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Abstract

We describe an implementation of the solution to the conjugacy problem in Thompson’s group V
as presented by James Belk and Francesco Matucci in 2013. Thompson’s group V is an infinite
finitely presented group whose elements are complete binary prefix replacement maps. From
these we can construct closed abstract strand diagrams, which are certain directed graphs with
a rotation system and an associated cohomology class. The algorithm checks for conjugacy by
constructing and comparing these graphs together with their cohomology classes. We provide a
complete outline of our solution algorithm, as well as a description of the data structures which
store closed abstract strand diagrams and contain methods to simplify and compare them. The
final conjugacy checking program runs in O(n3) time.
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Introduction

In 1965, Richard Thompson introduced the groups F , T , and V by way of unpublished, hand-

written notes. Now referred to as Thompson’s groups, they are all infinite, finitely presented

groups concerned with dyadic subdivisions and homeomorphisms on different geometric spaces.

In particular, V consists of all homeomorphisms on the Cantor set determined by complete bi-

nary prefix replacement maps. For a comprehensive overview of Thompson’s groups, the reader

is referred to Canon, Floyd, and Parry [3]

Mathematician Max Dehn introduced the conjugacy problem in 1911 as one of three funda-

mental algorithmic decision problems in the study of infinite groups [5]. The conjugacy problem

is the problem of determining whether any two given elements of a group are conjugate. Al-

though it is not solvable in general [11], solutions to the conjugacy problem do exist within

certain groups.

There are three known solutions to the conjugacy problem in V , the first of which was

proved by Higman in 1974 [7]. Salazar-Diaz gave a second solution in 2006 [14]. We will focus

on the solution introduced by Belk and Matucci [2] in 2013. Their solution includes the use of

certain directed graphs called closed abstract strand diagrams, each of which has a rotation

system and an associated cohomology class. These strand diagrams can be reduced using certain

reduction moves and compared in order to decide whether two elements are conjugate. According
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to their solution, two elements of V are conjugate if and only if their reduced closed abstract

strand diagrams are equivalent. This means that they are isomorphic in a way that preserves

the associated cohomology class.

In this project, we make this solution precise and present an implementation of this solution

as an application. We also show that our algorithm runs in O(n3) time where n is the sum of

the length of the two elements for which we are checking conjugacy.

Given two elements of V , our application constructs the corresponding tree diagrams and

converts them into abstract strand diagrams. We implement data structures to store, compose,

and reduce tree diagrams and abstract strand diagrams, and present algorithms with analysis

of runtime for all of the relevant operations. We then close each abstract strand diagram and

include a data structure to store and reduce closed abstract strand diagrams.

To determine whether these closed abstract strand diagrams are equivalent, our implemen-

tation includes an isomorphism checker and a cohomology checker; once two strand diagrams

have been found to be isomorphic, we check whether their associated cohomology classes are the

same. It can happen that the number of self-isomorphisms grows linearly with the size of the

strand diagram, so we may need to construct as many as n isomorphisms, but we believe this

to be exceptionally rare.

We use the computation of matrix rank, which intially takes O(nω) time for matrix size n and

matrix multiplication coefficient ω. We also require, however, as many as n rank computations of

a slightly modified version of the original matrix, which runs in O(n2) time [6]; this is the source

of our cubic worst case. The upper bound on our average case, however, is somewhat quicker at

O(n2.495) [15]. We conjecture that the true average case for pairs of conjugate elements is O(nω),

since most often the first isomorphism found between their closed abstract strand diagrams will

preserve the cohomology class and there will be no need to construct any further isomorphisms.

For pairs of elements that are not conjugate, we believe that we will be able to determine that

they are not conjugate once their closed abstract strand diagrams are reduced and separated

into connected components; this can be done in O(n log n) time.
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In 2013, Hossain, McGrail, Belk, and Matucci proved the existence of a linear time algorithm

to solve the conjugacy problem on Thompson’s group F and released a Java implementation

of their solution [8]. As far as we know, ours is the first implementation of the solution to

the conjugacy problem in V using strand diagrams. We release a Java implementation of our

solution algorithm as a web application and an executable JAR file. We also release our source

code in the following GitHub repository:https://github.com/rnales/ConjugacyV. We hope that

researchers studying Thompson’s groups will use and improve upon our results in further study.

Chapter 1 provides the relevant background about conjugacy and Thompson’s group V , as

well as definitions which will be used throughout the paper. Chapter 2 outlines our implemen-

tation of data types to store elements of V as tree diagrams and strand diagrams, as well as

algorithms for all of the necessary operations on these objects. Chapter 3 provides a detailed

explanation of Belk and Mattuci’s solution to the conjugacy problem [2], including descriptions

of closed abstract strand diagrams and an example of determining whether two elements of V

are conjugate using this method from start to finish. Chapter 4 describes our implementation

of the remainder of the solution to the conjugacy problem as described in Chapter 3, as well

as analysis of runtime. Finally, Chapter 5 concludes the project and draws attention to open

questions and future work.

https://github.com/rnales/ConjugacyV
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1
Background

This chapter is an exposition of what is known about conjugacy and Thompson’s group V .

We begin be giving an overview of decision problems on finitely presented groups, including

the conjugacy problem, in Section 1.1. Then we will describe prefix replacement maps, which

are the elements of V , in Section 1.2. Section 1.3 introduces Thompson’s group V as well as

tree diagrams, including how to reduce and compose them. To conclude we discuss converting

elements of V to abstract strand diagrams in Section 1.4.

1.1 The Conjugacy Problem

Definition 1.1.1. In any group G with a generating set S, a word is a finite sequence of

elements of S and their inverses. For any word w, if there are no instances of adjacent pairs

xx−1 for all x ∈ S then we say that w is a reduced word.

Note that the product of w is an element of G, and every element of G can be represented by

a word in S. Additionally, a single element of a group G can be represented by multiple words.

Example 1.1.2. Consider the dihedral group D3 with identity r0 and generating set S =

{r1, s1}. Then r1s1 is a word in S shown in Figure 1.1.1, and s1r
−1
1 is also a word in S shown in

Figure 1.1.2. Note that both words represent the same element in D3.
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Figure 1.1.1. The element in D3 (far right) formed from the product of the word r1s1

Definition 1.1.3. A decision problem is a problem which asks for a “yes-or-no” answer to a

specific question.

Max Dehn was a German-born American mathematician who is best known for his work in

geometry, topology, and geometric group theory. In particular, he identified three fundamental

decision problems for finitely presented groups [5]. Dehn posed these problems in 1911, and they

are often referred to today as Dehn’s Decision Problems.

Definition 1.1.4. Given a finitely presented group G with generating set S, the word problem

is the descision problem of determining whether two words over S reperesent the same element

in G.

Definition 1.1.5. Given a finitely presented group G with generating set S, the conjugacy

problem is the decision problem of determing whether two words over S represent conjugate

elements in G.

Definition 1.1.6. The isomorphism problem is the decision problem of determining whether

two given finite group presentations represent isomorphic groups.

Figure 1.1.2. The element in D3 (far right) formed from the product of the word s1r
−1
1
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It is known that these problems do not have general solutions, but rather can have solutions

on specific groups [11]. Note that we ask the word and conjugacy problems about single groups,

whereas we ask the isomorphism problem about (at least) two groups at once. Dehn originally

posed the isomorphism problem about all groups; it has since been proven that not all finite

group presentations represent isomorphic groups. Today we instead ask the isomorphism problem

about classes of finitely presented groups [1, 12].

Definition 1.1.7. If a decision problem has a solution on a group G, we say that the problem

is decidable on G.

In 1974, Higman proved that the conjugacy problem is decidable on Thompson’s group V and

provided the first known solution [7]. A second solution was given by Salazar-Diaz in 2006 [14].

Belk and Matucci provided a solution in 2013 using strand diagrams, which will be the primary

subject of this text [2].

We will now discuss the conjugacy problem in detail.

Definition 1.1.8. Given a group G and elements g, h ∈ G, if there exists an element k ∈ G

such that h = k−1gk then we say that g and h are conjugate. We refer to k as the conjugator

from g to h.

Note that conjugacy is an equivalence relation.

Example 1.1.9. Consider the symmetric group S3 and the elements (12), (23) ∈ S3. Observe

that

(23) = (123)(12)(132).

Since (132)−1 = (123), we conclude that (12) and (23) are conjugate in S3.

Example 1.1.10. Consider (12), (123) ∈ S3. We construct the following table, in which the left

column shows every element s ∈ S3 and the right column shows (12) conjugated by s:

s (1) (12) (13) (23) (123) (132)

s−1(12)s (12) (12) (23) (13) (13) (23)
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Figure 1.2.1. Seven iterations of the Cantor set

Observe that there are no elements in S3 which, when used to conjugate (12), result in (123).

We conclude that (12) and (123) are not conjuate in S3.

Definition 1.1.11. A conjugacy class is an equivalence class of elements of G under the

conjugacy relation.

Note that each element g ∈ G belongs to exactly one conjugacy class.

Example 1.1.12. Recall Example 1.1.10. The bottom row of the table shows every element in

S3 which is conjugate to (12). Thus the set {(12), (23), (13)} forms a conjugacy class of S3.

Note that determining whether two elements of a given group are conjugate is equivalent to

determining whether those two elements belong to the same conjugacy class.

We will now discuss the Cantor set as motivation for defining elements of V .

1.2 The Cantor Set and Binary Prefix Codes

Consider the closed line segment [0, 1]. Now remove the middle third, i.e. the open interval (13 ,
2
3),

leaving the two line segments [0, 13 ] and [23 , 1]. Imagine iteratively removing the open middle third

from all of the remaining line segments. The result is a fractal in one dimension which we call

the Cantor set, shown in Figure 1.2.1.

We can represent these segments as decimals in base 3, considering all decimals along the

line segment [0, 1]. When we remove the first middle third, we are removing all decimals whose

first digit must be 1 (since .1 is equivalent to .02), leaving [0, .1] and [.2, 1]. In the next iteration,

we remove decimals whose second digit must be 1 (since .01 = .002), leaving [0, .01], [.02, .1],

[.2, .21], and [.22, 1]. If we were to consider infinite iterations of this, we would remove all decimals

containing the digit one and be left with only decimals containing 0’s and 2’s. Thus, another
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way to express the Cantor set the set of all infinite sequences of only 0’s and 2’s, i.e. {0, 2}∞.

There is a natural bijection between this set and the set {0, 1}∞, so we often refer to the Cantor

set as the set of all infinite binary sequences.

We will now introduce some notation and terminology which we will use throughout our

discussion of binary sequences.

Definition 1.2.1. If α and β are binary sequences, we write α < β if α is a prefix of β.

Definition 1.2.2. A set of binary sequences {α0, α1, . . . , αn−1} is a complete binary prefix

code if for every β ∈ {0, 1}∞ there exists exactly one i ∈ {0, 1, . . . , n− 1} such that αi < β. We

say that a complete binary prefix code is ordered if αi+1 is greater than αi for all 0 ≤ i < n.

Example 1.2.3. The set {000, 001, 01, 10, 11} is an ordered complete binary prefix code. The

set {00, 001, 01} is not a complete binary prefix code since there is no sequence α in this set such

that α < 1011000....

We now introduce prefix prelacement maps. Thompson’s group V , which will be the subject

of Section 1.3, is the group of all such functions.

Definition 1.2.4. Let {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} be ordered complete binary

prefix codes and let φ be a bijective function between them. We define f : {0, 1}∞ → {0, 1}∞

such that for ω ∈ {0, 1}∞

f(ω) =


φ(α0)ψ if ω = α0ψ
φ(α1)ψ if ω = α1ψ
...

...
φ(αn−1)ψ if ω = αn−1ψ

We call f a prefix replacement map. Additionally, we call the ordered list [α0, α1, . . . , αn−1]

the domain code and we call [β0, β1, . . . , βn−1] the range code.

We begin our indices at 0 rather than 1 for ease of implementation, to be discussed in

Chapter 2.
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Note that we can order the range code as follows:

[φ(α0), φ(α1), . . . , φ(αn−1)]

We refer to the list of subscripts of corresponding βi’s as the permutation code.

Given a domain code, range code, and permutation code, the corresponding prefix replace-

ment map is uniquely determined.

Example 1.2.5. Consider the two ordered complete binary prefix codes {00, 01, 1} and

{0, 10, 11}, with bijection

φ(00) = 0
φ(01) = 11
φ(1) = 10

The domain code is [00, 01, 1], the range code is [0, 10, 11], the permutation code is [0, 2, 1],

and the corresponding prefix replacement map is the function f defined as follows:

f(00ω) = 0ω
f(01ω) = 11ω
f(1ω) = 10ω

Then f(0100111010...) = 1100111010..., f(00001011...) = 0001011..., and f(1101010...) =

10101010... .

Example 1.2.6. Consider the prefix replacement map f in Example 1.2.5. This map is derived

from domain code [00, 01, 1], range code [0, 10, 11], and permutation code [0, 2, 1]. However, we

could derive this same map from domain code [00, 01, 10, 11], range code [0, 100, 101, 11] and

permutation code [0, 2, 3, 1].

Example 1.2.6 shows us that given a prefix replacement map, the domain code, range code,

and permutation code are not uniquely determined. This will be important for us in Sections 1.3.1

and 1.3.2.

Returning to the relationship between the Cantor set and binary sequences, we wil now

discuss how to represent a prefix replacement map using the middle thirds Cantor set.
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Figure 1.2.2. Two dydadic subdvisions of the Cantor set and a bijection between their dyadic intervals

Definition 1.2.7. Given a finite binary prefix α, we define Iα as the set of all binary sequences

β such that α < β. We call Iα a dyadic interval. A dyadic subdivision is a partition of the

Cantor set into finitely many dyadic intervals.

For example, if C is the middle thirds representation of the Cantor set, then I0 = C ∩ [o, 13 ]

and I1 = C ∩ [23 , 1]. Together I0 and I1 form a dyadic subdivision of the Cantor set. In general,

there is one dyadic subdivision on the Cantor set for each complete binary prefix code.

Two dyadic subdivisions of the Cator set are shown in Figure 1.2.2. Observe the top partition.

The first dyadic interval is I00, the second is I01, and the third is I1. Now observe the bottom

partition. The first dyadic interval is I0, the second is I10, and the third is I11.

Given these dyadic subdivisions of the Cantor set with the same number of dyadic intervals,

we can construct the following bijective map f between them,

f(I00) = I0
f(I01) = I11
f(I1) = I10

as shown in Figure 1.2.2. This bijective map is precisely the prefix replacement map given in

Example 1.2.5.

1.3 Thompson’s Group V

Definition 1.3.1. Thompson’s group V is the group of all binary prefix replacement maps

under function composition.
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Figure 1.3.1. A tree diagram representing the element of V with domain code [00, 01, 1], range code
[0, 10, 11], and permutation code [2, 0, 1]

We may refer to composition of two elements of V as multiplication of two elements of V ,

but these operations are equivalent in all respects. It is not obvious that the composition of two

prefix replacement maps is also a prefix replacement map; we will discuss this in Section 1.3.2.

We remark that the inverse of an element of V is precisely the inverse of the prefix replace-

ment map which defines it. We can obtain this by swapping the domain code with the range

code and inverting the permutation code as if it were a member of the symmetric group Sn,

where n is the length of the permutation.

Example 1.3.2. Consider once again the element of V presented in Example 1.2.5. The inverse

of this element has domain code [0, 10, 11], range code [00, 01, 1] and permutation code [0, 1, 2].

A tree diagram is a visual representation of an element of V using two binary trees. We

call the one on top the upper tree, the leaves of which correspond to the binary prefixes which

make up the domain code of the element. Likewise, we call the one on the bottom the lower

tree, the leaves of which correspond to the binary prefixes which make up the range code. We

draw lines between the leaves of the upper tree and the lower tree to represent the permutation

code.

Example 1.3.3. Recall the element of V from Example 1.2.5 with domain code [00, 01, 1], range

code [0, 10, 11], and permutation code [0, 2, 1]. Figure 1.3.1 shows this element as a tree diagram.
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1.3.1 Reduction in Thompson’s Group V

Central to our discussion of reduction in Thompson’s group V is the occurrence of pairs of binary

sequences called a carets.

Definition 1.3.4. Given a binary prefix α, a caret is is the pair α0, α1. We call the α0 the

left child and α1 the right child of the caret. In a domain or range code, if a left child and

corresponding right child appear in that order, we say that this is an ordered caret.

Example 1.3.5. Consider the domain code [00, 0100, 0101, 011, 1]. The prefixes 0100 and 0101

form an ordered caret.

Suppose we have an element of V with domain code containing the caret α0, α1 and range

code containing the caret β0, β1, for binary prefixes α and β. A reduction occurs when α0 maps

to β0 and α1 maps to β1 in the permutation code. We perform the reduction in the domain by

replacing the two prefixes of the caret with the single prefix α, and in the range by replacing

the two prefixes of the caret with the single prefix β. We must also modify the permutation by

removing the element which formerly corresponded to the left children of the reduced carets and

subtracting 1 from every element greater than the removed element.

Example 1.3.6. Consider the element with domain code [0, 100, 101, 11], range code [00, 01, 10, 11]

and permutation [3, 0, 1, 2]. The caret 100, 101 occurs in the domain code at indices 1 and 2.

Similarly, we have the caret 00, 01 occurring at indices 0 and 1 in the range code. Checking the

permutation, we see that 100 maps to 00 and 101 maps to 01, so a reduction can occur here.

The greatest common prefix of 100 and 101 is 10, and the greatest common prefix of 00 and

01 is 0. Thus the reduced element has domain code [0, 10, 11], range [0, 10, 11] and permutation

[2, 0, 1]. This reduction is shown in Figure 1.3.2.

Note that once we determine that a reduction is necessary, we need several pieces of infor-

mation to go about reducing the element. We need the indices of the left and right child of the

caret to be reduced in the domain code, as well as the greatest common prefix of those two

sequences. Similarly, we need the indices of the left and right child of the caret to be reduced in
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Figure 1.3.2. Reduction of the element of V with domain code [0, 100, 101, 11], range code [00, 01, 10, 11]
and permutation [3, 0, 1, 2]

the range code, as well as the greatest common prefix of those two sequences. Finally, we need

to know which element connects the right children of these two carets so that we can remove it

from the permutation and decrement all elements greater than this value.

A representation of an element of V is reduced if there are no possible reductions to perform.

Each element of V has a unique reduced form.

Definition 1.3.7. For a given reduced element of V , we will call the number of binary prefixes

in the domain code the size of the element.

Note that the size of an element of V is also equal to the number of binary prefixes in the

range code and the number of whole numbers in the permutation code.

Example 1.3.8. Recall the element of V presented in Example 1.2.5 which has domain code

[00, 01, 1], range code [0, 10, 11], and permutation code [0, 2, 1]. We can see that this element is

reduced. The size of this element is 3.

1.3.2 Composition in Thompson’s Group V

Recall that we multiply two elements of V using function composition. The following example

depicts one way of doing this.

Example 1.3.9. Consider the following two elements of V :

f(00ω) = 100ω
f(01ω) = 0ω
f(10ω) = 101ω
f(11ω) = 11ω

g(0ω) = 000ω
g(100ω) = 01ω
g(101ω) = 001ω
g(11ω) = 1ω
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Then the composition g ◦ f is defined by the following prefix replacement map, which send

elements of the domain code of f to elements of the range code of g:

(g ◦ f)(00ω) = 01ω
(g ◦ f)(01ω) = 000ω
(g ◦ f)(10ω) = 001ω
(g ◦ f)(11ω) = 1ω

This is a relatively simple example because the prefixes in the range code of f correspond

to the prefixes in the domain code of g. We can use this idea to multiply other elements of V .

Given two elemnts f, g ∈ V for which the range code of f does not necessarily match the domain

code of g, we can “un-reduce” them by adding carets to them until they do match.

Example 1.3.10. Consider the following two elements of V :

f(00ω) = 10ω
f(01ω) = 11ω
f(1ω) = 0ω

g(00ω) = 0ω
g(01ω) = 11ω
g(1ω) = 10ω

Then the range code of f is [0, 10, 11] and the domain code of g is [00, 01, 1]. In order to “un-

reduce” f , we will first add the caret with left child 00 and right child 01 to the range code,

and modify the domain code accordingly. Doing so yields the following equivalent representation

of f :

f(00ω) = 10ω
f(01ω) = 11ω
f(10ω) = 00ω
f(11ω) = 01ω

Similarly, we can add the caret with left child 10 and right child 11 to the domain code of g,

modifying the range code accordingly, to obtain the following equivalent representation of g:

g(00ω) = 0ω
g(01ω) = 11ω
g(10ω) = 100ω
g(11ω) = 101ω

Now that the the range code of f is equivalent to the domain code of g, we can compose g with

f to obtain the following element of V :

(g ◦ f)(00ω) = 100ω
(g ◦ f)(01ω) = 101ω
(g ◦ f)(10ω) = 0ω
(g ◦ f)(11ω) = 11ω
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In general, we compose elements of V using the fact that there is not a uniquely determined

domain code, range code, and permutation code for a given prefix replacement map. Given

f ∈ V with domain code [α0, α1, . . . , αn−1], range code [β0, β1, . . . , βn−1], and permutation code

[p0, p1, . . . , pn−1], and g ∈ V with domain code [γ0, γ1, . . . , γn−1], range code [λ0, λ1, . . . , λn−1],

and permutation code [q0, q1, . . . , qn−1], we obtain the composition g ◦ f by stragically adding

carets to f and g until the range code of f matches the domain code of g, modifying their

permutation codes accordingly. Once we acheive this matching, we use function composition to

obtain g ◦ f .

In the following section we introduce certain directed graphs called abstract strand diagrams

as an alternative representation for elements of V . We will use abstract strand diagrams in

Chapter 3 when we describe the solution to the conjugacy problem as presented by Belk and

Matucci [2].

1.4 Abstract Strand Diagrams

Definition 1.4.1. A directed graph is a 4-tuple G = (V,E, s, t) such that

• V is a set of vertices,

• E is a set of edges,

• the function s : E → V indicates a source vertex for each edge, and

• the function t : E → V indicates a target vertex for each edge.

Note that our definition for directed graphs allows for loops and multiple edges.

Definition 1.4.2. Let G = (V,E) be a directed graph. For each vertex v ∈ V , let ρv denote

the counterclockwise order of the edges connectd to v. Then the set {ρv | v ∈ V } is called a

rotation system for G.

Definition 1.4.3. An abstract strand diagram is a finite acyclic directed graph with a

rotation system that has the following properties:
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(a) A source vertex (left) and a sink vertex (right)

(b) A merge vertex (left) and a split vertex (right)

Figure 1.4.1. The four types of vertices in an abstract strand diagram

1. The graph has exactly one univalent source with an outgoing edge and exactly one uni-

valent sink with an incoming edge,

2. Every other vertex is either

(a) a split, a trivalent vertex with one incoming edge and two outgoing edges, or

(b) a merge, a trivalent vertex with two incoming edges and one outgoing edge.

We equivalently refer to edges as strands.

The four types of vertices (source, sink, split, and merge) are shown in Figure 1.4.1.

We show the procedure to obtain an abstract strand diagram from a tree diagram in Fig-

ure 1.4.2. The top of each caret becomes a vertex; in the upper tree we have splits, and in the

lower tree we have merges. The edges of the tree diagram become the edges of the graph, all of

which are directed downard. Finally, we connect the topmost vertex to a new vertex, the source,

and the bottommost vertex to another new vertex, the sink.

1.4.1 Reduction of Abstract Strand Diagrams

There are two moves that we use to reduce abstract strand diagrams, both of which are shown

in Figure 1.4.3. Both types involve one split and one merge.

A Type I reduction occurs whenever the left output of a split a becomes the left input of a

merge b, and the right output of a becomes the right input of b. After the reduction, both a and

b are deleted, as well as the two edges that had connected them, leaving one edge in their place.
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(a) Tree diagram (b) Tree diagram mid-conversion,
drawn as directed graph (c) Tree diagram after converstion

to abstract strand diagram

Figure 1.4.2. An example of converting a tree diagram to a strand diagram

A Type II reduction occurs when the output of a merge a becomes the input of a split b.

After the move takes place, both a and b are deleted as well as the strand that had connected

them, leaving two edges in their place.

1.4.2 Composition of Abstract Strand Diagrams

Suppose that given two abstract strand diagrams f and g we wish to obtain their composition

g◦f . To do so we “concatenate” them by placing g below f and connecting them in the following

way:

1. Remove the sink of f

2. Remove the source of g

3. Connect the new bottommost vertex of f (which will always be a merge) to the new

topmost vertex of g (which will always be a split)

4. Reduce the resulting abstract strand diagram

The above procedure is shown in Figure 1.4.4

Figure 1.4.3. The two moves to reduce abstract strand diagrams: Type I (left) and Type II (right).
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Figure 1.4.4. Composition of two abstract strand diagrams. From left to right, we have f , g, g ◦ f , and
g ◦ f reduced
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2
Implementing Thompson’s Group V

Now that we have introduced Thompson’s group V we will present our implementation. We

will first describe how to store complete binary prefix replacement maps, in a class that we

call TreeDiagram, as well as the necessary operations on these objects. We will then outline

the conversion of a TreeDiagram object to an AbstractStrandDiagram object and describe the

structures we created to store and reduce abstract strand diagrams.

2.1 Implementing Tree Diagrams in Thompson’s Group V

We implement Thompson’s group V in a class called TreeDiagram using three basic structures,

which are (1) an Array of binary prefixes to store the domain code, (2) an Array of binary

sequences to store the range code, and (3) an Array of whole numbers to store the permutation

code. We will make use of the Array operations get, set, add, and remove, all of which run in

constant time.

Example 2.1.1. Recall the binary prefix replacement map from Example 1.2.5. The instance

of this element using our implementation would be a TreeDiagram t with t.domain = [00, 01, 1],

t.range = [0, 10, 11], and t.permutation = [0, 2, 1].
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In our code and our algorithms we refer to the “domain code” as simply the domain for

simplicity. The same applies to the “range code” and the “permutation code,” which we will

henceforth refer to as the range and the permutation respectively.

The runtime to initialize a TreeDiagram is negligible.

2.1.1 Implementing the Inverse Operation

We calculate the inverse of a TreeDiagram using Algorithm 1. The algorithm proceeds by switch-

ing the domain with the range, which happens on lines 1 and 2. Then we traverse through the

permutation and switch each entry with its position in the array on lines 5 and 6. This opera-

tion executes in linear time O(n) where n is the length of the permutation, owing to the loop

(while) on line 4.

Input: TreeDiagram x
Output: inverse of x

1 inverseDomain = x.range
2 inverseRange = x.domain
3 i = 0
4 while i < x.permutation.size() do

// invert permutation code

5 p = x.permutation.get(i)
6 inversePerm.set(p) = i

7 end
// the inverse of x has domain code, range code, and permutation code

inverseDomain, inverseRange, and inversePerm, respectively

Algorithm 1: Algorithm to determine the inverse of a TreeDiagram

We remark that in our final conjugacy checking program this method is not used.

2.1.2 Implementing Reduction

Our method for reducing a TreeDiagram will begin by creating working copies of the domain,

range, and permutation of the object. We will modify these Arrays dynamically as we reduce

since, as we will see, performing reductions can create yet more redexes. At the end of this

method, the domain, range, and permutation objects that we have created will reperesnt the

reduced element.
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Recall that three conditions must be met for a reduction to occur in an TreeDiagram:

1. Two whole numbers p1, p2 must sit in indices i, i+ 1 in the permutation,

2. The prefixes in the domain at indices i, i + 1 must form an ordered caret (see Defini-

tion 1.3.4), and

3. The prefixes in the range at indices p1, p2 must form an ordered caret (see Definition 1.3.4).

Input: permutation, domain, range, and index i for a TreeDiagram

Output: a ReductionInfo object r

1 p1 = permutation.get(i)
2 p2 = permutation.get(i+ 1)
3 if p1 == p2− 1 then
4 dom1=domain.get(i)
5 dom2=domain.get(i+ 1)
6 if isOrderedCaret(dom1,dom2) then
7 ran1=range.get(p1)
8 ran2=range.get(p2)
9 if isOrderedCaret(ran1,ran2) then

10 r.isReduction=true
11 r.p2 = p2
12 r.domIdx = i
13 r.domGCP = dom1.getGCP(dom2)
14 r.lastDigit=getLastDigit(domGCP)
15 r.ranIdx = p1
16 r.ranGCP = ran1.getGCP(ran2)
17 return r

18 r.isReduction=false
19 return r

Algorithm 2: Algorithm for the helper method isReduction called on line 5 of Algorithm 3,
which stores all of the needed information to perform a reduction in a ReductionInfo object r

We look for these conditions by traversing incrementally through each Array, begining at

position 0 (the first slot). This process takes place in the helper method isReduction which is

called on line 5 of Algorithm 3 and shown in detail in Algorithm 2. As shown, it takes as input

the permutation, domain, range, and current position i of TreeDiagram.

We look at the permutation first; let p2 be the entry at position i + 1. Then if the entry

at position i is p1 = p2− 1 then the first condition is met. These operations occur on lines 1-3
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Next we look at the domain. It is the positions i and i+ 1 in the permutation which correspond

to the elements of the domain, so we check the binary prefixes in positions i and i+ 1 to see if

they form an ordered caret. We perform these checks on lines 4-6, then move on to look at the

range. The entries p1 and p2 correspond to the elements of the range, so we check the binary

prefixes at positions p1 and p2 to see if they form an ordered caret. This occurs on lines 7-9. If

this condition is met, then we know that a reduction must take place.

Recall from Section 1.3.1 that once all three conditions are met then several piece of infor-

mation are needed to perform the reduction:

1. The entry p2 from the permutation code,

2. The index i of the ordered caret in the domain,

3. The greatest common prefix of the ordered caret in the domain,

4. The index p1 of the ordered caret in the range, and

5. The greatest common prefix of the ordered caret in the range.

The aforementioned helper method, isReduction, as well as a sub-class within the TreeDiagram

class, ReductionInfo, stores that information for use in reduction; this occurs on lines 10-16 in

Algorithm 2.

Returning to Algorithm 3, lines 8-10 invoke three more helper methods, the first of which on

line 8 performs the appropriate reduction on the permutation code. The method reducePerm()

is detailed in Algorithm 4. We incrementally traverse the permutation and check for two con-

ditions:

1. If the current entry is equal to p2 then we must delete this entry. This happens on line 4 .

2. If the entry is greater than p2, we must decrement it by 1. This happens on line 6.

This method is linear on the size of the permutation due to the loop (while) on line 2.
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Input: TreeDiagram x
Output: x in reduced form

1 i = 0
2 boolean foundReduction

3 while i < x.permutation.size()−1 do
// check permutation, domain, and range at i for potential reductions

4 foundReduction = false

5 r = x.isReduction(x.permutation, x.domain, x.range, i)
6 if r.isReduction then
7 foundReduction = true

8 x.permutation = reducePerm(x.permutation, r) // see Algorithm 4

9 x.domain = reduceDomain(x.domain, r) // see Algorithm 5

10 x.range = reduceRange(x.range, r)

// if no reduction occurred, increment i to keep looking

11 if !foundReduction then
12 i+ +

// if a reduction occurred in the right child, decrement i to see if

another reduction was created

13 else if i > 0 && r.lastDigit.equals(“1”) then
14 i−−

// else a reduction occurred in the left child, so we should leave i as

is to check this spot again

15 end

Algorithm 3: Algorithm to reduce a TreeDiagram

The reduceDomain() helper method, called on line 9 of Algorithm 3, performs the appropriate

reduction on the domain. Algorithm 5 details this method. We incrementally traverse the indices

of the domain while checking for two conditions:

1. If the current index is equal to domIdx, then we replace the entry with domGCP . This

happens on line 3.

2. If the current index is equal to domIdx + 1, then we delete the entry from the domain,

which happens on line 5.

This algorithm is linear on the size of the domain due to the while loop on line 2.

The reduceRange() helper method, called on line 10 of Algorithm 3, performs the appropriate

reduction on the range. Similarly to reducing the domain, we incrementally traverse the indices

of the range while checking for two conditions:
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Input: permutation and ReductionInfo object r
Output: reduced permutation

1 j = 0
2 while j <permutation.size do
3 current = permutation.get(j)
4 if current == r.p2 then
5 permutation.remove(j)

6 else if current > r.p2 then
7 permutation.set(j,current-1)

8 else
9 j + +

10 end
11 return permutation
Algorithm 4: Algorithm for reducePerm() helper method called on line 8 of Algorithm 3

1. If the current index is equal to p1, then we replace the entry with the ranGCP

2. If the current index is equal to p1 + 1, then we delete the entry from the range

The algorithm for this method proceeds in the same way as Algorithm 5 and also runs in linear

time.

Returning to Algorithm 3, we then determine where to next look for a reduction. Three cases

follow:

Input: domain and ReductionInfo object r
Output: reduced domain

1 j = 0
2 while j <domain.size() do
3 if j == r.domIdx then
4 domain.set(j, r.domGCP)

5 else if j == r.domIdx+ 1 then
6 domain.remove(j)

7 j + +

8 end
9 return domain

Algorithm 5: Algorithm for reduceDomain() helper method, which is called on line 9 of
Algorithm 3
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(a) Before reduction, index i = 1
(b) After reduction, new reduction created at index
i = 0

Figure 2.1.1. An example of a reduction in a right child of a caret giving rise to a subsequent reduction

Case 1: No reduction took place

In this case, we simply increment i to check the next possible location for a reduction in

the permutation. This happens on line 11.

Case 2: A reduction occurred in the right child of a caret

In this case, we have created the possibility for another reduction to take place at the

previous location. We therefore must decrement i by 1 so as to check the previous location

for a new reduction. This occurs on line 13. See Figure 2.1.1 for an example of this case.

Case 3: A reduction occurred in the left child of a caret

In this case, we have created the possibility for another reduction to take place at this

location. We therefore do not increment i so as to check this location again for a new

reduction. See Figure 2.1.2 for an example of this case.

When we have finished traversing each Array, all necessary reductions will have taken place

and the resulting Arrays representing the domain, range, and permutation will accurately

reflect the reduced TreeDiagram.

Reducing a TreeDiagram is quadratic in n, where n is the length of the original permutation.

The outer loop (while) on line 3 of Algorithm 3 executes a number of times linear in n. However,

when a reduction is found we must reduce the domain, range, and permutation, all of which also

happen in linear time, hence, the O(n2) runtime of this algorithm. We remark that in our final

conjugacy checking program this method is not used.
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(a) Before reduction, index i = 0
(b) After reduction, new reduction created at index
i = 0

Figure 2.1.2. An example of a reduction in a left child of a caret giving rise to a subsequent reduction

2.1.3 Implementing Composition

Recall that given f, g ∈ V , we obtain the composition g ◦ f by (1) “un-reducing” them until the

range of f is equal to the domain of g and (2) composing the permutations of the un-reduced

elements. The “un-reduced” domain of f , the “un-reduced” range of g, and the composition of

permutations represent the composition g ◦ f . Refer to Section 1.3.2 for a full explanation of

composition in V .

Our method to obtain g◦f given TreeDiagrams f and g will begin by incrementally traversing

both the range of f and the domain of g and performing “un-reductions” until they are equal

to each other.

Similarly to the reduction process, we begin by initializing a whole number i at 0 to compare

the binary prefixes at position i in both the range of f and the domain of g, which we call

rangefCurrent and domaingCurrent. One of two cases then takes place:

Case 1: The prefixes rangefCurrent and domaingCurrent are not equal (Algorithm 6 line 5)

We must create a caret in either f or g. Since rangefCurrent and domaingCurrent are

not equal, it is necesarily the case that one is the prefix of the other. Then two more cases

emerge:

Subcase 1: The prefix rangefCurrent is shorter than domaingCurrent (Algorithm 6 line 6)

We conclude that rangefCurrent is a prefix of domaingCurrent, so we must create

a caret in f . We have the position for the caret in the range of f , which is i. We must
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Input: two elements of V , f and g
Output: the composition of f and g, g ∗ f

1 i = 0
2 while i < f .range.size() do
3 rangefCurrent = f.range.get(i)
4 domaingCurrent = g.domain.get(i)
5 if !rangefCurrent.equals(domaingCurrent) then
6 if rangefCurrent.getLength() < domaingCurrent.getLength() then
7 rangefIdx = i
8 domainfIdx = f.permutation.indexOf(i)
9 f.range = addCaret(f.range, rangefIdx)

10 f.permuutation = addCaret(f.permutation, domainfIdx)

11 f.domain = addCaret(f.domain, domainfIdx)

12 else
13 domaingIdx = i
14 rangegIdx = g.permutation.get(i)
15 g.domain = addCaret(g.domain, domaingIdx)

16 g.permutation = addCaret(g.permutation, domaingIdx)

17 g.range = addCaret(g.range, rangegIdx)

18 end

19 else
20 i+ +

21 end
22 newPermutation = composePerms(f.permutation, g.permutation)
23 result = ElementOfV(f.domain, g.range, newPermutation)

24 return reult

Algorithm 6: Algorithm to compose two elements of V

use the permutation to determine the index of the corresponding binary prefix in the

domain, which we do on line 8 of Algorithm 6. We use the helper method addCaret

to alter the domain, range, and permutation accordingly (lines 9- 11). Algorithm 7

outlines this method for the range, but it works the same way for the domain and

permutation. Each of these calls takes O(n) time for current size n of the element,

owing to the loop (while) on line 5.

In the domain and range, we take the current prefix α and create a caret with left

child α0 (line 2) and right child α1 (line 3). The leftChild takes the place i of the

original prefix α (line 7) and we insert the rightChild into position i + 1 (line 9).

The add method which is called on line 9 of Algorithm 7 creates a new Array entry
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at the specified position. As a result, any subsequent prefixes are shifted right from

their former position p to p+ 1.

Input: range of a TreeDiagram and position i to add caret

Input: updated range with added caret

1 α = range.get(i)
2 leftChild = α0
3 rightChild = α1
4 int j = 0

5 while j<range.size() do
6 if j==i then
7 range.set(j,leftChild)
8 else if j==i+1 then
9 range.add(j,rightChild)

10 j + +

11 end
12 return domain

Algorithm 7: Algorithm for addCaret() helper method used in Algorithm 6

Subcase 2: The prefix domaingCurrent is shorter than rangefCurrent (Algorithm 6 line 12)

In this case, we must create a caret in g. We have the position for the caret in the

domain of g, which is i. We must use the permutation to determine the index of the

corresponding binary prefix in the range, which we do on line 14 of Algorithm 6.

We use the helper method addCaret to alter the domain, range, and permutation

accordingly on lines 15-17.

Case 2: The two binary prefixes are equal (Algorithm 6 line 19)

This is the desired case. We simply increment i to check the next position in the range of

f and the domain of g.

The outer loop on line 2 executes n times, and each addCaret method call also takes linear

time. Thus our composition algorithm runs in O(n2) time, where n is the size of f plus the size

of g. We remark that in our final conjugacy checking program this method is not used.
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2.2 Implementing Abstract Strand Diagrams

In order to construct an abstract strand diagram we require a data type called Strand to

represent edges (which we will equivalently refer to as “strands”), as well as a data type called

Vertex to represent vertices. Once we have these implementations, an AbstractStrandDiagram

is essentially a DoublyLinkedList of Vertex and Strand objects.

Throughout our implementation, we use the following terms to describe the roles of incoming

and outgoing edges at a given vertex:

• Input: parent

• Left input: left parent

• Right input: rigth parent

• Output: child

• Left output: left child

• Right output: right child

which we discuss more in the following section.

2.2.1 Implementing the Strand Class

Any edge in an abstract strand diagram is connected to two vertices. Since the edges are directed,

we refer to these as beginVertex and endVertex. In addition to knowing this information, each

instance of a Strand stores the role it plays at its begin vertex (either child, lchild, or rchild)

as well as the role it plays at its end vertex (either parent, lparent, or rparent). We use an

enumerated data type called Role to store this set of constants. For a visual representation of a

Strand object refer to Figure 2.2.1.

2.2.2 Implementing the Vertex Class

Each instance of a Vertex knows which type it is: source, sink, split, or merge. We use

an enumerated data type called Type to store this set of constants. Additionally, each Vertex
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Figure 2.2.1. A Strand object stores data about its vertices and the role it plays at each vertex

stores a Dictionary with entries Role: Strand. A source, for example, would store a dictionary

containing only one entry for which the key is child. A merge, however, would store a dictionary

containing three entries, for which the keys are lparent, rparent, and child. Lastly, each

vertex stores a reference to the Node which contains it in the DoublyLinkedList which defines

the AbstractStrandDiagram.

Example 2.2.1. Observe the Vertex v below of type merge

The dictionary of strands for v is the following:

{lparent : e0, rparent : e1, child, e2}

2.2.3 Converting a Tree Diagram into an Abstract Strand Diagram

Recall that a TreeDiagram object uses a list of binary prefixes to store the domain, a list of binary

prefixes to store the range, and a list of whole numbers to store the permutation. In a tree

diagram, the top of each caret comes with an associated binary prefix, as shown in Figure 2.2.2. In

the upper tree, each of these will become a split vertex. Using these associated binary prefixes will

aid in our construction of the corresponding AbstractStrandDiagram. Similary, we use the caret

prefixes in the lower tree to construct the merge vertices in the abstract strand diagram. With
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Figure 2.2.2. Each vertex in a tree diagram has an associated binary prefix

this information, we convert a TreeDiagram to an AbstractStrandDiagram in the following

steps, as shown in Algorithm 8. Refer Figure 2.2.3 for an example of this algorithm at work.

1. Create source and sink vertices

Because they are not represented in the original tree diagram, the source vertex and sink

vertex do not have associated binary prefixes in the same way that split vertices and merge

vertices do. We create them on lines 1 and 2 of Algorithm 8 by passing the appropriate

Type to the Vertex constructor. We will use the strings “source” and “sink” as their

prefix identifiers, respectively, and deal with them as special cases below. We create a

(a) The TreeDiagram with domain [00,01,1], range
[0,10,11], and permutation [0,2,1]

(b) The corresponding AbstractStrandDiagram

Figure 2.2.3.
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Input: one element f ∈ V , i.e. a TreeDiagram object

Output: the abstract strand diagram representing f

1 source = Vertex(sink)

2 sink = Vertex(sink)

3 DoublyLinkedList vertices

4 vertices.add(source)

5 vertices.add(sink)

6 createSplits()

// see Algorithm 9

7 createMerges()

// see Algorithm 10

8 connectSplitsAndMerges()

// see Algorithm 11

9 result = AbstractStrandDiagram(vertices)

10 return result

Algorithm 8: Algorithm to convert an element of V in TreeDiagram form to an
AbstractStrandDiagram

DoublyLinkedList called vertices and add these two vertices to it on lines 3-5, which

we will use at the end of this procedure to construct the resulting AbstractStrandDiagram.

Assume that all other Vertex objects created in the following steps are also added to this

vertices.

2. Use domain to create and connect all split vertices

We show our method to create all necessary split type Vertex objects in Algorithm 9.

Refer to Figure 2.2.3b for an example of this method; after this step we will have created

the red Strands and the Vertex objects labeled source, e, and 0.

We need to obtain the set of binary prefixes which correspond to each split vertex in the

upper tree of the given element. We initialize this Set on line 1 and call it splitPrefixes.

Each binary prefix in the domain corresponds to a leaf in the upper tree, and each 0 or 1

in the prefix indicates location in the left or right child of a caret, respectively. The Set

type does not allow duplicates; therefore, if we include all of the proper prefixes for all

of the prefixes in the domain, then we will obtain the desired Set of splitPrefixes. We

include e to represent the empty string in every set, since the empty string is a prefix of
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all binary prefixes. We compute the proper prefixes for each sequence b in domain and add

them to splitPrefixes on lines 2-3.

Now we can create one vertex for each such prefix identifier. We also create a

Dictionary called splits with entries prefix:Vertex so that we can access the correct

Vertex as needed throughout the rest of the algorithm. This occurs on lines 5-9.

The next step is to connect each split type Vertex to its parent Vertex. For the

Vertex whose identifier is e, we know that the parent Vertex is always the source type

Vertex since this is the case in all non-empty abstract strand diagrams. Furthermore, we

know that the role of the connecting Strand s at the source type Vertex is child and

the role of s at the split is parent. We address this case on lines 14-16 in Algorithm 9.

For any other split type Vertex v with binary prefix b, the parent split type Vertex w

is that which is identified with the largest proper prefix of b (lines 18-19). We know that

the role of the connecting Strand s at v is parent. If the last digit of b is a 0, then the

role of s at w is lchild (line 20). Else (if the final digit of b is a 1) the role of s at w is

rchild (line 23). With this information, we can attach our Strand and Vertex objects

accordingly (lines 24-25).

Algorithm 9 runs in quadratic time, owing to the loop (for) on line 11 and the

Dictionary lookup on line 19.

3. Use range to create and connect all merge vertices

We show our method to create all necessary merge type Vertex objects in Algorithm 10.

Refer to Figure 2.2.3b for an example of this method; after this step we will have created

the green Strands and the Vertex objects labeled sink, e, and 1.

We need to obtain the set of binary prefix codes which correspond to each merge

vertex in the lower tree of the given element. We initialize this Set on line 1 and call

it mergePrefixes. Each binary prefix in the range corresponds to a leaf in the lower

tree, and each 0 or 1 in the prefix indicates location in the left or right child of a caret,
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Input: a TreeDiagram f
Output: the split vertices to include in the AbstractStrandDiagram for f

1 Set<String> splitPrefixes

2 for b in f .domain do
3 splitPrefixes.add(b.getProperPrefixes())

4 end
5 Dictionary<String, Vertex> splits

6 for b in splitPrefixes do
7 v = Vertex(b)
8 splits.put(b, v)

9 vertices.add(v)

10 end
11 for b in splits.keys do
12 v = splits.get(b)
13 Strand s
14 if b == e then
15 v.addStrand(s, parent)

16 source.addStrand(s, child)

17 else
18 parent = getPrefix(b)
19 w = splits.get(parent)

20 if lastDigit(b) == 0 then
21 r = lchild

22 else
23 r = rchild

24 w.addStrand(r, s)
25 v.addStrand(parent, s)

26 end

Algorithm 9: Algorithm for createSplits() helper method to create the split vertices for
an AbstractStrandDiagram from a TreeDiagram
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respectively. Therefore, if we include all of the proper prefixes for each prefix in the range,

then we will obtain the desired set. We compute the proper prefixes for each sequence b in

range and add them to mergePrefixes on lines 2-3.

Subsequently, we create one merge vertex for each such prefix identifier. We also create

a Dictionary called merges with entries prefix:Vertex so that we can access the correct

Vertex as needed throughout the rest of the algorithm. This occurs on lines 5-9.

The next step is to connect each merge type Vertex to its child Vertex. For the Vertex

whose identifier is e, we know that the child Vertex is always the sink type Vertex since

this is the case in all non-empty abstract strand diagrams. Furthermore, we know that the

role of the connecting Strand s at the sink type Vertex is parent and the role of s at

the merge is child. We address this case on lines 14-16. For any other merge type Vertex

v with binary prefix identifier b, the child split type Vertex w is that which is identified

with the largest proper prefix of b (lines 19-20). We know that the role of the connecting

Strand s at v is child. If the last digit of b is a 0, then the role of s at w is lparent

(line 22). Else (if the final digit of b is a 1), the role of s at w is rparent (line 24). With

this information, we can attach our Strand and Vertex objects accordingly (lines 25-26).

Similarly to Algorithm 9, Algorithm 10 runs in quadratic time.

4. Use permutation to create strands which connect split vertices and strand

vertices

We show our method to connect all split type Vertex objects and merge type Vertex

objects in Algorithm 11. Refer to Figure 2.2.3b for an example of this method; after this

step we will have created the blue Strands.

Now we have created every Vertex that we need, but not every Strand. The only

vertices that remain unconnected are the leaves of the upper tree, which are splits, and

the leaves of the lower tree, which are merges. The permutation tells us which child of

which split type Vertex connects to which parent of which merge type Vertex. We begin
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Input: one TreeDiagram f
Output: the merge vertices to include in the AbstractStrandDiagram for f

1 Set<String> mergePrefixes

2 for b in f .range do
3 mergePrefixes.add(b.getProperPrefixes())

4 end
5 Dictionary<String, Vertex> merges

6 for b in mergePrefixes do
7 v = Vertex(b)
8 merges.put(b, v)

9 vertices.add(v)

10 end
11 for b in merges.keys do
12 v = merges.get(b)
13 Strand s
14 if b == e then
15 sink.addStrand(parent,s)
16 v.addStrand(child,s)

17 else
18 else
19 child = getPrefix(b)
20 w = merges.get(child)

21 if lastDigit(b)==0 then
22 r = lparent

23 else
24 r=rparent
25 v.addStrand(child, s)
26 w.addStrand(r, s)

27 end

28 end

Algorithm 10: Algorithm for createMerges() helper method to create the merge vertices
for an AbstractStrandDiagram from a TreeDiagram
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by iterating through the domain. The greatest proper prefix of each binary prefix dom in

the domain will give us the prefix identifier splitId for the current split type Vertex v

(lines 3-5). Likewise, the greatest proper prefix of each binary prefix ran in the range will

give us the prefix identifier mergeId for the current merge type Vertex w (lines 12-14).

We use the last digit of each prefix identifier to determine what role the newly created

Strand will play at each vertex. If the last digit of the prefix identifier for the currrent

split type Vertex v is a 0, then the begin role of our Strand s at v is lchild (line 8).

Else (if the last digit is 1) the begin role of s at v is rchild (line 10). Similarly, if the last

digit of the prefix identifier for the current merge type Vertex w is a 0, then the end role

of our Strand s at w is lparent (line 17). Else (if the last digit is 1) the end role of s at w

is rparent (line 19). With this information we can attach our Strand and Vertex objects

accordingly (lines 21-22).

Algorithm 11 runs in quadratic time, owing to the loop (while) on line 2 and various

Dictionary lookups within the loop.

5. Use completed vertices list to create new abstract strand diagram

Returning to Algorithm 8, we simply call the AbstractStrandDiagram constructor on

line 9. We pass vertices as an argument, which contains all of the necessary information

to define the AbstractStrandDiagram.

Algorithm 8 runs in O(n2) time for TreeDiagram length n, owing to quadratic runtime of

helper methods createSplits(), createMerges(), and connectSplitsAndMerges().

2.2.4 Reduction of Abstract Strand Diagrams

Each reduction move of an AbstractStrandDiagram involves one split type Vertex and one

merge type Vertex. To search an AbstractStrandDiagram for possible reductions, we will ex-

amine each split type Vertex to see if its surrounding vertices meet the stipulations for a

reduction to take place.
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Input: a TreeDiagram f
Output: final list of connected vertices to form the AbstractStrandDiagram

for f

1 domIdx = 0
2 while domIdx<domain.size() do
3 dom = domain.get(domIdx)
4 splitId = largestProperPrefix(dom)

5 v = splits.get(splitId)
6 last = getLastDigit(dom)

7 if last == 0 then
8 beginRole = lchild

9 else
10 beginRole = rchild

11 ranIdx=permutation.get(domIdx)
12 ran = range.get(ranIdx)
13 mergeId = largestProperPrefix(ran)
14 w = merges.get(mergeId)
15 last = getLastDigit(ran)
16 if last == 0 then
17 endRole = lparent

18 else
19 endRole = rparent

20 Strand s
21 v.addStrand(beginRole, s)
22 w.addStrand(endRole, s)
23 domIdx+ +

24 end

Algorithm 11: Algorithm for helper method connectSplitsAndMerges() which uses the
permutation from a TreeDiagram to connect each split type Vertex and merge type Vertex
of the corresponding AbstractStrandDiagram

We present our reduction method in Algorithm 12. On line 1 we initialize a Stack called

splitsToCheck, which initially includes every split type Vertex in the AbstractStrandDiagram.

We remark that the decision to examine split vertices instead of merge vertices was arbitrary.

As discussed in Section 1.4.1, there are two cases which can result in a reduction taking place.

We describe them below.

Case 1: Type I Reduction

All vertices, strands, and names in this case are shown in Figure 2.2.4 and also correspond

to the variable names used in Algorithm 12. Given a split vertex split with left child
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Figure 2.2.4. Requirements and procedure for a type I reduction to take place

Figure 2.2.5. Requirements and procedure for a type II reduction to take place

Input: one AbstractStrandDiagram f
Output: f in reduced form

1 splitsToCheck = getSplitsToCheck()

2 while splitsToCheck.isNotEmpty() do
3 split = splitsToCheck.pop()

4 splitParent = split.getStrand(parent).getBeginVertex()

5 lchildEnd = split.getStrand(lchild).getEndVertex()

6 rchildEnd = split.getStrand(rchild).getEndVertex()

7 lchildEndRole = split.getStrand(lchild).getEndRole

8 rchildEndRole = split.getStrand(rchild).getEndRole()

9 if lchildEnd == rchildEnd && lchildEndRole == lparent && rchildEndRole ==
rparent then

10 reductionI() // see Algorithm 13

11 continue

12 else if splitParent.type == merge then
13 reductionII() // see Algorithm 14

14 continue

15 end

Algorithm 12: Algorithm to reduce an AbstractStrandDiagram
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strand lchildStrand, left child vertex lchildEnd, right child strand rchildStrand, and

right child vertex rchildEnd, there are three requirements to be met for a type I reduction

to take place.

1. The vertex lchildEnd and the vertex rchildEnd must be equal,

2. The end role of lchildStrand at lchildEnd must be lparent, and

3. The end role of rchildStrand at rchildEnd must be rparent.

We check for these conditions on line 9 of Algorithm 12. If all three of these conditions are

met, then we proceed with the reduction.

The helper method for executing a type I reduction is shown in Algorithm 13. We will

change the name of lchildEnd to merge for ease of understanding. We grab the parent

Strand of splitParent, which we call splitParentStrand, on line 1, and we grab the

child Vertex of merge, which we call mergeChild, on lines 2-3. This allows us to connect

the Vertex called splitParent to mergeChild using SplitParentStrand on line 5.

Now we can delete split, merge, and the three unused Strands (lines 6). Lastly, we

grab any adjacent split type Vertex objects and add them to splitsToCheck to ensure

that we find any newly created reductions (lines 7-10).

Input: one AbstractStrandDiagram f
Output: f after performing a type I reduction

1 splitParentStrand = split.getStrand(parent)

2 mergeChildStrand = merge.getStrand(child)

3 mergeChild = mergeChildStrand.getEndVertex()

4 endRole = mergeChildStrand.getEndRole()

5 mergeChild.addStrand(endRole, splitParentStrand)

6 delete(split,merge,lchildStrand, rchildStrand,mergeChildStrand)

7 if splitParent.type == split then
8 splitsToCheck.push(splitParent)

9 if mergeChild.type == split then
10 splitsToCheck,push(mergeChild)

Algorithm 13: Algorithm for reductionI() helper method, called on line 10 of Algorithm 12

Due to the absence of any repeated structures, Algorithm 13 runs in constant time.
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Case 2: Type II Reduction

Note that all vertices, strands, and names in this case are represented in Figure 2.2.5

and also correspond to the variable names used in Algorithm 12. Given the Vertex called

split with parent Vertex called splitParent, if the type of splitParent is merge then a

type II reduction can take place. We check for these conditions on line 12 of Algorithm 12.

The method for executing a type II reduction is shown in Algorithm 14. We now change

the name of splitParent to merge for ease of understanding. We will use the the left

parent Strand of merge to connect lparentBegin to lchildEnd (lines 2-5), and we will

use the right parent Strand of merge to connect rparentBegin to rchildEnd (lines 6-9).

Now we can delete merge, split, and the three unused Strands (line 10). Lastly, we grab

any adjacent split type Vertex objects and add them to splitsToCheck to ensure that

we find any newly created reductions (lines 11-18).

Input: one AbstractStrandDiagram f
Output: f after performing a type II reduction

1 merge = splitParent

2 lparentStrand = merge.getStrand(lparent)

3 lchildStrand=split.getStrand(lchild)

4 leftEndRole = lchildStrand.getEndRole()

5 lchildEnd.addStrand(leftEndRole, lparentStrand)

6 rparentStrand = merge.getStrand(rparent)

7 rchildStrand=split.getStrand(rchild)

8 rightEndRole = rchildStrand.getEndRole()

9 rchildEnd.addStrand(rightEndRole, rparentStrand)

10 delete(merge,split,lchildStrand, rchildStrand,splitParentStrand)

11 if lparentBegin.type == split then
12 splitsToCheck.push(lparentBegin)

13 if rparentBegin.type == split then
14 splitsToCheck.push(rparentBegin)

15 if lchildEnd.type == split then
16 splitsToCheck.push(lchildEnd)

17 if rchildEnd.type == split then
18 splitsToCheck.push(rchildEnd)

Algorithm 14: Algorithm for reductionII() helper method, called on line 13 of Algorithm 12

Due to the absense of any repeated structures, Algorithm 14 runs in constant time.
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Owing to the loop (while) on line 2, Algorithm 12 runs inO(n) time for n Vertex objects. Note

that reduction of an AbstractStrandDiagram is more efficient than reduction of a TreeDiagram

by an entire factor of n.



3
The Solution to the Conjugacy Problem

Given the strand diagram for an element of V we can close it. To do so, we remove the source

vertex and the sink vertex, and connect the child vertex of the source to the parent vertex of

the sink with a single connecting strand. This procedure is shown in Figure 3.0.1. The resulting

structure is called a closed abstract strand diagram.

When we close an abstract strand diagram, we need a way to keep track of how it was closed.

In Figure 3.0.1 we do so using a blue circle called a puncture. In order to make this concept

rigorous, we use what is called a cohomology class. Defining cohomology classes will be the

subject of Sections 3.1 and 3.2.

Definition 3.0.2. A closed abstract strand diagram is a finite directed topological graph

with a rotation system and an associated cohomology class. Every vertex is either a split or a

merge. Closed abstract strand diagrams can also contain dircted edges with no vertices called

free loops.

We will describe free loops in detail in Section 3.3.

We reduce closed abstract strand diagrams in the same way that we reduce abstract strand

diagrams. There are, however, two added complications. The first is that as we reduce we must

continue to keep track of the cohomology class of the closed abstract strand diagram. The
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Figure 3.0.1. How to close an abstract strand diagram and obtain a closed abstract strand diagram

second is that we must add a third reduction move to address free loops when they arise. We

will describe how to obtain the unique reduced form of a given closed abstract strand diagram

in Section 3.3.

Belk and Matucci prove that two elements of V are conjugate if and only if their reduced

closed abstract strand diagrams are isomorphic in a way that preserves their cohomology class [2];

we will describe this theorem in detail in Section 3.4.

Most of the content of this chapter comes from Belk and Matucci [2], but we have expanded

upon it to include previously unexplained specifics, particularly concerning keeping track of the

cohomology class as we reduce.

3.1 Cohomology on Directed Graphs

Definition 3.1.1. Let G = (VG, EG, sG, tG) and H = (VH , EH , sH , tH) be directed graphs. An

isomorphism between G and H is a pair (φV , φE) where φV : VG → VH and φE : EG → EH

are bijections satisfying the following conditions:

1. An edge e ∈ EG connects vertices v, w ∈ VG if and only if φE(e) ∈ EH connects

φV (v), φV (w) ∈ VH

2. For any e ∈ EG,

• sH
(
φE(e)

)
= φV

(
sG(e)

)
• tH

(
φE(e)

)
= φV

(
tG(e)

)
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In other words, the source and target of each edge e on G must correspond to the source

target of φE(e) on H, respectively.

For closed abstract strand diagrams in particular, we impose the additional restriction that the

isomorphism must preserve the rotation system, i.e. for any edge e ∈ EG and connected vertex

v ∈ VG, the role of e at v must be equal to the role of φE(e) at φV (v). In other words, the

bijection φE must preserve the role that each strand plays at each vertex.

We remark that for any vertex v ∈ VG, the type of v will be equal to the type of φV (v); in

other words, the bijection φV preserves the type of each vertex.

Example 3.1.2. Consider the closed abstract strand diagrams G = (VG, EG) and H =

(VH , EH) shown in Figure 3.1.1, where VG = {v0, v1, v2, v3}, EG = {e0, e1, e2, e3, e4, e5},

VH = {w0, w1, w2, w3}, and EH = {e6, e7, e8, e9, e10, e11}. The following bijections φV : VG → VH

and φE : EG → EH form an isomorphism between G and H:

φV (v0) = w3 φE(e0) = d1
φV (v1) = w2 φE(e1) = d0
φV (v2) = w1 φE(e2) = d3
φV (v3) = w0 φE(e3) = d2

φE(e4) = d5
φE(e5) = d4

Here is an isomorphism between G and H as directed graphs:

φV (v0) = w0 φE(e0) = d0
φV (v1) = w1 φE(e1) = d1
φV (v2) = w2 φE(e2) = d2
φV (v3) = w3 φE(e3) = d3

φE(e4) = d4
φE(e5) = d5

The above is not an isomorphism of closed abstract strand diagrams G and H, since it does not

preserve the rotation system.

We now turn to defining cohomology classes on directed graphs. We do so using cocycles,

which we obtain by assigning integer values to edges. We can compare cocycles using cohomology,

an equivalence relation. The equivalence classes under cohomology are called cohomology classes.
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Figure 3.1.1. Two closed abstract strand diagrams which are isomorphic

Definition 3.1.3. Given a directed graph G = (V,E), the vector space RE is the set of all

functions f : E → R. Elements of RE are called cocycles.

We will write cocycles using the following three notations:

1. As described in Definition 3.1.3, we can write cocycles as a functions f : E → R.

2. We can describe RE as the set of all formal linear combinations of edges, and thus may

write cocycles as linear combinations of edges.

3. Given m edges, assign a number {0, 1, . . . ,m−1} to each edge. We can then write cocycles

as m×1 vectors where for i ∈ {0, 1, . . . ,m−1} the entry at row i corresponds to the value

of f at ei.

Example 3.1.4. Consider a graph with edge set E = {e0, e1, e2, e3, e4}. Consider the following

element b ∈ RE :

b(e0) = 0
b(e1) = 2
b(e2) = 0
b(e3) = −4
b(e4) = 3

We can equivalently express b as the linear combination

b = 2e1 − 4e3 + 3e4
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Figure 3.1.2. How to assign coefficients to edges in a coboundary of a vertex

or the vector

~b =


0
2
0
−4
3



Definition 3.1.5. Given a directed graph G = (V,E), the vector space RV is the set of all

functions f : V → R.

Our notations on RV reflect our notations in RE . Note that V is a basis for RV .

Definition 3.1.6. Let G = (V,E) be a directed graph with m vertices and n edges such that

V = {v0, v1, . . . , vm−1} and E = {e0, e1, . . . , en−1}. We define the coboundary of a vertex v as

~δv = λ0e0 + λ1e1 + · · ·+ λn−1en−1 where

λi =


−1 if ei is an incoming edge to v,
1 if ei is an outgoing edge from v,
0 if ei is not connected to v or forms a loop at v,

as shown in Figure 3.1.2. Let b ∈ RV be a formal linear combination of vertices, say b =

α0v0 + α1v1 + · · ·+ αm−1vm−1 for αj ∈ R. We define the coboundary of b as

~δb = α0
~δv0 + α1

~δv1 + · · ·αm−1 ~δvm−1

We define the coboundary map as the linear function δ : RV → RE which satisifies the above

conditions for all b ∈ RV .

A cocycle ~a ∈ RE is called a coboundary if ~a = ~δb for some b ∈ RV .

Example 3.1.7. Consider the left closed abstract strand diagram in Figure 3.1.3. The cobound-

ary of v2 is

~δv2 = e0 − e1 + e3
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Figure 3.1.3. The two closed abstract strand diagrams above are isomorphic but not cohomologous

We can also depict ~δv2 as a matrix where row i corresponds to λi. Thus

~δv2 =



1
−1
0
1
0
0



Definition 3.1.8. For a given coboundary map δ and two cocycles ~a and ~b, we say that ~a and

~b are cohomologous if ~a−~b is a coboundary.

We note that cohomology is an equivalence relation. The corresponding equivalence classes

are called cohomology classes.

When we draw a directed graph on the plane, we can indicate a cohomology class by drawing

a puncture. Given a puncture, you can draw a path from the puncture to infinity to obtain a

cocycle of that graph in the following manner.

The coefficient of an edge e which the path does not cross is 0. If the path croses an edge

e in a counterclockwise direction, then it’s coefficient is 1. If the path crosses e in a clockwise

direction, then then its coefficient is −1. If the path crosses e multiple times, we add or subtract

1 the corresponding number of times. Figure 3.1.4 shows these cases. Any two cocyles obtained

this way are cohomologous.
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Figure 3.1.4. The edge ei crosses the path ak in a counterclockwise direction, so we would add 1 to the
coefficient of ei (left). The edge ej crosses the path al in a clockwise direction, so we would subtract 1
from the coefficient of ej (right).

Example 3.1.9. Figure 3.1.5 shows two paths labeled ~b1 and ~b2. The path ~b1 represents the

cocycle e1 + e5 and the path ~b2 represents the cocycle e0 + e3 + e5. Alternatively, we have

~b1 =



0
1
0
0
0
1

 ~b2 =



1
0
0
1
0
1


Notice that

~b2 − ~b1 =



1
0
0
1
0
1

−


0
1
0
0
0
1

 =



1
−1
0
1
0
0


which is precisely the coboundary ~δv2. In general, dragging a cocycle path across one vertex

changes the cocycle by the coboundary of that vertex. Since ~b2−~b1 = ~δv2 and ~δv2 is a coboundary,

we conclude that ~b1 and ~b2 belong to the same cohomology class (they are cohomologous).

3.2 The Coboundary Matrix

Definition 3.2.1. Given a directed graph as described in Definition 3.1.6, we can construct an

n×m matrix as follows: [
~δv1 ~δv2 . . . ~δvm

]
We call this matrix the coboundary matrix.
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Figure 3.1.5. Two directed graph with associated cohomology classes indicated punctures, as well as
cocycles ~b1 and ~b2 (left) and ~b3 (right).

Example 3.2.2. Consider the graph at left in Figure 3.1.5. The coboundary matrix is

0 −1 1 0
0 1 −1 0
−1 1 0 0
0 0 1 −1
−1 0 0 1
1 0 0 −1


Note that the graph at right in Figure 3.1.5 has the same coboundary matrix. This is true

because they are isomorphic graphs.

Theorem 3.2.3. Let G and H be two isomorphic directed graphs with coboundary matrix M .

Let ~a be a cocycle from G and ~b be a cocycle from H. Then ~a and ~b are cohomologous if and

only if the vector ~a−~b is a linear combination of the columns in M .

This follows immediately from the fact that the range of a linear transformation is the column

space of the associated matrix. In particular, the column space of the coboundary matrix is

precisely the set of cocycles that are coboundaries.

Corollary 3.2.4. Given coboundary matrix M , the cocycles ~a and ~b are cohomologous if and

only if the augmented matrix [
M | ~a−~b

]
has the same rank as the original matrix M .
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Example 3.2.5. Consider the two isomorphic closed abstract strand diagrams in G (left) and

H (right) in Figure 3.1.5. Note that their coboundary matrix is equal to that in Example 3.2.2.

Observe the two cocycles

~b1 =



1
0
0
1
0
1

 ~b3 =



0
1
1
0
0
1


Then

~b1 − ~b3 =



1
−1
−1
1
0
0


We compute that the rank of the augmented matrix



0 1 −1 0 1
0 −1 1 0 −1
−1 1 0 0 −1
0 0 1 −1 1
1 0 0 −1 0
−1 0 0 1 0



is 4, whereas the rank of the original coboundary matrix is 3. Thus ~b1 and ~b3 are not cohomol-

ogous.

We say that two closed abstract strand diagrams are equivalent if their graphs are isomor-

phic and they belong to the same cohomology class. Example 3.2.5 exhibits the importance of

the cohomology class associated with each closed abstract strand diagram. Even though they

are isomorphic, we do not consider them equivalent since their cocycles are not cohomologous.

Example 3.2.6. Let G = (VG, EG) and H = (VH , EH) be the directed graphs at left and right

respectively in Figure 3.2.1. The following bijections f1 : VG → VH and g1 : EG → EH form an
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Figure 3.2.1. Two closed abstract strand diagrams with more than isomorphism between them

isomorphism between G and H:

f1(v0) = w0 g1(e0) = d0
f1(v1) = w1 g1(e1) = d1
f1(v2) = w2 g1(e2) = d2
f1(v3) = w3 g1(e3) = d3

g1(e4) = d4
g1(e5) = d5

We construct the coboundary matrix

0 −1 1 0
0 1 −1 0
−1 1 0 0
0 0 1 −1
−1 0 0 1
1 0 0 −1


which has rank 3. We then compute that

~b1 =



0
1
1
0
0
1

 ~b2 =



0
1
0
1
0
1



~b1 − ~b2 =



0
0
1
−1
0
0


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The augmented matrix 

0 −1 1 0 0
0 1 −1 0 0
−1 1 0 0 1
0 0 1 −1 −1
−1 0 0 1 0
1 0 0 −1 0


has rank 4, which would lead us to conclude that ~b1 and ~b2 are not cohomologous. However, the

following bijections f2 : VG → VH and g2 : EG → EH form another isomorphism between G and

H:
f2(v0) = w3 g2(e0) = d1
f2(v1) = w2 g2(e1) = d0
f2(v2) = w1 g2(e2) = d3
f2(v3) = w0 g2(e3) = d2

g2(e4) = d5
g2(e5) = d4

We have the same coboundary matrix but must modify ~b2 to correspond with the current

isomorphism. The edge d1 now corresponds to row 0, the edge d0 corresponds to row 1, etc. so

~b2 =



1
0
1
0
1
0


which gives us

~b1 − ~b2 =



−1
1
0
0
−1
1


and the augmented matrix 

0 −1 1 0 −1
0 1 −1 0 1
−1 1 0 0 0
0 0 1 −1 0
−1 0 0 1 −1
1 0 0 −1 1


which has rank 3. Since the rank of the coboundary matrix is equal to the rank of the augmented

matrix above, we conclude that ~b1 and ~b2 are indeed cohomologous.
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(a) A closed abstract strand diagram with the coho-
mology class indicated by a puncture

(b) A closed abstract strand diagram with the coho-
mology class indicated by c-values

Figure 3.3.1. Two ways to close an abstract strand diagram and represent a cohomology class

Example 3.2.6 shows two closed abstract strand diagrams G and H, with cocycles ~a and ~b

respectively, may have multiple isomorphisms between them, some of which preserve the coho-

mology class of ~a and ~b and some of which do not.

3.3 Reduction of Closed Abstract Strand Diagrams

The reduction moves on closed abstract strand diagrams are the same as the moves for regular

abstract strand diagrams with two added complications. The first is that as we reduce we must

continue to keep track of the associated cohomology class.

Recall that when we close an abstract strand diagram, we keep track of how we close it

using a puncture. Another way to do this is by assigning an integer value 1 to the newly drawn

edge; both of these methods are shown in Figure 3.3.1. We call this value the cutting value

or c-value for that strand. The c-value for every other strand is initialized at 0, and these

values together define the cocycle for the closed abstract strand diagram. Figure 3.3.2 shows two

equivalent drawings of a closed abstract strand diagram with cocycle1
1
0


As we reduce and the edges of closed abstract strand diagram change, we must reassign the

c-values of each edge accordingly. The rules for this reassignment after each reduction move

follow from considering a path that cuts through each edge the indicated number of times. The

importance of these rules is to continue to keep track of the cohomology class accurately as we

reduce.
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Figure 3.3.2. Two equivalent representations of the same close abstract strand diagram

The second complication is that as we reduce a closed abstract strand diagram, free loops

can arise.

Definition 3.3.1. A free loop is an edge which forms a loop within a closed abstract strand

diagram and contains no vertices.

We will describe how free loops can arise from the vertex deletions in type I and type II

reduction moves.

A type I reduction can only occur in a closed abstract strand diagram if the c-values for the

left child and right child strands of the split vertex equal. Following a type I reduction move,

the c-values of the remaining strands must be reassigned according to the values of the deleted

strands. This reduction move is shown in Figure 3.3.3a.

We must consider one special case of a type I reduction, shown in Figure 3.3.3b. If the parent

vertex of the split is equal to the merge vertex at the end of its left child and right child strands,

then the deletion of these two vertices leads to a free loop. The c-value of the free loop is i+ j.

A Type II reduction proceeds in exactly the same way in closed abstract strand diagrams as

it does in regular abstract strand diagrams. Following a type II reduction, however, the c-values

of the remaining strands must be reassigned according to the values of the deleted strands. A

typical case for this reduction move is shown in Figure 3.3.4.

There are five special cases that we must consider which differ from the typical case.
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(a)

(b)

Figure 3.3.3. The two cases in which a type I reduction can occur

1. The right parent of the merge is equal to the right child of the split: This case is shown in

Figure 3.3.5a .

2. The left parent of the merge is equal to the left child of the split: This case is shown

in Figure 3.3.5b. Note that this case and the case described in item 1 are not mutually

exclusive and may both occur in the same reduction.

3. The right parent of the merge is equal to the left child of the split: This case is shown in

Figure 3.3.6a.

4. The left parent of the merge is equal to the right child of the split: This case is shown in

Figure 3.3.6b.

5. The right parent of the merge is equal to the left child of the split and the left parent of

the merge is equal to the right child of the split: This case is shown in Figure 3.3.7a.

Figure 3.3.4. One case in which a type II reduction can occur
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(a) (b)

Figure 3.3.5. Two special cases of a type II reduction

(a)
(b)

Figure 3.3.6. Two special cases of a type II reduction

(a)

(b)

Figure 3.3.7. A special case of the type II reduction (left) and the type III reduction (right)
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Figure 3.3.8. A closed abstract strand diagram with multiple possible reduction moves

These rules come from considering a path that cuts through each edge the indicated number

of times.

We remark that in a closed abstract strand diagram, a type II reduction can result in multiple

connected components within the diagram. Each component is itself a closed abstract strand

diagram.

The third move, a Type III reduction, combines two free loops which have the same c-value

into just one loop with the same value. This reduction is shown in Figure 3.3.7b. Sometimes

there are multiple possible reduction moves to perform on a given closed abstract strand diagram,

which can result in two different graphs. The type III reduction move ensures that despite this,

closed abstract strand diagrams each have a unique reduced form. One example of this is shown

in Figure 3.3.8

A closed abstract strand diagram is reduced if no reduction moves can be done. Belk and

Matucci prove that each closed abstract strand diagram has a unique reduced form [2].

3.4 Conjugacy in Thompson’s Group V

The motivation for the solution to the conjugacy problem on V comes from the solution to the

conjugacy problem on the free group.

Definition 3.4.1. An infinite group G is called free if it has generating set S with no relations.

Every element in G can be written uniquely as a reduced word over S.
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Figure 3.4.1. If F and G are closed strand diagrams, then if we reduce the closed strand diagram above
we will obtain F

Definition 3.4.2. A word is cyclically reduced if it is reduced and the first and last elements

are not inverses of each other.

Theorem 3.4.3. Let α, β be words over generating set S for free group G. If we cyclically reduce

α and obtain β then α and β are conjugate [10].

Example 3.4.4. Consider the following free group G with generating set S = {x, y, z} and

elements α = xyz−1xy−1 and β = x−1zxyz−1xy−1z−1x. Observe that we can cyclically reduce

β in the following manner:

x−1(zxyz−1xy−1z−1)x → z(xyz−1xy−1)z−1 → xyz−1xy−1

which is precisely α. We conclude that α and β are conjugate.

Theorem 3.4.5 (Belk, Matucci). Two elements of V are conjugate if and only if their reduced

closed abstract strand diagrams are equivalent, i.e. they are isomorphic in a way that preserves

their cohomology class [2].

The idea of cyclically reducing manifests in closed abstract strand diagrams as shown in

Figure 3.4.1. For a full proof of Theorem 3.4.5, the reader is referred to Belk and Matucci [2].
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(a) Tree diagram X (b) Tree diagram Y

Figure 3.4.2.

We will now work out a full example of determining the conjugacy of two elements of V from

start to finish.

Example 3.4.6. Let X ∈ V be the element of V defined by domain code [0, 10, 110, 111], range

code [0, 100, 101, 11], and permutation code [2, 0, 3, 1]. Let Y ∈ V be the element of V definied

by domain code [0, 100, 101, 110, 111], range code [0, 100, 1010, 1011, 11], and permutation code

[2, 3, 1, 4, 0]. The tree diagrams for X and Y are shown in Figure 3.4.2.

We can convert X and Y to strand diagrams and close them to obtain closed abstract strand

diagrams. The result of this procedure is shown in Figure 3.4.3.

After reducing X and Y we obtain the reduced closed abstract strand diagrams shown in

Figure 3.4.4.

We now have reduced closed abstract strand diagram X = (VX , EX) such that VX = {v0, v1}

and EX = {e0, e1, e2}; and Y = (VY , EY ) such that VY = {w0, w1} and EY = {d0, d1, d2}. We

(a) Closed abstract strand diagram X (b) Closed abstract strand diagram Y

Figure 3.4.3.
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(a) Reduced closed abstract strand diagram X (b) Reduced closed abstract strand diagram Y

Figure 3.4.4.

can define the following isomorphism φV : VX → VY and φE : EX → EY :

φV (v0) = w0 φE(e0) = d0
φV (v1) = w1 φE(e1) = d1

φE(e2) = d2

And we can construct the following coboundary matrix M , where for i ∈ {0, 1, 2} row i corre-

sponds to ei and di, and for j ∈ {0, 1} column j corresponds to vj and wj :

M =

 1− 1 0
1 −1
0 1− 1

 =

 0 0
1 −1
0 0


The rank of this matrix is 1.

We obtain a cocycle ~a from X by constructing a 3×n vector where for i ∈ {0, 1, 2} the entry

at a[i, 0] corresponds to the c-value of ei. Similarly, we obtain a cocycle ~b from Y by constructing

a 3 × n vector where for i ∈ {0, 1, 2} the entry at b[i, 0] corresponds to the c-value of di. Then

we have

~a =

1
0
2

 ~b =

1
1
2


and compute the difference

~a−~b =

 0
−1
0


The augmented matrix

[
M |~a−~b

]
is the following: 0 0 0

1 −1 −1
0 0 0


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Figure 3.4.5. The conjugator for X and Y

which also has rank 1. We conclude that our original elements X and Y are conjugate.

Our algorithm determines whether two elements of V are conjugate; it does not produce the

conjugator. However, we remark that the conjugator for these two elements is the element of

V defined by domain code [0, 100, 101, 11], range code [0, 10, 110, 111], and permutation code

[3, 0, 1, 2]; it is shown in Figure 3.4.5.



4
Implementing the Solution to the Conjugacy Problem

We have described our implementation of the TreeDiagram class and the process of converting

them to AbstractStrandDiagrams. We must now close these strand diagrams, reduce the re-

sulting closed abstract strand diagrams, and decide whether they are equivalent or not. Recall

that two closed abstract strand diagrams are equivalent if they are isomorphic and their cocycles

belong to the same cohomology class.

We will discusss how to close an abstract strand diagram and describe our implementation

of the ClosedAbstractStrandDiagram class. Then we will describe how we check isomorphism

between ClosedAbstractStrandDiagrams, obtain their (shared) coboundary matrix, calculate

the difference in their cocycles, and determine whether the cocycle difference is in the column

space of the coboundary matrix. If these checks pass then we conclude that our original elements

of V are conjugate. The implementation of this process will be the subject of this chapter.

4.1 Implementing Closed Abstract Strand Diagrams

Our ClosedAbsractStrandDiagram class is based upon our regular AbstractStrandDiagram

class, with additions and modifications as needed. We use the same Vertex and Strand classes,

and store these objects in the same DoublyLinkedList structure.
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Figure 4.1.1. A visual explanation of the close() method on AbstractStrandDiagram objects

Recall that in addition to vertices and strands, closed abstract strand diagrams can also

contain free loops that arise from deleted vertices during reductions. Additionally, the type III

reduction move stipulates that if two free loops have the same c-value then they can be combined

into one single loop. We therefore use a Set object of integer free loops to store the c-value for

each free loop in a ClosedAbstractStrandDiagram. The Set does not allow for duplicate values;

in other words, if we insert an integer x into the Set but the Set already contains x, then the

Set will not change. Thus, the third reduction move is taken care of.

To construct a ClosedAbstractStrandDiagram, we can call the close() method on a reg-

ular abstract strand diagram, which esssentially updates the connections and c-values of the

AbstractStrandDiagram. We outline this procedure in Algorithm 15, and include Figure 4.1.1

with corresponding variable names.

On lines 1 and 2 we access the source type Vertex and sink type Vertex of the

AbstractStrandDiagram f . We need to access the topmost split type Vertex of f , which

we call topSplit (lines 3-4). We attach the Strand playing the role parent at sink (aptly

named parentStrand on line 5) to topSplit and delete the now unused sink, source, and

childStrand (lines 6-7). Finally, we initialize an empty Set called freeLoops which we will use

to store free loops when they arise (line 9).

Due to the absence of any repeat structures in Algorithm 15, we conclude that closing an

AbstractStrandDiagram takes constant time.



4.1. IMPLEMENTING CLOSED ABSTRACT STRAND DIAGRAMS 67

Input: an AbstractStrandDiagram f
Output: the ClosedAbstractStrandDiagram for f

1 source = f.source
2 sink = f.sink
3 childStrand = source.getStrand(child)

4 topSplit = childStrand.getEndVertex()

5 parentStrand = sink.getStrand(parent)

6 topSplit.addStrand(parent, parentStrand)

7 delete(source, sink, childStrand)

8 parentStrand.incrementCValue()

9 Set<Integer> freeLoops = emptySet()

10 result = ClosedAbstractStrandDiagram(f.vertices, freeLoops)

11 return result

Algorithm 15: Algorithm to convert an AbstractStrandDiagram to a
ClosedAbstractStrandDiagram

4.1.1 Implementing Reduction

The algorithm to reduce ClosedAstractStrandDiagrams is based that of of regular

AbstractStrandDiagrams, with some added modifications to address free loops and maintaining

the associated cohomology class. In particular, we must account for the special cases detailed in

Section 3.3. We present and desribe the updated algorithms below.

We present our reduction method in Algorithm 16. The only difference between Algorithm 12

and Algorithm 16 (the reduction method for regular AbstractStrandDiagrams) is on line 11,

which contains the additional check for a type I reduction that the c-value for the right child

strand of split is equal to the c-value for the left child strand of split. This check corresponds

to the check that j == k in Figure 4.1.2.

The method for executing a type I reduction is shown in Algorithm 17. One differ-

ence between Algorithm 17 and Algorithm 13 (the type I reduction method for regular

AbstractStrandDiagrams) occurs on lines 3-5. This is where we check for the special case

that splitParent is equal to mergeChild. If so, we compute the c-value for the resulting free

loop, which we call loop, and add it to our Set called freeLoops. The other difference oc-

curs on lines 10-11. This is where we compute the c-value for the updated Strand connecting

splitParent to mergeChild; see Figure 4.1.2 for details.
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Input: one ClosedAbstractStrandDiagram f
Output: f in reduced form

1 splitsToCheck = getSplitsToCheck()

2 while splitsToCheck.isNotEmpty() do
3 split = splitsToCheck.pop()

4 splitParent = split.getStrand(parent).getBeginVertex()

5 lchildEnd = split.getStrand(lchild).getEndVertex()

6 rchildEnd = split.getStrand(rchild).getEndVertex()

7 lchildEndRole = split.getStrand(lchild).getEndRole()

8 rchildEndRole = split.getStrand(rchild).getEndRole()

9 j=split.getStrand(lchild).getCValue()
10 k=split.getStrand(rchild).getCValue()
11 if lchildEnd == rchildEnd && lchildEndRole == lparent && rchildEndRole ==

rparent && j == k then
12 reductionI() // see Algorithm 17

13 continue

14 else if splitParent.type == merge then
15 reductionII() // see Algorithm 18

16 continue

17 end

Algorithm 16: Algorithm to reduce a ClosedAbstractStrandDiagram

Figure 4.1.2. Requirements, procedure, and variable names for a type I reduction to occur
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The only operation in Algorithm 17 which does not run in constant time is insertion into

the Set freeLoops. This takes linear time, so Algorithm 17 runs in O(n) time, for number of

vertices n.

Input: one ClosedAbstractStrandDiagram f
Output: f after performing a type I reduction

1 splitParentStrand = split.getStrand(parent)

2 mergeChildStrand = merge.getStrand(child)

3 if mergeChildStrand == splitParentStrand then
4 loop = i+ j
5 freeLoops.add(loop)

6 else
7 mergeChild = mergeChildStrand.getEndVertex()

8 endRole = mergeChildStrand.getEndRole()

9 mergeChild.addStrand(endRole, splitParentStrand)

10 newC = i+ j + l
11 splitParentStrand.updateCValue(newC)

12 delete(split,merge,lchildStrand, rchildStrand,mergeChildStrand)

13 if splitParent.type == split then
14 splitsToCheck.push(splitParent)

15 if mergeChild.type == split then
16 splitsToCheck.push(mergeChild)

Algorithm 17: Algorithm for reductionI() helper method in a
ClosedAbstractStrandDiagram, called on line 12 of Algorithm 16

The method for executing a type II reduction is shown in Algorithm 18, which is significantly

longer than Algorithm 12 (the type II reduction method for regular AbstractStrandDiagrams).

This is due to the five special cases that can occur in a closed abstract strand diagram type II

reduction move. Line 8 is the case that the right parent of merge is equal to the right child of

split (see Figure 3.3.5a). Line 11 is the case that the left parent of merge is equal to the left

child of split (see Figure 3.3.5b). Line 14 is the case that the right parent of merge is equal to

the left child of split and the left parent of merge is equal to the right child of the split (see

Figure 3.3.7a). Line 17 is the case that the right parent of merge is equal to the left child of

split only (see Figure 3.3.6a). Line 21 is the case that the left parent of merge is equal to the

right child of split only (see Figure 3.3.6b).
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Figure 4.1.3. Requirements, procedure, and variable names for a type II reduction to occur

The last difference between Algorithm 16 and Algorithm 12 is on lines 26-29, which computes

c-values for the updated Strand connecting lparentBegin and lchildEnd as well as the Strand

connecting rparentBegin and rchildEnd; see Figure 4.1.3 for details.

Similarly to Algorithm 17, this algorithm runs in O(n) time.

Due to the single loop (while) on line 2 of Algorithm 16 and linear runtime of helper meth-

ods reductionI() and reductionII(), we conclude that our implementation of reduction of

ClosedAbstractStrandDiagrams is quadratic on the number of vertices in the diagram.

We remark that it would be possible to implement reduction in O(n log n) time if we stored

free loops in a different way. Instead of using a Set, we could use an Array, since inserting an

integer into an Array takes constant time. At the conclusion of the loop on line 2, we would

sort this list and remove duplicates. This takes O(n log n) time on the length of the list, which

is bound by the nunmber of vertices in the diagram.

4.2 Preliminary Checks

Before makeing a direct comparison between the Vertex and Strand objects in two

ClosedAbstractStrandDiagrams, we include a variety of constant, linear, and linearithmic time
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Input: one ClosedAbstractStrandDiagram f
Output: f after performing a type II reduction

1 merge = splitParent

2 lparentStrand = merge.getStrand(lparent)

3 rparentStrand = merge.getStrand(rparent)

4 lparentBegin = lparentStrand.getBeginVertex()

5 rparentBegin = rparentStrand.getBeginVertex()

6 leftEndRole = lchildStrand.getEndRole()

7 rightEndRole = rchildStrand.getEndRole()

8 if rparentStrand == rchildStrand then
9 loop = j + k

10 freeLoops.add(loop)

11 if lparentStrand == lchildStrand then
12 loop = i+ k
13 freeLoops.add(loop)

14 else if lparentStrand == rchildStrand && rparentStrand == lchildStrand then
15 loop = i+ 2k + j
16 freeLoops.add(loop

17 else if rparentStrand == lchildStrand then
18 c = i+ 2k + l +m
19 lparentStrand.updateCValue(c)
20 rchildEnd.addStrand(rightEndRole, lparentStrand)

21 else if lparentStrand == rchildStrand then
22 c = j + 2k + l +m
23 rparentStrand.updateCValue(c)
24 lchildEnd.addStrand(leftEndRole,rparentStrand

25 else
26 cLeft = i+ k + l
27 cRight = j + k +m
28 lparentStrand.updateCValue(cLeft)
29 rparentStrand.updateCValue(cRight)
30 lchildEnd.addStrand(leftEndRole, lparentStrand)

31 rchildEnd.addStrand(rightEndRole, rparentStrand)

32 delete(merge,split,lchildStrand, rchildStrand,splitParentStrand)

33 if lparentBegin.type == split then
34 splitsToCheck.push(lparentBegin)

35 if rparentBegin.type == split then
36 splitsToCheck.push(rparentBegin)

37 if lchildEnd.type == split then
38 splitsToCheck.push(lchildEnd)

39 if rchildEnd.type == split then
40 splitsToCheck.push(rchildEnd)

Algorithm 18: Algorithm for reductionII() helper method in a
ClosedAbstractStrandDiagram, called on line 15 of Algorithm 16
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checks to quickly disqualify the possibility that they could be isomorphic. Since our final runtime

is cubic, performing these checks greatly improves the average runtime of our program.

1. Compare number of vertices

If two closed abstract strand diagrams A and B do not have the same number of vertices,

then they cannot possibly be isomorphic. Each ClosedAbstractStrandDiagram stores its

most recently updated size as member data so we can perform this check in constant time.

2. Compare free loops sets

If A and B do not have identical free loop Sets then they cannot be isomorphic. As

explained in Section 4.1, free loops are stored in Sets of integers, and the number of possible

free loops is bound linearly by the number of vertices. Thus the equality comparison

between these two Sets is O(n log n).

3. Compare number of components

If A and B do not have the same number of components then they cannot be iso-

morphic. The procedure to separate a ClosedAbstractStrandDiagram into its connected

components is outlined Algorithm 19 and proceeds as follows:

(a) Loop through each Vertex v in the ClosedAbstractStrandDiagram; this loop is

declared on line 3.

(b) If v is not “found,” mark it “found” and add it to VertexStack, a Stack of vertices

to process; this occurs on lines 4-6.

(c) Crawl through the diagram outwards from v. Mark every encountered Vertex as

“found” and add it to a DoublyLinkedList called newComponent; this happens on

lines 8-15.

(d) Once all vertices connected to v are “found,” create a new ClosedAbstractStrandDiagram

from newComponent, which now contains ever Vertex in the current component; this

occurs on line 18.
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Now we have A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bl}, where A has k compo-

nents and B has l components, and each Ai and Bj represents one such component. If

k == l then A and B have the same number of components and we can proceed to the

next check.

We check to see whether each vertex is “found” twice. Then the time to separate a

ClosedAbstractStrandDiagram with n vertices into components is linearly bound by n

and proceeds in O(n) time. Subsequently, the time to compare the number of components

each in A and B takes constant time.

Input: Closed Abstract Strand Diagram A
Output: A list of the connected components of A

1 List<ClosedAbstractStrandDiagram> components

2 Stack<Vertex> vertexStack

3 for v in A.vertices do
4 if v.isNotFound() then
5 v.markFound()
6 vertexStack.push(v)
7 DoublyLinkedList<Vertex> newComponent

8 while vertexStack.isNotEmpty() do
9 w0 = vertexStack.pop()

10 for s in w0.strands do
11 w1 = w0.getOtherVertex(s)
12 if w1.isNotFound() then
13 w1.markFound()

14 vertexStack.push(w1)

15 newComponent.add(w1)

16 end

17 end
18 c = new ClosedAbstractStrandDiagram(newComponent)

19 components.add(c)

20 end
21 return components

Algorithm 19: Algorithm to separate a ClosedAbstractStrandDiagram A into its connected
components

4. Compare number of vertices in each component

The problem of determining whether A and B are isomorphic includes determining

whether we can construct a bijection φ : {A1, A2, . . . , Ak} → {B1, B2, . . . , Bk} such that if
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φ(Ai) = Bj then Ai and Bj are isomorphic. Before doing so, we can perform the cursory

check that there exists a bijection φ0 : {A1, A2, . . . , Ak} → {B1, B2, . . . , Bk} such that if

φ0(Ai) = Bj then Ai and Bj have the same size. If no such bijection exists then there is

no possible mapping between components which results in total isomorphism between A

and B.

To do this we create a Dictionary with entries (Ai,mi) where Ai is a component of A

and mi is the size of that component. We create a similar Dictionary for B. Next we sort

each Dictionary by value, i.e. by size. Finally, we obtain an Array of the values from each

Dictionary. If those arrrays are equal then we know that the aforementioned bijection φ0

exists, and we can proceed with isomorphism checking.

Array sorting occurs in O(n log n) time, and the length of our Array is the number of

components per strand diagram. As the number of components is bound by the number

of vertices, this check performs in O(n log n) time where n is the number of vertices in the

original reduced closed abstract strand diagram.

4.3 Implementing the Isomorphism Checker

Once all of these checks have passed, we are ready to construct the bijection

φ : {A1, A2, . . . , Ak} → {B1, B2, . . . , Bk} such that if φ(Ai) = Bj then Ai and Bj are isomor-

phic. For now, we will limit our discussion to the case in which A an B each consist of one single

component. We will discuss the contribution of multiple components in Section 4.7. We will base

our search for isomorphism between single component ClosedAbstractStrandDiagrams A and

B on Definition 3.1.1 of isomorphism.

If A and B have the same size then we begin our isomorphism construction. We outline

our isomorphism method in Algorithm 20. We initialize two dictionaries, vertexBijection

and strandBijection, to represent our bijective functions φ : VA → VB and ψ : EA → EB,

respectively (lines 1-2). The vertexBijection will contain entries of the form
(
v, φ(v)

)
for vertex

v ∈ VA and strandBijection will contain entries of the form
(
s, ψ(s)

)
for strand s ∈ EA. Next
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Input: ClosedAbstractStrandDiagrams A and B
Output: The boolean value for whether A and B are isomorphic graphs or

not

1 Dictionary<vertex,vertex> vertexBijection

2 Dictionary<strand,strand> strandBijection

3 Stack<vertex> vertexStack

4 Stack<strand> strandStack

5 boolean keepGoing = true

6 vertex a = A.getFirstVertex()
7 for b in B.vertices do
8 if a.type == b.type then
9 vertexBijection.put(a,b)

10 else
11 continue

12 a.markFound()
13 b.markFound()
14 vertexStack.push(a)
15 while keepGoing &&

(
vertexStack.isNotEmpty() || strandStack.isNotEmpty()

)
do

16 if vertexStack.isNotEmpty() then
17 processVertex()

18 if strandStack.isNotEmpty() then
19 processStrand()

20 end

21 end
22 return keepGoing

Algorithm 20: Algorithm to determine whether two closed abstract strand diagrams A and
B are isomorphic

we fix a vertex a in A and enter a loop through all vertices in b.vertices (lines 6-7). In each

iteration of this loop, we fix a vertex b, mark a and b as “found,” and add (a, b) to our vertex

bijection (lines 8-13).

Once we fix the mapping (a, b), we extend this partial isomorphism by adding new edge pairs

and vertex pairs to ψ and φ (respectively). We do so by beginning at a and b and “crawling”

through the strands and vertices in the rest of A and B. Recall that for any given closed abstract

strand diagram with vertex set V and edge set E, each vertex v ∈ V is connected to exactly

three edges and each edge plays a distinct role at v. It follows that there are no choices to be

made in the construction of our bijections, since ψ must preserve the role of each edge e ∈ EA

at each vertex v ∈ VA.
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Beginning at v0 and w0, we incrementally crawl through A and B and compare each vertex

pair and strand pair that we encounter. We use two helper methods and two stacks to accomplish

this.

We call the processVertex() helper method in Algorithm 20 on line 17. We outline this

method in Algorithm 21. We begin by popping Vertex v from the vertexStack and getting

w = φ(v) from the vertexBijection (lines 1-2). Then we expand the partial isomorphism to

each of the Strands connected to v and w. For each Strand s which plays role r at v, we get the

corresponding Strand t that plays the same role r at w (lines 4-5). In order for this isomorphism

to work, our strandBijection must contain the entry (s, t). Four cases follow:

1. If strandBijection already contains the entry (s, t), then we move on to the next Strand

pair, since this is the desired case (line 8)

2. If strandBijection contains the entry (s, x) for some Strand x other than t, then this

partial isomorphism has failed and we must start over with new a and b (line 10)

3. If neither s nor t has been found yet, then we add them to the strandBijection and add

them to the strandStack to process (line 13)

4. If only one of either s or t has been found, then this partial isomorphism has failed and

we must start over with new a and b (line 18

We have now finished processing the Vertex v.

Returning to Algorithm 20, we call the processStrand() helper method on line 19. This

method is described in Algorithm 22. We begin by popping Strand s from the strandStack and

getting t = ψ(s) from the strandBijection (lines 1-2). Then we expand the partial isomorphism

to include the begin vertices at s and t, sBegin and tBegin, as well as the end vertices at s

and t, sEnd and tEnd (lines 3-6). In order for this isomorphism to work, our vertexBijection

must contain the entries (sBegin, tbegin) and (sEnd, tEnd). We will first check for the former;

four cases follow:
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Input: Vertex to process

Output: Updated keepGoing boolean, strandBijection, vertexBijection, and

vertexStack

1 v = vertexStack.pop()

2 w = vertexBijection.get(v)
3 for r in v.strandRoles do
4 s = v.getStrand(r)
5 t = w.getStrand(r)
6 if s.isFound() && t.isFound() then
7 if strandBijection.contains(s) then
8 if strandBijection.get(s) == t then
9 continue

10 else
11 keepGoing = false

12 return

13 else if s.isNotFound() && t.isNotFound() then
14 s.markFound()
15 t.markFound()
16 strandBijection.put(s,t)
17 strandStack.push(s)

18 else
19 keepGoing = false

20 return

21 end

Algorithm 21: Algorithm for processVertex() helper method in Algorithm 20

1. If vertexBijection already contains the entry (sBegin, tBegin), then continue crawling

since this is the desired case (line 9)

2. If vertexBijection contains the entry (sBegin, x) for some Vertex x other than tBegin,

then this partial isomorphism has failed an we must start over with new a and b (line 11)

3. If neither sBegin nor tBegin has been found yet, then we add them to the vertexBijection

and add them to the vertexStack to proceses (line 14)

4. If only one of either sBegin or tBegin has been found, then this partial isomorphism has

failed and we must start over with new a and b (line 19)

The case for (sEnd, tEnd) follows simmilarly on lines 22-36, after which we have finished pro-

cessing the Strand s.
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Input: Strands to process

Output: Updated keepGoing boolean, strandBijection, vertexBijection, and

strandStrack

1 s = strandStack.pop()

2 t = strandBijection.get(s)
3 sBegin = s.getBeginVertex()
4 sEnd = s.getEndVertex()
5 tBegin = t.getBeginVertex()
6 tEnd = t.getEndVertex()
7 if sBegin.isFound() && tBegin.isFound() then
8 if vertexBijection.contains(sBegin) then
9 if vertexBijection.get(sBegin) == tBegin then

10 continue

11 else
12 keepGoing = false

13 break

14 else if sBegin.isNotFound() && tBegin.isNotFound() then
15 sBegin.markFound()
16 tBegin.markFound()
17 vertexBijection.put(sBegin,tBegin)
18 vertexStack.push(sBegin)

19 else
20 keepGoing = false

21 break

22 if sEnd.isFound() && tEnd.isFound() then
23 if vertexBijection.contains(sEnd) then
24 if vertexBijection.get(sEnd) == tEnd then
25 continue

26 else
27 keepGoing = false

28 break

29 else if sEnd.isNotFound() && tEnd.isNotFound() then
30 sEnd.markFound()
31 tEnd.markFound()
32 vertexBijection.put(sEnd,tEnd)
33 vertexStack.push(sEnd)

34 else
35 keepGoing = false

36 break

Algorithm 22: Algorithm for helper method processStrand() in Algorithm 20
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Algorithm 20 occurs in quadratic time O(n2) for n vertices. This is due to the outer loop (for)

on line 7 and the inner loop (while) on line 15. The processVertex() and processStrand()

method calls on lines 17 and 19 (respectively) run in constant time.

Now that we have determined that our two reduced ClosedAbstractStrandDiagrams are

isomorphic, it is time to determine whether their cocycles belong to the same cohomology class

or not.

4.4 Obtaining the Coboundary Matrix

We outline our method to construct the coboundary matrix M in Algorithm 23. Since A and

B are isomorphic, they have the same coboundary matrix, so we will arbitrarily consruct the

matrix using A. Before filling in the entries of M we must assign column IDs to each vertex

v ∈ VA and row IDs to each strand s ∈ EA (lines 2-3 and 7-8).

We initialize M as a 3n
2 by n matrix of 0’s where n is the number of vertices in A and 3n

2 is

the number of strands (line 11). Next, for each Vertex v with column ID j we iterate through

v.strandRoles. If the role r of a Strand s with row ID i at v is parent, right parent, or left

parent, then s is incoming at v (line 18). Thus we must subtract 1 from the current entry M [i, j]

(line 19). If the role of s at v is child, right child, or left child, then s is outgoing at v (line 20).

Thus we must add 1 to the current entry M [i, j] (line 21). The reason we iterate through roles

instead of strands themselves is that some strands play multiple roles at a single vertex and may

be both incoming and outgoing. However, each role is distinct in all cases.

Assignments of row IDs and column IDs both occur in linear time O(n) where n is the

number of vertices. Since we alter 3 matrix entries per per vertex and there are n vertices, the

construction of the coboundary matrix takes O(n) time as well. Thus Algorithm 23 runs in linear

time.

We must now compute the rank of the coboundary matrix, which can be done in O(nω)

time. The exponent ω is the matrix multiplication complexity coefficient, which is the minimum

value of ω such that matrices can be multiplied in nω time. This value of ω is not known but
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Input: ClosedAbstractStrandDiagram A
Output: The coboundary matrix M for A

1 i = 0

2 for v in A.vertices do
3 v.setColumnID(i)
4 i++

5 end
6 i=0
7 for s in A.strands do
8 s.setRowID(i)
9 i++

10 end
11 Matrix M = Matrix(n, 3n/2)
12 for v in A.vertices do
13 colID = v.columnID
14 for r in v.strandRoles do
15 s=v.getStrand(r)
16 rowID = s.rowID
17 curEntry = M.get(rowID,colID)

18 if r.equals(parent) || r.equals(lparent) || r.equals(rparent) then
19 M.set(rowID, colID, curEntry-1)

20 else if r.equals(child) || r.equals(lchild) || r.equals(rchild) then
21 M.set(rowID, colID, curEntry+1)

22 end

23 end
24 return M

Algorithm 23: Algorithm to generate the coboundary matrix for a
ClosedAbstactStrandDiagram A

we do know that it has an upper bound of 2.373 [9]. Our implementation uses singular value

decomposition to compute matrix rank, which runs in cubic time [13].

We remark that we only must compute the rank of this coboundary matrix once for a given

closed abstract strand diagram, even if we find multiple isomorphisms. This will become relevant

in Section 4.6.

4.5 Obtaining the Difference in Cocycles

To obtain a cocycle for each closed abstract strand diagram A and B, we construct a 3n
2 by 1

vector C where entry C[i, 1] is the difference in c-values for the Strand s (with row ID i) and ψ(s),
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as indicated by the strandBijection from the isomorphism construction. We initialize C on

line 2 of Algorithm 24 and enter a loop over all Strands in A on line 3. For each pair (s, t)

in strandBijection, we store the difference in their c-values in the appropriate entry of C

(lines 5-7).

Input: Strand bijection for two ClosedAbstractStrandDiagrams A and B
Output: The difference in cocycles for A and B

1 n = A.vertices.size()
2 C = Matrix[3*n/2,1]
3 for s in A.strands do
4 t = strandBijection.get(s)
5 cs = s.cValue
6 cs = t.cValue
7 C.set(s.rowID,0,cs − cs)
8 end
9 return C

Algorithm 24: Algorithm to compute the difference in cocycles for two
ClosedAbstractStrandDiagrams A and B

The loop (for) over all of the strands in A on line 3 requires linear time for this algorithm.

4.6 Computing the Rank of the Augmented Matrix

Our final step is to compute the rank of the matrix
[
M |~a−~b

]
for known coboundary matrix M

and cocycle difference ~a −~b. Recall that we have already computed the rank of the matrix M .

If this rank is equal to the rank of the augmented matrix, then we conclude that A and B are

conjugate; otherwise they are not.

We can compute the rank of the augmented matrix in slightly more efficient time than it

took to compute the rank of the original matrix M .

Theorem 4.6.1 (Frandsen, Frandsen). Dynamic matrix rank over an arbitrary field can be

solved using O(n2) arithmetic operations per element change (worst case). This bound is valid

when a change alters arbitrarily many entries in a single column. Given an initial matrix the

data structure for the dynamic algorithm can be built using O(nω) arithmetic operations [6].
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We obtain the augmented matrix through 3n
2 element changes in the final column of the

matrix. Therefore, the rank of this new matrix can be computed in O(n2) time [6].

In the worst case, we must compute the rank for this augmented matrix one time per vertex.

It can happen that the number of isomorphisms between two closed abstract strand diagrams

grows linearly with the number of vertices, even though we believe this case to be rare. Thus

the loop (for) on line 7 of Algorithm 20 requires linear time and the rank computation requires

quadratic time. It is at this point, of course, that we can decide the conjugacy of our orginal

elements and the algorithm is complete. Thus our final runtime is O(n3).

We remark that a randomized algorithm found that the runtime for computing the rank

of the updated matrix is O(n1.495) [15], which gives our algorithm an average case runtime of

O(n2.495). Additionally, in the event that two elements of V are not conjugate, we believe that

this will most often be determined after separating the closed reduced strand diagrams into

components and comparing their sizes, which should have an average runtime of O(n log n) due

to list sorting.

4.7 The Role of Multiple Components

Up until now we have discussed only the case in which our closed abstract strand diagrams

consist of a single component each. We will now discuss the multi-component case.

We have two closed abstract strand diagrams A and B, both with n vertices, which we have

already broken up into components {A1, A2, . . . , Ak} and {B1, B2, . . . , Bk}. Since the number of

components in A is the same as the number of components in B, we can proceed to search for

isomorphisms between A and B. We will first consider the case for which each component has

the same size m. Since the original diagrams A and B have size n total, we know that m = n
k .

We know that the time to compare the equivalence of two components of size n takes f(n) =

O(n3) time. In the worst case, we must compare A1 to all k components in B, which takes kf(m)

time. Since A1 has now been matched to a component in B, we only need compare A2 to k − 1

components of B. Thus the time to match A2 with a component in B is (k− 1)f(m), etc. So to
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create a mapping between all components in A and B takes

kf(m) + (k − 1)f(m) + · · ·+ f(m) =
k(k + 1)

2
f(m)

We know that f(n) = Cn3 for some constant C. Thus we have

f(n) =
k(k + 1)

2
· Cm3 =

k(k + 1)

2
· C
(n
k

)3
=
k + 1

2k3−1
· Cn3 =

k + 1

2k2
· Cn3

.

We can see that limk→∞
k + 1

2k2
= 0. Thus the worst case runtime for isomorphism checking

for equally sized components is when there is only one component in each closed abstract strand

diagram.

Now suppose that the components {A1, A2, . . . , Ak} of A have potentially different sizes

{m1,m2, . . . ,mk} respectively. Again, we know that the time to compare the equlity of two

components of size n is f(n) = Cn3 for some constant C. But as we search for mappings

between components of A and components of B, if the components do not have the same size

then we need not compare them since they can’t possibly be isomorphic. Thus the maximum

number of comparisons for the first component A1 of A with size m1 is equal to the number of

components in B which have the same size as A1, which could be in the best case 1 or in the

worst case k. Then the time to find an isomorphism between A1 and a component in B takes

time kf(m1). Once A1 is mapped to some Bj , one fewer comparisons is required for A2. We can

see that this case has reduced to the previous case.

We conclude that the worst case for isomorphism checking is when there is only one com-

ponent in each closed abstract strand diagram. For this reason, we need not analyze the multi-

component case any further, and we conclude that the runtime of our final conjugacy checking

program is indeed O(n3).
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5
Conclusion and Future Work

We have presented a cubic time algorithm to solve the conjugacy problem on Thompson’s

group V using strand diagrams. We have also presented data structures to store elements of V

and perform the necessary operations on them.

Due to the use of rank computation, our proposed algorithm uses the least upper bound on

the matrix multiplication coefficient as it is currently known, which is about 2.373 [9]. We also

use Frandsen and Frandsen’s method for rank one updates which runs in quadratic time [6].

Our actual implementation uses the Jama matrix library for storing and manipulating ma-

trices [13], which calculates matrix rank in cubic time. Thus the worst case runtime for our

implementation is quartic, but we believe the average case runtime to be significantly more

efficient.

We release our implementation in the form of a Java applet and graphical interface pro-

grammed in Java that can be freely downloaded and run offline. We also release our source code

in the following GitHub repository:https://github.com/rnales/ConjugacyV. To the best of our

knowledge, this is the first implementation of an algorithm to solve the conjugacy problem in V

using strand diagrams. We hope that this software will be useful to the research community in

Thompson’s groups.

https://github.com/rnales/ConjugacyV
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For future work, we would like to bound the number of free loops and the sum of c-values

of free loops using number of vertices. We would also like to better understand the typical

number of isomorphisms between two reduced closed abstract strand diagrams, since it currently

contributes a factor of n to the runtime of our algorithm.
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