
to exhibit chaotic behavior with feasible parameters for bird species previously found to
be capable of producing chaotic vocalizations.
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1
Introduction

Over the past three decades new advances in the theory of nonlinear dynamics have

provided scientists with an abundance of tools for investigating dynamical systems. Many

phenomena occurring in nature which had previously been classified as stochastic can now

be shown to exhibit deterministic dynamic behavior [6]. One of these is the phenomena of

birdsong.

Bird vocalizations have been the subject of study for many years, from acoustical,

behavioral and physiological points of view [9]. In particular there has been a great deal of

research into birds’ muscle control and the sound production organ in birds known as the

syrinx [4]. Birds have been found to have an impressive amount of versatility in creating

a wide range of tones, including those which exhibit complex structure and high levels

of overtones. Some species have even been found to produce chaotic calls [9]. This paper

investigates this subject further.

First, through recurrence analysis, aperiodic data will be analyzed for determinism.

Delay plots will also be used to determine whether this data is chaotic. Then there will be
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an investigation into a model of the syrinx to verify if the model is capable of producing

chaos and thus capable of modeling the impressive array of the bird’s capabilities.



2
Preliminaries

2.1 Dynamical Systems

A dynamical system is a set of possible states and a rule which describes how one

state evolves into another state over time. A state of a dynamical system is given by a

real number, or a tuple of real numbers. A deterministic dynamical system is one in

which the state of the system can be determined uniquely from the past states. This idea

of a deterministic dynamical system can be seen in contrast to a random or stochastic

system, where randomness is involved in the evolution process. For a general overview of

dynamical systems see [2].

Both discrete and continuous dynamical systems will be discussed in this paper. A

discrete dynamical system is evolved by iterating the map or set of maps which govern

the system. A continuous dynamical system generally evolves according to a differential

equation or set of differential equations.

Many dynamical systems are periodic, meaning the dynamical system is one in which a

set of states is repeated in regular intervals of time. The period of a dynamical system is

the amount of time it takes the system to move through all of these states. In a discrete
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dynamical system, for instance, a system is said to have a period four if it takes four

iterations for the system to return to the same state.

A good way of understanding how a dynamical system evolves is by viewing its state

space. A state space (or phase space) for a system is a topological space in which each

possible state is represented by a single point. Another good tool for analyzing dynamical

systems is a time series. A time series constructed from a dynamical system is the set

containing all ordered pairs (xt, t), where xt represents one variable of the state of the

dynamical system at time t. A limitation of a time series in comparison to a state space

of a dynamical system is that only one variable of the system can be modeled with a

time series. The problems caused by this limitation will be discussed further in proceeding

sections.

2.2 Chaos

Chaos can be thought of as occurring somewhere in between periodic behavior and ran-

dom behavior [9]. A chaotic system is a deterministic system which is none the less unpre-

dictable. Chaotic systems exhibit sensitive dependence on initial conditions, which makes it

very difficult to distinguish the long term behavior of the system from a stochastic process

[2]. Many of the tests to distinguish data coming from a chaotic system as opposed to that

coming from a stochastic system are based around recognizing the difference that arises

between the short term behavior of the data due to chaotic systems being deterministic.

An example of a chaotic system is given below.

Example 2.2.1. A simple example of a chaotic system is the system governed by the

logistic map. The logistic map takes a point xn and maps it to the new point

xn+1 = rxn(1− xn)
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The logistic map is known to exhibit chaotic behavior for many values of r between 3.57

and 4 [2], Figure 2.2.1 shows two versions of 200 iterations of the Logistic map with

r = 3.8. The plot on the left has as its initial condition 0.8, and the plot on the right

0.8000000000005.

Figure 2.2.1. 200 iterations of the logistic map

This example helps illustrate that the long term behavior of a chaotic system can be

very difficult to predict. Although the two initial conditions are within 0.000000000005 of

one another, there is a significant difference between the two plots. This example is also

quite remarkable when considering the fact that the behavior of the plot is being governed

by such simple rules.

It can also be noticed that there appears to be short sections of quasi periodic behavior

in both of the plots, and small segments with similar structure. An example of these

segments with similar structure can be seen in the second plot immediately before the

100th iteration and immediately before the 150th iteration. Both of these characteristics

come from the fact that the data was produced by a low-dimensional deterministic source.

This topic will be discussed further in Section 3.1.1, and will be the underlying idea behind

the recurrence analysis test which separates random data from deterministic.
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2.2.1 Period Doubling

Another important characteristic of chaos that will be important when discussing the

models of the bird’s syrinx is period doubling. The time series of a chaotic dynamical

system goes through period doubling or bifurcations when its parameters are approach-

ing the values which produce chaos. An example of period doubling in the logistic map

can be seen in Figure 2.2.2, where the period becomes increasingly more complicated as

the value of r is increased to levels where it produces chaos. Because chaos often occurs

after period doubling, it can be a very helpful indicator when searching for parameters

which induce chaos in a certain dynamical system.

Figure 2.2.2. Period doubling and chaos in the logistic map

2.2.2 Chaos in Biological Data

When working with data generated from a real-world biological source compared to that

from a mathematical model, some of the concepts need to be treated slightly differently.

The most significant of the differences which must be discussed is that of real-world data

which is quasi periodic. For instance, the time series data in Figure 2.2.3 shows what will

be classified as a periodic birdsong in this paper. However, the data is not perfect, math-

ematically speaking. Because of the slight inconsistencies from perfect periodic behavior,

this data would generally be classified as chaotic. Studying this data as chaotic may be
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interesting from a mathematical standpoint, however it would do little for gaining insight

into the actual system with which the birds are generating the vocalizations. Because of

this fact, when studying the data coming from real birdsong, only deterministic data with

no sign of long term periodic behavior will be considered as chaotic.

Figure 2.2.3. Periodic birdsong data

2.2.3 Chaotic Data from Multivariable Systems

Determining whether data is chaotic becomes increasingly difficult as the complexity of

the system producing the data increases. The birdsong data discussed throughout this

paper will come in the form of time series. Time series data however only provides one

variable coming from the multivariable system of the syrinx. Recurrence analysis and

delay plot analysis, discussed in Chapters 3 and 4, are techniques which will be used to

help discern if the time series data came from a chaotic system.

An important concept which will arise when discussing delay plots is that of a strange

attractor. A strange attractor is a fractal shape which attracts points in the state space.

Two examples of strange attractors are given below.

Figure 2.2.4 shows the strange attractor in the state space of the system governed by

the Hénon map. The Hénon map is defined as the map which takes the point (xn, yn),

and maps this point to the new point (yn − 1.4x2
n + 1, 0.3xn) [7].
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Figure 2.2.5 shows the strange attractor in the state space of the Lorenz oscillator.

The Lorenz Oscillator is a known chaotic dynamical system made up of three coupled

differential equations. The three equations are dx
dt = σ(y − x), dy

dt = x(ρ − z) − y and

dz
dt = xy − βz [2]. The parameters σ = −3, ρ = 26.5 and β = 1 were used.

Figure 2.2.4. The attractor of the chaotic system governed by the Hénon map

Figure 2.2.5. Lorenz attractor

2.3 Birds

2.3.1 Birdsongs

All of the real-world data analyzed in this paper were sections of birdsongs. For a brief

introduction to birdsong see [13]. Birdsongs are vocalizations which are usually associated

with mating rituals. Although there would not be a significant difference in the level on
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which the birdsongs were analyzed for this research, there is usually a distinction made

between birdsong and bird calls. Birdsongs are usually longer and more complex than bird

calls. Bird calls are also usually associated with vocalizations pertaining to distress calls,

or for keeping members of a flock in contact.

Another term that will come up within this paper is a syllable of a birdsong. A syllable

is a section of birdsong separated by silence, or an abrupt change in frequency.

2.3.2 Data

The data that was primarily used in this project was of Zebra Finch songs. The main

reason for this was due to the abundance of data that was available. The Zebra Finch

also seemed like a good candidate because of the unpleasant nature of its song, which is

characteristic of chaotic sound.

The song files were downloaded from Heather H. Williams’ Zebra Finch Song Archive

website [13]. There, Professor Williams, working through Williams College, has recorded

and archived over 80 male Zebra Finches birdsongs. Along with the song and lineage of

the individual bird, a sonogram, which is a plot of frequency versus time, of each song is

listed. These were used to find songs containing syllables with a high number of different

frequencies. Songs that display this property are more likely to exhibit chaos. The songs

were then shortened to contain these selected syllables in Audacity, and these syllables

were then visually analyzed to verify that they contained aperiodic sections. The syllables

that did contain aperiodic sections were then imported into Mathematica.

2.3.3 Bird Anatomy

The sound-production organ within a bird is known as the syrinx. The syrinx is located

between the air-sacs (or lungs) and the trachea, as can be seen in Figure 2.3.1, and is used

in a similar way for the bird as the larynx is for humans. The anatomy of the syrinx can

be seen in Figure 2.3.2. There has been debate as to whether the main sound generation
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comes from the vibration of the drum head like medial tympaniform membrane(MTM)

or the vibrating labia [1]. The model that will be used from [5] uses the latter theory,

assuming the sound is generated by vibrations in the labia caused by pressure coming

from the air-sacs.

Figure 2.3.1. Location of the syrinx (image taken from [1])
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Figure 2.3.2. Anatomy of the syrinx (MTM) medial tympaniform membrane (ML) medial
labia (LL) lateral labia (image taken from [1])



3
Recurrence Analysis

A large goal of the project was to determine if chaos was occurring in the Zebra Finch’s

song. Articles [9] and [8] are two examples of research focused on analysis of chaotic data

related to bird vocalizations. In [9] Lyapunov exponents were used to classify chaotic

bird calls, and in [8] Zebra-Finch syrinxes were found to be capable of producing highly

nonlinear behavior. A first step toward determining if the Zebra Finch’s song was chaotic

was verifying that it was in fact deterministic. This was done by performing recurrence

analysis on the birdsong data.

The techniques used for the recurrence analysis that will be discussed in this paper

were primarily taken from frog calling research done through the University of Tokyo

[11] [10]. These techniques are based around using recurrence plots (RP), iso-directional

recurrence plots (IDRP) and iso-directional neighbors plots (IDNP) to determine

if given data is deterministic or random. The university of Potsdam has put together a

website [14] using research from [15] which is a great resource for understanding recurrence

analysis.
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3.1 Recurrence Plots

Definition 3.1.1. Let xtn be a time series and ε ∈ R+. A recurrence plot for xtn is the

set {(tk, tl) : |xtk − xtl | ≤ ε}.

Essentially a RP is a plot which illustrates the times when the given time series visits

roughly the same value. Figure 3.1.1 illustrates how a general RP is made. The RP is a

plot of the times (ti) when the measured value was within a chosen threshold (ε) of itself.

The value for ε is chosen so that 10% of the original data is plotted in the RP [11]. The

points along the diagonal where (ti, ti) is being plotted are disregarded when considering

this 10% since they are meaningless and will always result in a point being represented in

the RP. The points at t1 and t3 in the diagram are within ε of one another, so the times

that the points occur are represented in the RP by plotting (t1, t3) and (t3, t1). Also note

that the value of the time series data at time t2 is not within the threshold ε of any other

values, thus t2 is not represented in the RP.

Figure 3.1.1. Recurrence plot construction

An example of an RP is given in Figure 3.1.3, where an RP has been constructed from

the periodic time series data in Figure 3.1.2.
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Figure 3.1.2. time series data from a periodic system

Figure 3.1.3. Recurrence plot of the time series data in Figure 3.1.2

Definition 3.1.2. Let xtn be a time series, δ ∈ R+ and d ∈ N. An iso-directional

recurrence plot for xtn is the set {(tk, tl) : |(xtk+d − xtk)− (xtl+d − xtl)| ≤ δ}.

An iso-directional recurrence plot is a plot which illustrates the times when the given

time series data is heading roughly in the same direction. Figure 3.1.4 illustrates how a

general IDRP is made. An IDRP is a plot of the times (ti) when the changes in values to

a future time (ti + d), which is a chosen number (d) of time steps away, are within δ of

one another (|φ− σ| ≤ δ). As with the traditional RP’s, the value for δ is chosen so that
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10% of the original data (disregarding the diagonal) will be represented in the IDRP. The

value for d is chosen so that the best results are achieved and can be found by trial and

error. The value for d depends heavily on how high of a sample rate with which the data

was collected.

Figure 3.1.4. Iso-directional recurrence plot construction

An example of an IDRP is given in Figure 3.1.5, where an IDRP has been created from

the time series data in Figure 3.1.2.

Figure 3.1.5. Iso-directional recurrence plot of the time series data in Figure 3.1.2
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Definition 3.1.3. Let xtn be a time series. An iso-directional neighbors plot for xtn

is the intersection of the recurrence plot and the iso-directional recurrence plot for xtn

An iso-directional neighbor plot illustrates when the given time series data is roughly

the same value and is also roughly heading in the same direction. A general IDNP is

made by plotting the intersection of the RP and the IDRP. An example of an IDNP is

given in Figure 3.1.6, where an IDNP has been constructed from the time series data in

Figure 3.1.2.

Figure 3.1.6. Iso-directional neighbor plot of the time series data in Figure 3.1.2

3.1.1 Recurrence Analysis and Determinism

As stated in Section 2.2, a fundamental feature of chaotic data is the fact that it is

deterministic. A hallmark of deterministic data is the feature that if two points are at a

similar value, they will be heading in a similar direction [11]. That is, if two points have

similar values at times tk and tl, then the two points at some number of time steps d away

tk+d and tl+d will have similar values as well.
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If the data being analyzed is deterministic, and can be modeled by a low-dimensional

dynamical system, then it must behave in a similar way to data that has come from a

low-dimensional deterministic source. For instance, if the value 5 is input into a system,

and the output is 10, then it is known that the system will always return 10 when 5 is

input. If a value of 5.000000000001 is input into the same system, assuming this system

to be low-dimensional, it would also be expected that a value somewhere near 10 would

be output.

The three recurrence plots discussed in Section 3.1 are able to help determine if given

time series data is deterministic or random. Figure 3.1.7 illustrates the ideal results for

deterministic data. The times when the data points were near each other can be seen in

the RP, and the times when the data points are heading in the same direction can be

seen in the IDRP. Since these occur in the IDNP these are thus the same times, since the

IDNP is the intersection of the RP and IDRP. This means that the points that are near

one another are heading in the same direction. This example is of course an exaggeration

to illustrate this technique for classifying deterministic data. The actual number of points

present in the IDNP will be much lower than the number of data points present in the

RP and IDRP. The percentage of points that is needed in the IDNP to classify the data

as deterministic is discussed in Section 3.2. As can be seen in the example RP’s given

earlier, although the time series data exhibits very clear periodic deterministic behavior,

the iso-directional neighbors plot is still shaded noticeably less than the other two RP’s.

Figure 3.1.8 illustrates the ideal result for random data. The times when the data points

were near each other can be seen in the RP, and the times when the data points are heading

in the same direction can be seen in the IDRP. These are mostly not the same times since

the IDNP is mostly empty. Because the data is being looked at on an interval, even random

data will sometimes have points of similar value heading in the same direction. If the IDNP

has been constructed from random data, however, the points should be more scattered
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Figure 3.1.7. Recurrence analysis of deterministic data

and have less of a pattern than an IDNP constructed from deterministic data [10]. The

percentage of points that is needed in the IDNP to classify the data as random will also

be discussed in Section 3.2.

Figure 3.1.8. Recurrence analysis of random data

3.2 Recurrence Analysis Procedure

All of the recurrence analysis performed during this project was done within Mathematica.

A Mathematica notebook was written for the three forms of recurrence plots discussed

in Section 3 implementing techniques used in [11] and [10]. To determine the type of

results that should be expected for chaotic data, recurrence analysis was performed on

data output by a system which had already been classified as chaotic. The system chosen

for this experiment was the system governed by the Hénon map. Recurrence analysis was

then preformed on 1,600 points outputted by the Hénon map. Figure 3.2.1 shows the three
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resulting RP’s where ε = 0.2, δ = 0.35 and time steps d = 3. Thus the shading of these

three recurrence plots are the ideal results for chaotic data.

Figure 3.2.1. Recurrence analysis of the Hénon map with ε = 0.2, δ = 0.35 and d = 3

Recurrence analysis was also done to determine the expected results for random data.

Recurrence analysis was performed on pseudo-random data which was obtained in Mathe-

matica using the RandomReal command. The three resulting recurrence plots can be seen

in Figure 3.2.2.

Figure 3.2.2. Recurrence analysis of pseudo-random data ε = 0.18, δ = 0.25 and d=3

The recurrence analysis discussed thus far has used the technique of creating the three

recurrence plots directly from the time series data. As can be seen in [11] and [10] how-

ever, the recurrence plots can also be constructed from the delay plot (which will be
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discussed in Section 4) of the time series data. This is a rather simple modification in

the RP’s construction process, where the relation between the vectors (xtk−j , xtk−i, xtk)

and (xtl−j , xtl−i, xtl) with delay parameters i and j is investigated instead of the rela-

tion between the points xtk and xtl . The three RP’s were made of Hénon map and the

pseudo-random data using this delay plot construction technique. Figure 3.2.3 is the re-

sulting recurrence plots of the Hénon map with delay parameters j = 2, i = 1 thresholds

ε = 0.588, δ = 1.093 and time steps d = 3, and Figure 3.2.4 is one example of the pseudo-

random RP’s that were made with delay parameters j = 2, i = 1 thresholds ε = 0.55,

δ = 0.73 and time steps d = 3.

Figure 3.2.3. Recurrence plots constructed from delay plots of Hénon map with ε = .588,
δ = 1.093 and d=3

It became clear from these plots that the graphical representation of the RP’s might

not offer enough information to come to a clear conclusion on whether to classify the

data as deterministic or random. Mostly due to image size and resolution issues, it was

too difficult to tell the difference between the two data types. The results were better

when the recurrence plots were viewed with image sizes closer to a pixel per point; they

were, however, still not precise enough. Figure 3.2.5 and Figure 3.2.6 illustrate this point.

Figure 3.2.5 is the top left sections of the RP and IDNP of the Hénon map shown in
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Figure 3.2.4. Recurrence plots constructed from delay plots of pseudo-random data with
ε = 0.18, δ = 0.25 and d=3

Figure 3.2.1 viewed at four times the size. Figure 3.2.6 is the top left sections of the RP

and IDNP of pseudo-random data shown in Figure 3.2.2 viewed at four times the size.

Figure 3.2.5. The top left sections of the RP and IDNP in Figure 3.2.1

Along with the obvious lighter shading of the pseudo-random data’s IDNP from that

of the Hénon’s IDNP, as expected there also seems to be less order among the points

present. However, because of the inconsistencies that arise with real-world data that will

be present in the birdsong recordings, the difference between the two data sets’ IDNP’s

did not seem large enough.

To combat this problem the correlation between the RP and the IDRP was computed.

The correlation of the Hénon map’s RP and IDRP (using the same parameters that were
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Figure 3.2.6. The top left sections of the RP and IDNP in Figure 3.2.2

used in the previous examples) constructed directly from the time series data was 0.34,

while the correlation of the Hénon map’s RP and IDRP constructed from delay plots was

found to be 0.55.

As stated in section 3.1.1, because the data in the RP and IDRP are within an interval,

there should be at least a small correlation between the two for random data. To get

an idea of what the correlation between the RP and IDRP should be for random data,

20 trials were run using pseudo-random data. This process was done for both the RP’s

constructed directly from the time series data and those constructed from the delay plots.

From these trials it was determined that the standard deviation of the correlations be-

tween the RP and the IDRP constructed from the delay plots was 0.0086 with a maximum

correlation value of 0.34 and a minimum of 0.298. The standard deviation of the correla-

tions between the RP and IDRP constructed from the time series data was 0.0075 with

a maximum correlation of 0.17 and a minimum correlation of 0.143. From these values

it can easily be calculated when the RP and the IDRP were constructed from the de-

lay plot, the correlation between the Hénon map’s RP and IDRP was approximately 14

standard deviations greater than the max pseudo-random data’s correlation. When the

RP and IDRP was constructed directly from the time series data, the correlation between

the Hénon map’s RP and IDRP was approximately 23 standard deviations greater than
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the max pseudo-random data’s correlation. Both results seem to show a clear difference

between random and deterministic data. Based on this result it was chosen to perform

the recurrence analysis on the birdsong data using the RP’s constructed directly from the

time series data.

3.3 Recurrence Analysis Results

Several aperiodic sections of birdsong data tested returned correlation values between

the RP and IDRP greater than 0.2. A 300 point sample of the time series data from

an example of one of these sections of aperiodic birdsong can be seen in Figure 3.3.1.

Figure 3.3.2 is the recurrence analysis of this birdsong section. The plot is made from 968

data points with thresholds ε = 0.2, δ = 0.33 and the number of time steps d = 3. The

darker appearance of the recurrence plots compared to the previous examples is due to

the sharper contrast which is due to the fact that fewer points are being analyzed. The

correlation value between the RP and IDRP of this particular section of song was 0.36,

which is approximately 25 standard deviations away from the maximum pseudo-random

correlation found. This result clearly suggests this section of birdsong is deterministic.

Figure 3.3.1. Time series of an aperiodic birdsong section
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Figure 3.3.2. Recurrence Analysis of an Aperiodic Birdsong Section with ε = 0.2, δ = 0.33
and d = 3



4
Delay Plot Analysis

Having successfully classified aperiodic sections of Zebra Finch song as deterministic, this

data was now analyzed for chaos. Delay plots were used to determine if the birdsong data

displayed evidence of coming from a chaotic system by reconstructing the state space. As

stated in Section 2.1 if the data had come from a chaotic system the state space should

contain a strange attractor. In [9] Fletcher uses delay plots, his results proved to be incon-

clusive however, and he suggests the main cause of this may have been due to interference

from background sounds in the in-vivo recordings he used. The data obtained for this

project in comparison came from recordings performed in a laboratory and exhibited min-

imal background noise.

4.1 Delay Plots

The techniques used for creating the delay plots in this paper were taken from [12] and

[11]. As with the recurrence plots another resource utilized was [14] which was based

heavily around research done for [15]. Delay plots can be a very useful tool when analyzing

chaotic data, especially when determining if aperiodic time series data is random, periodic
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or chaotic. They can be used to reconstruct trajectories in the state space, and in doing so

can reconstruct the strange attractor a chaotic system creates in the state space. Which

is remarkable when considering a delay plot is only utilizing one variable from the system

which produced the time series.

A delay plot can be constructed from time series data by taking the point x which

occurs at time t denoted xt, and plotting the three dimensional vector (xt−j , xt−i, xt).

This technique is commonly referred to as time delay embedding, where i, j are known

as the delay parameters [14]. The delay parameters i, j are the amount of time being

subtracted from the time t that the original point occurred. Thus with discrete data, i, j, t

will be natural numbers. A schematic diagram of the construction of a delay plot can be

seen in Figure 4.1.1. Where β, δ and φ are the respective values of time series data at

times (t− j), (t− i) and (t).

Figure 4.1.1. Constructing a delay plot from time series with delay parameters i, j

As discussed in Section 2.2 chaotic systems have strange attractors in their state space.

The purpose of a delay plot is to visually detect the existence of the ”order” that is

caused by this attractor. If the time series data being analyzed is from a low-dimensional
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(preferable three-dimensions or lower) chaotic source, it is expected there will be evidence

of the attractor ”order” represented in the delay plot. On the other hand if the time series

arises from a stochastic source, it is expected there will be no evidence of this order [12]. If

the given time series data is periodic, the delay plot will be some set of closed curves. An

example of this can be seen in Figure 4.1.2, where a delay plot can be seen along with the

periodic time series it was constructed from. Figure 4.1.3 shows time series data from a

periodic system with a more complex period and the resulting delay plot. Notice the delay

plots complexity has also increased while still maintaining the closed looped structure of a

periodic delay plot. It is very important when using delay plot analysis to choose the right

Figure 4.1.2. Delay plot constructed from simple periodic time series data

Figure 4.1.3. Delay plot constructed from complex periodic time series data

delay parameters. If the delay parameters are too small, too big or too far away from one
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Figure 4.1.4. Delay plot of lorenz oscillator left plot j = 3, i = 1 middle plot j = 6, i = 3
right plot j = 51, i = 17

another, this can create problems when it comes to the visual detection of ”order”. The

most serous of these problems can be an almost complete loss of this ”order” in the delay

plot. On the less problematic side of the spectrum there could also be a certain amount

of squashing or stretching that occurs to the reconstruction of the attractor. The method

chosen to combat this problem when choosing the delay parameters was that of trial and

error.

Figure 4.1.4 illustrates the importance of choosing good delay parameters. The three

delay plots are all constructed from 1000 points of a solution to one of the three differential

equations from the Lorenz oscillator. The plot on the left which clearly exhibits charac-

teristics of the Lorenz attractor which can be seen in Section 2.2.3, was constructed with

delay parameters j = 3, i = 1. The plot in the middle which is a more squished version of

the Lorenz attractor has delay parameters j = 6, i = 3 and the plot on the right which has

almost entirely lost the evidence of an attractor has embedding parameters j = 51, i = 17.

4.2 Delay Plot Analysis Procedure

All of the analysis performed using delay plots during this project was done within Mathe-

matica. A Mathematica notebook was written for the delay plots as discussed in Section 4.1
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mainly implementing techniques used in [11] and [12]. To determine the type of results

that should be expected for chaotic data, delay plots were made from data output by two

systems which had already been classified as chaotic. As in Section 3.2 the first system

chosen was the system governed by the Hénon map. A delay plot was then made with

delay parameters j = 2, i = 1 from 1,600 points outputted by the Hénon map. Figure

4.2.1 shows a sample 100 data points of the time series data omitted by the Hénon map

and the resulting delay plot which exhibits an obvious non-scattered geometry.

Figure 4.2.1. Sample of the Hénon map’s time series and delay plot with j=2,i=1

A delay plot was also constructed from one of the differential equations governing the

Lorenz Oscillator. Figure 4.2.2 shows the time series data of the solution x(t) for the Lorenz

Oscillator evaluated to t = 200 and the corresponding delay plot that was created from

this data. A sample rate of 0.001 was used when selecting points, so the delay parameters

were much larger than the previous example with j = 300 and i = 220.

Delay plots were also made to determine the expected results for random data. Delay

plots were made using pseudo-random data which was obtained in Mathematica using the

RandomReal command. An example of these delay plots can be seen in Figure 4.2.3, with

a sample 100 points of the time series data on the left and the delay plot on the right.

As was expected there is a noticeable scattered lack of order to the delay plot. Several
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Figure 4.2.2. Time series and delay plot of the lorenz oscillator’s solution x(t) with delay
parameters j = 300 and i = 220

different sets of delay parameters were tested and all returned similar orderless results.

It is quite remarkable how clear a difference there is between the pseudo-random delay

plot and the Hénon delay plot, while the time series data of the two data sets seems fairly

similar.

Figure 4.2.3. Sample of pseudo-random time series and delay plot with j=2,i=1

To get a better understanding of what the birdsong delay plots should look like, a delay

plot was constructed from a periodic section of birdsong. A section of birdsong was selected

which clearly exhibited periodic behavior and had a fairly small number of frequencies.
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Figure 4.2.4 shows a 400 point sample of the periodic birdsong’s time series, and the

resulting delay plot. The delay plot was constructed from 800 points of the time series

data, with j=4 and i=2.

Figure 4.2.4. Sample of periodic birdsong time series and delay plot with j=4,i=2

It became clear from this plot that the sample rate of the recording was not high

enough to produce good delay plots. To solve this dilemma interpolation was performed

on the birdsong data. The interpolation was done using Mathematica’s ListInterpolation

command. The resulting delay plot can be seen in Figure 4.2.5.

Delay plots were then made from the aperiodic sections of birdsong which had been

classified as deterministic using recurrence analysis in Section 3.2. An example of one of

these delay plots can be seen in Figure 4.2.6.

It is somewhat difficult to see from the two-dimensional version in Figure 4.2.6, but

the general form exhibited by most of the birdsong delay plots was that of a somewhat

squished sphere possibly displaying a tube running through the middle. Since the data had

already been classified as deterministic there could be two possibilities for what type of

data would form such a delay plot. The data could be a higher dimensional chaotic system

than the two chaotic examples discussed, where the attractor was a three dimensional
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Figure 4.2.5. Periodic birdsong delay plot from interpolated data with j=4,i=2

surface such as a torus. Otherwise the data could be periodic data with enough noise

added in to give the data the effect of being aperiodic but not enough so that it failed the

recurrence analysis determinism test.

To test the theory that the data was coming from a higher dimensional chaotic source,

and the delay plot was showing evidence of a three dimensional attractor, the delay plot

was cut up into slices. This was done in a way as if an MRI was being taken of the delay

plot, with the hope being these slices would offer more insight into whether or not there

was an actual tube running through the center of the delay plot. Figure 4.2.7 shows six

slices of the delay plot in Figure 4.2.6, with the first slice being in the top left corner and

the last slice in the bottom right.

The results from this slicing seemed to suggest the delay plots were in fact not torus-like,

and may be exhibiting more of a tangle of curves in the center of the sphere of curves,

which is more characteristic of periodic data.

To test the theory that these delay plots were actually being made from periodic data

mixed with noise, actual periodic data mixed with noise would have to be found that
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Figure 4.2.6. Delay plot of a section of deterministic aperiodic birdsong

could create similar delay plots. To help make this data, histograms of the frequencies

present in the birdsong data were made. An example of one of these histograms can be

seen in Figure 4.2.8, where the histogram has been created from the birdsong data which

the delay plot was constructed from in Figure 4.2.6.

The most predominant frequencies present in the histogram were then identified. A

function was then defined in Mathematica made up of a sum of sine functions with the

frequencies taken from the histogram. These sine functions were also weighted depending

on how predominant their frequency was in the histogram. Equation 4.2.1 is a function

that was constructed from a histogram of a birdsong.
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Figure 4.2.7. Slices of deterministic aperiodic birdsong delay plot

f(x)= sin(0.491736x) + 3 sin(0.495868x) + 3 sin(0.496901x) + 2 sin(0.497934x)
+ sin(0.498967x) + 2 sin(0.506198x) + 3 sin(0.507231x) + 3 sin(0.508264x)
+3 sin(0.509298x) + 3 sin(0.510331x) + 2 sin(0.511364x) + sin(0.524793x)
+ sin(0.530992x) + sin(0.532025x) + sin(0.533058x) + sin(0.534091x)
+ sin(0.615702x) + sin(0.709711x) + sin(0.713843x) + 2 sin(0.732438x)
+2 sin(0.733471x) + sin(0.789256x) + sin(0.790289x) + sin(0.83781x)
+ sin(0.838843x) + sin(0.842975x) + sin(0.844008x) + 2 sin(0.899793x)
+2 sin(0.900826x) + 2 sin(0.916322x) + 2 sin(0.917355x) + sin(0.927686x)
+ sin(0.928719x) + sin(1.1219x) + sin(1.12293x) + sin(1.12397x)
+3 sin(1.12913x) + 3 sin(1.13017x) + 3 sin(1.1312x) + 2 sin(1.1405x)
+3 sin(1.14153x) + 3 sin(1.14256x) + 2 sin(1.1436x) + sin(1.14463x)
+ sin(1.15599x) + sin(1.15909x) + 2 sin(1.16012x) + 2 sin(1.16426x)
+2 sin(1.16529x) + sin(1.16632x) + sin(1.17355x) + 2 sin(1.17459x)
+3 sin(1.18079x) + 3 sin(1.18182x) + 3 sin(1.18285x) + 3 sin(1.18388x)
+2 sin(1.20145x) + 3 sin(1.20248x) + 3 sin(1.20351x) + 3 sin(1.20661x)
+3 sin(1.20764x) + 2 sin(1.21074x) + 3 sin(1.21178x) + 3 sin(1.22211x)
+3 sin(1.22314x) + sin(1.22417x) + 2 sin(1.22727x) + sin(1.22831x)
+ sin(1.23244x) + sin(1.23347x) + sin(1.24174x) + sin(1.24587x)
+ sin(1.2469x)

(4.2.1)

A sufficient amount of noise was then added to this function’s output using Mathemat-

ica’s RandomReal command until its spectrogram closely resembled the birdsong data’s

spectrogram. Figure 4.2.9 shows the two spectrograms, with the birdsongs on top and

the functions on the bottom. Figure 4.2.10 shows the time series data of the two data
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Figure 4.2.8. Histogram of the different levels of frequencies present in birdsong

sets, which also share a somewhat similar structure. As a last test of the two data sets’

Figure 4.2.9. Birdsong spectrogram (seen top) and periodic data with noise added in
(bottom)

similarity, recurrence analysis was performed on the periodic data with added noise. The

data generated from Equation 4.2.1 returned a correlation value between its RP and IDRP

of 0.38, 28 standard deviations from the highest random data’s correlation: clearly high

enough to classify the data as deterministic.

After the recurrence analysis, delay plots were finally made of the data sets generated

from the periodic functions output with added noise. Figure 4.2.11 shows the resulting
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Figure 4.2.10. Birdsong time series (right) and periodic data with added noise (left)

delay plot. It can be somewhat difficult to see from the two-dimensional version of the

delay plot, but the delay plot in Figure 4.2.11 has a strikingly similar structure to that of

the delay plot constructed from the birdsong data in Figure 4.2.6.

Figure 4.2.11. Delay plot of periodic data with added noise

4.2.1 Results of Delay Plot Analysis

Based on the results from Section 4.2, it seems likely that the aperiodic sections of the

Zebra Finch calls analyzed were not chaotic. Because of the similarity between the delay
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plots of the birdsong and the periodic data with added noise, it seems likely that the

birdsong data is in fact periodic with added noise.

Looking back, the recurrence analysis may also have hinted at this result. Where as the

IDNP of the system governed by the Hénon map was much more consistently shaded, the

birdsong’s IDNP has a much larger contrast in its shading even when being viewed at an

appropriate image size. The reason for this could be due to the fact that the Hénon map

is deterministic whereas the birdsong only has small sections which display deterministic

behavior.

The other possibility for the lack of a clear chaotic attractor could be the same problem

as suggested in [9], which is that the birdsong data was not stationary. Because of the

remarkably quick ability of the Zebra Finch to change tones, it is hard to rule this possi-

bility out. A final possibility is that the system generating the data may be of too high a

dimension for the delay plot to properly reconstruct the state space.



5
Analysis of Syrinx Models

As was discussed in Section 3.2, there has been clear evidence of chaos in bird vocalization-

related data. In [9] Fletcher classified sections of two different bird calls (that of the Sulfur

Crested Cockatoo and the Gang-gang Cockatoo) as chaotic. In [8] Fee et al. found evidence

of period doubling working with an isolated Zebra Finch Syrinx. Because of this, it was

an important aim of the project to find evidence of chaos in models of the syrinx as an

attempt to verify that the model was capable of producing even the most complex of bird

vocalizations.

Although there has been a long standing debate as to whether the main sound generation

in the syrinx comes from the vibration of the MTM or the labia, recent studies have

provided substantial evidence for the latter theory [1]. In [8] Fee et al. showed a Zebra

Finch syrinx was capable of producing a large array of sounds even after the removal of the

MTM. Because of this the model that was chosen uses the theory of the sound production

coming from the labia. The model, taken from [5] is an extension of a well known two-mass

model of the human vocal-folds.
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5.1 Modeling the Syrinx

There has been a substantial amount of work done in the field of human vocal-fold model-

ing. One of the most well known models for the human vocal folds is Ishizaka & Flanagan’s

two-mass model [3]. The general idea behind the two-mass model is to model the human

vocal fold as two coupled harmonic oscillators. In [4] Steineche & Herzel found bifurca-

tions in a simplified asymmetric version of the model, meaning the two sets of masses were

not moving in unison. The symmetric form of the model from [4] is given in Equations

5.1.1-5.1.8, and a schematic diagram of the model can be seen in Figure 5.1.1.

ẋ1 = v1 (5.1.1)

v̇1 =
1
m1

(
P1ld1 − r1v1 − k1x1 − Φ(−a1)c1

a1

2l
− kc(x1 − x2)

)
(5.1.2)

ẋ2 = v2 (5.1.3)

v̇2 =
1
m2

(
P2 − r2v2 − k2x2 − Φ(−a2)c2

a2

2l
− kc(x2 − x1)

)
(5.1.4)

The subscripts 1,2 represent which mass the parameter is associated with, 1 being the

lower mass and 2 being the upper mass. The variables a1 = a01 + 2lx1 and a2 = a02 + 2lx2

are the lower and upper glottal areas. The rest of the parameters are defined as follows:

• l is the length of the trachea

• di is the height of the respective mass

• ri is a damping constant of the respective mass

• ki is the spring constant of the respective mass

• kc is the coupling constant between the upper and lower masses

• ci represents an additional spring constant which arises during a collision between

the right and left masses
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• Φ(x) describes this collision

• xi represents the distance the mass is from the mid line

• mi is the respective mass

• Pi is the pressure inside the glottis acting on mass i and is given by Equations 5.1.6

and 5.1.7.

amin =


a1, if 0 < x1 < x2

a2, if 0 < x2 ≤ x1

0, otherwise
(5.1.5)

P1 = Ps

(
1− Φ(−amin)

(amin

a1

)2)
Φ(a1) (5.1.6)

P2 = 0 (5.1.7)

Note that by defining P2 in this way, the assumption is being made that the subglottal

pressure Ps is only having an effect upon P1.

Φ(x) =
{

tanh(50x/a0), if x > 0
0, if x ≤ 0

(5.1.8)

In the case of Φ(amin) an implicit Φ function is defined where amin = max(0, amin). The

parameters for the symmetric version of the model given in [4] are as follows: m1 = 0.125,

m2 = 0.025, r1 = r2 = 0.02, k1 = 0.08, k2 = 0.008, kc = 0.025, c1 = 3k1, c2 = 3k2,

d1 = 0.25, d2 = 0.05, a01 = a02 = 0.05, Ps = 0.008. All of the units are given in

centimeters, grams, milliseconds and their equivalent combinations.

The asymmetric version of this model involves changing the parameters between the

two sets of masses. It also has added terms which effect the k’s, c’s and m’s to simulate

vocal fold paralysis disorders.

In [6] using the Steineche & Herzel model with

amin =
{
a1, if 0 < x1 < x2

a2, if 0 < x2 ≤ x1
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Figure 5.1.1. Schematic diagram of the symmetric two-mass model (image taken from [6])

disregarding the change to amin in the case of φ(amin) and a few parameter changes (r1 =

0.01, Ps = 0.05 and kc = 0.09, x1(0) = x2(0) = 0.1,v1(0) = v2(0) = 0.0), Jiang et al. were

able to find chaotic solutions for the differential equations governing the system.

In [5] Herzel et al. adapt the Steineche & Herzel model to a song bird syrinx. The model

of the syrinx is simply a scaling down of the symmetric version of the vocal fold model,

with the default parameters as follow: l = 0.3, a01 = 0.0021, a02 = 0.00175, d1 = 0.1,

d2 = 0.02, m1 = 0.0015, m2 = 0.0003, k1 = 0.08, k2 = 0.008, r1 = r2 = 0.002, kc = 0.0025,

c1 = 3k1, c2 = 3k2.

5.2 Testing Human Vocal Folds Model

To get a better idea of how two-mass models work and what their delay plots would look

like, the human version of the two-mass model was analyzed for chaos. The symmetric

vocal fold model from [6], discussed in Section 5.1, was implemented in Mathematica. The

model was then evaluated for the chaotic parameters given in [6], and a delay plot was
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made from the results. Figure 5.2.1 shows the chaotic time series of the solution x(t) and

the resulting delay plot.

Figure 5.2.1. Time series and delay plot of chaotic symmetric vocal fold model solution

The type of chaos present here bears a certain resemblance to that of the Lorenz oscilla-

tor in that it exhibits alternating sections of nearly periodic behavior. Although the time

series data almost seems periodic, it is clear from the thick curves in the delay plot that

the solution is not actually visiting the exact value but merely coming close. If the delay

plot had come from actual periodic data, the result would be much thinner curves. As can

be seen in Figure 5.2.2, where time series data of a solution to the two-mass model which

exhibits seemingly similar complexity produces a much simpler delay plot. It should also

be noted the time series and delay plots in Figure 5.2.2 and 5.2.1 are both constructed

from the same number of points.

The spacing of the curves in the delay plot in Figure 5.2.1 is quite similar to that of

the Lorenz oscillator’s delay plot. Figure 5.2.3 shows a close up of one of the sections of

curves in the two-mass models delay plot, while Figure 5.2.4 shows a close up of the Lorenz

oscillator’s delay plot. There is a noticeable similarity between the two.

Experiments run on the model verified the results found in [6] and [4] that more predom-

inant overtones occur for higher values of Ps. The reason given for this is due to increased
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Figure 5.2.2. Time series and delay plot of a periodic symmetric vocal fold model solution

Figure 5.2.3. Close up of symmetric two-mass model chaotic solutions delay plot

collision between the two sets of masses at high forcing pressures. It was also discovered

the coupling constant between the two masses kc produced more overtones for higher val-

ues. This was of course very helpful since more overtones suggests period doubling, and

as discussed in Section 2.2.2 period doubling suggests the existence of chaos.

5.3 Chaos in the Two-Mass Syrinx Model

The two-mass model of the syrinx from [5] was then implemented into Mathematica. Even

for very high values of Ps there were few increases in the amount of overtones when using

the default parameters provided. Different values of kc were tested, and as with the vocal

fold version of the two-mass model an increase in the number of overtones was witnessed.

With high levels of Ps and kc, chaos was also observed.
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Figure 5.2.4. Close up of Lorenz attractor’s delay plot

Figure 5.3.1 shows chaotic time series data from the solution x(t) with changes from

the default parameters as follows: kc = 0.09, Ps = 0.08, x1(0) = x2(0) = 0.01, r2 = 0.001.

Figure 5.3.2 shows the resulting delay plot from the time series data in Figure 5.3.1.

Figure 5.3.1. Chaotic time series data from syrinx model (kc = 0.09, Ps = 0.08, x1(0) =
x2(0) = 0.01, r2 = 0.001)

Figure 5.3.3 shows a close up of a delay plot in Figure 5.3.2. Again there is a noticeable

similarity between the spacing of the curves in the delay plot constructed from time series

data produced by the syrinx model and that of the Lorenz model.

5.4 Discussion on Parameters

It is somewhat difficult to say if the parameters used to obtain the chaotic data in Figure

5.3.2 are realistic parameters for a real bird. It may even be difficult to define what is

meant by the idea of realistic parameters for this model. The coupling constant kc, for
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Figure 5.3.2. Delay plot constructed from the times series data seen in Figure 5.3.1

instance, is much higher than the default parameter used. In terms of the labia the model

is representing, this would mean there is a stronger connection between its upper and

lower portions. In terms of a parameter which has been measured for actual bird anatomy,

this idea is harder to quantify. Another point worth making is the fact that there is a

fairly large error when measuring parameters relating to such delicate bird anatomy.

The changes made to Ps also could be up for debate. The default parameters model from

[5], for example, are for a general songbird. There is however an incredible variance among

the anatomy and sizes of songbirds. A second model in [5] is proposed which is specifically

shaped to a Ring Dove. For this model the paper refers to .05 as being high for levels of

Ps. Therefor a level of Ps = 0.08 may be at the top end or possibly a bit over high values

of Ps for a bird such as a Ring Dove. It most likely would also be over realistic levels for

a Zebra Finch which is smaller than a Ring Dove. However it may be within the realistic

values of sub-glottal pressure for a larger bird such as the Sulfur Crested Cockatoo, or a

Gang-gang Cockatoo which were both found to have chaotic calls in [9].
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Figure 5.3.3. Close up of delay plot constructed from chaotic time series produced by a
solution from one of the differential equations governing syrinx model

A fair conclusion that can be made from the results discussed in Section 5.3 is that there

exists chaos in the two-mass model of the syrinx for feasible parameters for some bird

species. This is of course only a first step and, time permitting, parameters more specific

for a particular bird would have been looked into. As is suggested in [5], for varying values

of the damping constant r the model exhibits varying amounts of overtones. Thus it seems

likely by varying the r and kc values it would be possible to induce chaos in the two-mass

model for realistic values of Ps for a significant range of different bird species.

A large obstacle that was faced when testing varied parameters for the syrinx model was

lack of computing power. For slightly lower values of kc and Ps, which would have been

closer to the default parameters provided by the model, the computers being used were

unable to complete the computation. Since Mathematica took longer to finish computa-

tions of chaotic solutions compared to periodic solutions it seems likely these parameters

would have resulted in chaotic data. However without the results from the computation

this can only be offered as speculation.



6
Conclusion

Aperiodic birdsongs of the Zebra Finch were analyzed for chaos using recurrence analysis

and delay plots. Although the data was successfully classified as deterministic, further

research suggested its behavior was more characteristic of periodic data with noise added

in. To investigate if chaos was present in current modeling techniques, a model of the avian

sound producing organ, the syrinx, was also analyzed for chaos using delay plot analysis.

The model chosen was a re-scaled version of a well known two-mass model of the human

vocal folds. The model was found to exhibit chaotic behavior for feasible parameters for

birds capable of producing chaotic vocalizations.
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