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Abstract

Fractals are geometric objects that often arise from the study of dynamical systems. Be-
sides their beautiful structures, they have unusual geometric properties that mathematicians
are interested in. People have studied the homeomorphism groups of various fractals. In 1965,
Thompson introduced the Thompson groups F ⊆ T ⊆ V , which are groups of piecewise-linear
homeomorphisms on the unit interval, the unit circle, and the Cantor set, respectively. Louwsma
has shown that the homeomorphism group of the Sierpinski gasket is D3. More recently, Belk
and Forrest investigated a group of piecewise-linear homeomorphisms on the Basilica, which is
the Julia set associated with the quadratic polynomial z2−1. Weinrich-Burd and Smith, respec-
tively, have studied the Julia sets for the maps φ(z) = z−2− 1 and ψ(z) = z2 + i, and presented
Thompson-like groups acting on these Julia sets.

In this project, we study the Julia set associated with the rational function f(z) = (z2 +
1)/(z2 − 1). We construct a fractal E4 that has the same geometric structure as the Julia set,
and show that the homeomorphism group of E4 is D4 × Z/2. We construct another fractal E3

with the same local structure as E4. We prove that the homeomorphism group of E3 is finitely
generated, and show a finite presentation for this group. Furthermore, we show that this group
contains an index-2 Kleinian subgroup. Finally, we give a geometric presentation of this group,
and describe the limit set of this group acting on the Riemann sphere. The limit set appears to
be homeomorphic to the E3 fractal.
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Introduction

To see a world in a grain of sand,

And a heaven in a wild flower,

Hold infinity in the palm of your hand,

And eternity in an hour.

William Blake, Auguries of Innocence

Fractals are geometric objects that exhibit repeating patterns at every scale. In this project,

we study the symmetry of several related fractals. There are many ways to construct a fractal.

The fractals we consider are constructed through iterated function systems, Julia sets of rational

functions, and limit sets of Kleinian groups.

A homeomorphism is a continuous bijection between topological spaces whose inverse is also

continuous. A homeomorphism defined from a topological space T to itself can be viewed as a

symmetry of T . The homeomorphism group of a topological space T is the group of all home-

omorphisms ϕ : T −→ T under function composition. Mathematicians have been interested in

the homeomorphisms and homeomorphism groups of fractals because of the unusual geometric

and topological properties they possess. In particular, new group structures have been emerg-

ing from the homeomorphism groups of fractals. Richard Thompson introduced the Thompson
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groups F ⊆ T ⊆ V in 1965. The Thompson groups F , T , and V are piecewise linear homeomor-

phisms of the unit interval, the unit circle, and the Cantor set, respectively [7]. The Thompson

group V is an early case of an interesting subgroup of the homeomorphism group of a fractal

structure. It is then natural to apply this idea to some other fractals. More recently, Belk and

Forrest [4] have studied the Basilica in detail, which is the Julia set associated with the complex

analytic map f(z) = z2−1. They defined a group TB analogous to the Thompson groups, which

acts as “piecewise linear” homeomorphisms of the Basilica. They proved that the group TB they

constructed is finitely generated, and the commutator subgroup is simple. Similar to Belk and

Forrest’s work, Weinrich-Burd [26] and Smith [25] have also described Thompson-like groups

acting on the Bubble Bath Julia set and the dendrite Julia sets. In each case, the Thompson-like

groups are countable, even though the full homeomorphism group of the fractals are uncountable.

There are yet countable homeomorphism groups of fractals. These types of fractals are “rigid”

in the sense that they usually have rigid local connection patterns. One of these fractals is

the Sierpinski gasket. In 2004, Louwsma has shown in an unpublished paper [16] that the full

homeomorphism group of the Sierpinski gasket is the dihedral groupD3. However, the Apollonian

gasket, with the same local structure as the Sierpinski gasket but having a different global

structure, was well-known to mathematicians as the limit set of a Kleinian group [20]. A Kleinian

group acts on its own limit set by homeomorphisms. We show in Chapter 3 of this project that

Figure 0.0.1: The Sierpinski Gasket and the Apollonian Gasket
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the full homeomorphism group of the Apollonian gasket is countable, and it contains an index-2

Kleinian subgroup. This is an interesting phenomenon, where two fractals with the same local

structure have completely different homeomorphism groups. We will address this phenomenon

in this project.

There exists a rational function Julia set homeomorphic to the Sierpinski gasket [9, 13]. A

modification on the global structure of the Sierpinski gasket makes the Apollonian gasket, whose

full homeomorphism group becomes countably infinite. Does this phenomenon happen with other

rational Julia sets with finite homeomorphism groups? In Chapter 4 of [26], Weinrich-Burd

investigated several rational Julia sets that he conjectured to have finite full homeomorphism

groups. Among these Julia sets, the one associated with the rational map f(z) = (z2+1)/(z2−1)

attracts our attention. This Julia set is shown in Figure 0.0.2, and we refer to this Julia set as

E4. In this project, we describe the structure of E4 using a hypergraph replacement system with

a base graph (global structure) and a replacement rule (local structure). Then we construct

another fractal E3, which has the same replacement rule as E4 but a modified base graph.

We show that the homeomorphism group of E3 is infinite, and we show finite generation of

the homeomorphism group of E3 by a set of four generators. In addition, we prove that full

homeomorphism group of E4 is isomorphic to the finite group D4 × Z/2.

Figure 0.0.2: The E4 and E3 Fractals
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In order to find a presentation of the homeomorphism group of E3, we construct a polyhedral

complex that represents the structure of E3. We then consider the dual tree of the polyhedral

complex, which we refer to as the structural tree of E3. The homeomorphism group of E3

acts on the tree, which allows us to use Bass-Serre theory [18] to find a presentation for the

homeomorphism group of E3.

The Apollonian gasket is a limit set of a Kleinian group [20]. Because the Julia set associated

with the rational function f(z) = (z2 + 1)/(z2− 1) also appears to have tangent complementary

regions, we propose the question whether the E3 fractal is homeomorphic to a limit set. We

attempt to find a group of Möbius transformations and anti-Möbius transformations isomorphic

to a quotient the homeomorphism group of E3. There turns out to be a one-parameter family

of groups with such properties. We show that, up to conjugacy, there is a unique group K+ in

this family, whose limit set appear to be homeomorphic to the E3 fractal. Furthermore, we find

a nice conjugator acting on this group so that the generators of this group have well-understood

geometric interpretations on the Riemann sphere.

Note that the visual structure of the rational function Julia set associated with f(z) = (z2 +

1)/(z2 − 1) is described by the hypergraph replacement system. We have not proved that the

actual Julia set is homeomorphic to the E4 fractal. It is generally a hard thing to show any

geometric structure is homeomorphic to a Julia set, which is an abstractly defined object in

Figure 0.0.3: The Limit Set of the Kleinian Group K+
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complex dynamical systems. One can use techniques provided in Chapter 2 of [26] to accomplish

that. The E3 fractal is a global modification of E4, and it appears to have the same structure

as the Julia set associated with algebraic function g(z) = f(z3/4)4/3. However, this algebraic

function is multi-valued on the Riemann sphere. We do not understand the dynamics of this

function well, neither is its associated Julia set well-understood. There are rational functions

defined on the Riemann sphere that have associated Julia sets homeomorphic to the Sierpinski

gasket and the Apollonian gasket [9,13,15]. The inverse problem for the E3 fractal is not resolved

yet. One may conjecture that there exist a rational function whose Julia set is isomorphic to the

E3 fractal.

This project is organized into six chapters. In Chapter 1, we present preliminaries about

dynamical systems, general topology, and Kleinian groups. Chapter 2 gives more background

on fractals. We introduce the construction and some of the properties of the Cantor set, the

Sierpinski gasket, and Julia sets. In Chapter 3, we present a hypergraph replacement system to

define the Apollonian gasket, and show finite generation of its homeomorphism group. Similar

to the structure of Chapter 3, we define the E4 and the E3 fractals in Chapter 4, and show finite

generation of the homeomorphism group of E3. In Chapter 5, we present some useful background

of Bass-Serre theory. We define structural complexes and structural trees of the Apollonian gasket

and the E3 fractal, respectively, and find presentations for their homeomorphism groups using

Bass-Serre theory. Furthermore, a structural complex of the E4 is constructed and used to show

that the homeomorphism group of E4 is a finite group D4 × Z/2. The final chapter investigates

the geometric representation of the homeomorphism group of E3. We show that this group has

an index-2 Kleinian subgroup, and give the limit set of this group acting on the Riemann sphere.

Furthermore, we present a conjugated version of this homeomorphism group, whose geometric

interpretation appears to be more intuitive. The limit set of the conjugated Kleinian group is

also shown in the last chapter, and these two limit sets are homeomorphic to each other.
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Preliminaries and Background

1.1 Dynamical Systems

Dynamical systems is a study on the evolution of different systems over time. It started as

a science aiming to describe the change of physical systems. The n-body problem is a classical

example of a dynamical system. It is widely applied in predicting the motions of celestial objects

under their gravitational influences. Solving the problem has been motivated by the desire to

understand the relative motions within the solar system as well as multiple star systems and

galaxies. In the late 19th century, King Oscar II of Sweden established a prize for anyone who

could find the solution to the n-body problem. The prize was awarded to Henri Poincaré in

1887, even though he did not solve the problem. Instead, he showed that there is no analytical

solution to the three-body problem. He further discovered that a small perturbation in initial

conditions can lead to dramatic difference in the motion of the bodies, even though the system

is governed solely by motion and gravitation. Poincaré’s contributions on the n-body problem

eventually lead to the development of chaos theory. Sensitivity to initial conditions, popularly

referred to as the “butterfly effect”, is a characteristic of dynamical systems. Generally speaking,
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a dynamical system is a set of deterministic rules acting on a collection of objects that leads to

chaotic behaviors.

Definition 1.1.1. A dynamical system is an ordered pair (X,φ), where X is a topological

space and φ is a map φ : X −→ X. The topological space X is called the state space of the

dynamical system.

To deliver mathematical intuition on dynamical system, we consider the squaring of numbers.

If we start with the number 1, and keeps squaring it, we will always get 1 back no matter how

many times we apply the squaring function. However, if, instead of starting at 1, we start with

the number 1.01, which is only slightly different, we would obtain 26612.6 after ten times of

squaring. In this example, the state space of the squaring system is the real numbers R, and the

map for the dynamical system is clearly the function φ(x) = x2 defined on R.

Definition 1.1.2. Given a dynamical system (X,φ) and a point x0 ∈ X, the orbit of x0 is the

set

{x0, φ(x0), φ
2(x0), φ

3(x0), . . . }.

The starting point x0 of an orbit is the initial value, and the n-th iteration of the map φ

applied to the initial value is often referred to as xn = φn(x0).

In the example of the squaring dynamical system, the orbits of the initial values 1 and 1.01

are examined and listed below.

orbit of 1 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . }

orbit of 1.01 = {1.01, 1.0201, 1.0406, 1.08286, 1.17258, 1.37494, 1.89046,

3.57385, 12.7724, 163.134, 26612.6, . . . }

We observe that the difference in the orbits of 1 and 1.01 starts to be prominent after seven

iterations of the squaring function, and after that point, the difference grows larger and larger.

In fact, the orbits of 1 and 1.01 have different behaviors. If we make the orbit into a sequence
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{x0, x1, x2, . . . }, the orbit of 1 is a converging sequence, and the limit of the orbit is 1. On the

other hand, the orbit of 1.01 is diverging to infinity.

We also notice that the orbit of 1 is simply repeating 1’s, which is very special. We define the

points that map to themselves in a dynamical system fixed points.

Definition 1.1.3. Given a dynamical system (X,φ), a point x0 ∈ X is a fixed point if

φ(x0) = x0.

Example 1.1.4. We extend the squaring map to the complex plane C. Let f : C −→ C be the

map defined by f(z) = z2 for all z ∈ C. The map f takes in a complex number z, squares its

norm and doubles its angle as the output. There are two fixed points of the map f , namely 0

and 1. We may investigate some more orbits under the map f .

Let α = e2iπ/5, β = i, and γ = eπ/12. The orbits of them, respectively, are

orbit of α = {e2iπ/5, e4iπ/5, e8iπ/5, e6iπ/5, e2iπ/5, e4iπ/5, e8iπ/5, e6iπ/5, . . . }

orbit of β = {i,−1, 1, 1, 1, 1, 1, . . . }

orbit of γ = {eπ/12, eπ/6, eπ/3, e2π/3, e4π/3, e2π/3, e4π/3, e2π/3, e4π/3, . . . }

In the orbit of α, we see four points repeating themselves under the map f . The orbit of β

falls on a fixed point and keeps repeating that fixed point. Similarly, the orbit of γ falls in a

cycle of two points and repeats them.

Definition 1.1.5. Given a dynamical system (X,φ), a periodic point is a point p ∈ X such

that φn(p) = p for some n ∈ N. The number n is the period of p. The orbit {p, φ(p), . . . , φn−1(p)}

of a periodic point with period n is an n-cycle.

Definition 1.1.6. Given a dynamical system (X,φ), a point p ∈ X is pre-fixed if there exist

k ∈ N such that φk(p) is a fixed point of φ; a point q ∈ X is pre-periodic if there exist j ∈ N

such that φj(q) is a periodic point of φ.
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In Example 1.1.4, the points α = e2iπ/5, β = i, and γ = eπ/12 are, periodic with period 4,

pre-fixed, and pre-periodic, respectively.

Definition 1.1.7. Given a dynamical system (X,φ), and let p be a fixed point of φ. We say

p is attracting if there exist a deleted neighborhood P of p such that for all x ∈ P , the orbit

of x converges to p, and p is repelling if there exist an neighborhood U of p such that every

neighborhood V ⊆ U of p contains a point x ∈ V such that the orbit of x is not bounded by U .

The definitions naturally extend to cycles.

In Example 1.1.4, we know that the point 1.01 has an orbit that diverges to infinity. We

investigate a deleted neighborhood S of the fixed point 1. For z ∈ S such that ‖z‖ < 1, the

orbit converges to the other fixed point 0 because the norm gets squared in each iteration; for

z ∈ S such that ‖z‖ > 1, the orbit diverges to infinity; for z ∈ S such that ‖z‖ = 1, the situation

is slightly more complicated (explain the pre-fixed points in the neighborhood...). We may now

conclude that 1 is a repelling fixed point.

Definition 1.1.8. The basin of attraction of an attracting fixed point p is an open set U

such that every x ∈ U has an orbit converging to p.

1.2 Homeomorphisms

Homeomorphism is a central topic of this paper. We will primarily use [21] to build the basic

ideas of continuous functions and homeomorphisms in this section, and then the quotient topol-

ogy in the next section. Readers are assumed to have familiarity with the basics of topological

spaces.

We consider a function f : R −→ R. In analysis, the continuity of a real-valued function is

given by the “ε-δ definition”. The continuity of a function in topology is, however, defined via

open sets.
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Definition 1.2.1. Let X and Y be topological spaces. A function f : X −→ Y is continuous if

for each open subset V of Y , its preimage f−1(V ) is open in X.

The following lemma shows that this definition is equivalent to the “ε-δ definition” in analysis,

and therefore, common continuous functions in analysis are also continuous functions in topology.

Lemma 1.2.2. Let f : R −→ R be a real-valued function of one real variable. Then f is a

continuous function if and only if for all x0 ∈ R and for any given ε > 0, there exist δ > 0 such

that |x− x0| < δ implies |f(x)− f(x0)| < ε.

Proof. Suppose that f is continuous. Let x0 ∈ R, and let ε > 0. Let V be the open interval

(f(x0)− ε, f(x0) + ε). By continuity, U = f−1(V ) is an open set containing x0. Thus there exist

δ > 0 such that the interval (x0 − δ, x0 + δ) is contained in U . Therefore, |x − x0| < δ implies

that |f(x)− f(x0)| < ε.

Suppose that for all x0 ∈ R and for any given ε > 0, there exist δ > 0 such that |x− x0| < δ

implies |f(x)− f(x0)| < ε. Let V be an open set of R, and let U = f−1(V ). If U = ∅, it follows

that U is open. Suppose that U is not empty. Let x0 ∈ U . Then there exist δ > 0 such that

the interval X = (x0 − δ, x0 + δ) is entirely contained in U . Thus f(X) is contained in V . Let

A = {(x0 − δ, x0 + δ) | x0 ∈ U, δ > 0 such that (x0 − δ, x0 + δ) ⊆ U}, and let S =
⋃
X∈AX. It

follows that S is open in R, and S ⊆ U . Because S contains all x0 ∈ U , it follows that U ⊆ S.

Therefore, U = S is open, and f is continuous.

The “ε-δ definition” of continuity in analysis can also apply to continuity at a single point.

There is an analogous definition in topology.

Definition 1.2.3. Let X and Y be topological spaces, and let f : X −→ Y be a function. Let

x be a point in X. We say that f is continuous at the point x if for any neighborhood V of

f(x), there exist a neighborhood U of x such that f(U) ⊆ V .

With the notion of continuous functions, we are now ready to define homeomorphisms.
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Definition 1.2.4. Let X and Y be topological spaces, and let f : X −→ Y be a bijective

function. If both the function f and its inverse function f−1 : Y −→ X are continuous, then we

say that f is a homeomorphism. The spaces X and Y are said to be homeomorphic if there

exist a homeomorphism between them.

If two topological spaces are homeomorphic, they are considered the same from a topological

point of view.

Example 1.2.5. The open interval (0, 1) and the real line R are homeomorphic with the home-

omorphism f : (0, 1) −→ R defined by

f(x) = tan(πx− π/2).

The continuity of f is guaranteed by the continuity of the tangent function within each of its

periods. Its inverse function f−1 : R −→ (0, 1) given by

f−1(x) =
tan−1(x) + π/2

π

is also continuous because the inverse tangent function is continuous over R. In addition, both

functions f and f−1 are bijective.

A continuous bijective function f : X −→ Y is not necessarily a homeomorphism. The conti-

nuity of both the original function and its inverse function is required for the function to be a

homeomorphism. The following is an example of such type of function.

Example 1.2.6. Let S1 denote the unit circle

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}

as a subspace of the plane R2. Let f : [0, 1) −→ S1 be the function defined by

f(t) = (cos(2πt), sin(2πt))

The properties of trigonometric functions guarantees the continuity of f . However, the inverse

function f−1 : S1 −→ [0, 1) is not continuous. Consider the open subset U = [0, 1/2) of [0, 1).
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f

0 11�2
U

f HU L

Figure 1.2.1: A Continuous Bijection that is not a Homeomorphism

Its preimage under f−1 is f(U), and it is not an open set of S1 (Figure 1.2.1). Thus f−1 is not

continuous, and f is not a homeomorphism.

In order for a function between spaces to be a homeomorphism, both the function and its

inverse are required to be bijective and continuous. Thus both the original function and its inverse

function are homeomorphisms. The following theorem gives another criterion for a continuous

bijection to be a homeomorphism.

Theorem 1.2.7. Let X be a compact space and Y be a Hausdorff space. If f : X −→ Y is a

continuous bijection, then f is a homeomorphism.

Proof. See Theorem 26.6 in [21].

Given a topological space, the set of all homeomorphisms from the space to itself forms a

group under function composition. Two homeomorphisms can compose together to form another

homeomorphism. Associativity follows from the property of function composition. The identity

function is clearly a homeomorphism, and the inverse function of a homeomorphism is, once

again, a homeomorphism.

Definition 1.2.8. Let X be a topological space. The homeomorphism group of X, denoted

Homeo(X), is the group of all homeomorphisms from X to itself with function composition as

the group operation.
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Example 1.2.9. Consider the topological space X = {1, 2, 3, . . . , n} with discrete topology.

Then any permutation of X gives a homeomorphism from X to itself. In fact, the homeomor-

phism group Homeo(X) is simply the permutation group Sn.

Example 1.2.10. Let I = [0, 1] be the topological space with subspace topology inherited from

R. The homeomorphism group of I can be described as the set of continuous bijective functions

f : I −→ I such that f(0) = 0 and f(1) = 1, or f(0) = 1 and f(1) = 0. Define the functions

f, g, h : I −→ I by

f(x) = x2, g(x) =


2x, if 0 ≤ x < 1/4,

x+ 1/4, if 1/4 ≤ x < 1/2,

x/2 + 1/2, if 1/2 ≤ x ≤ 1,

and h(x) = 1− x.

The graphs of these functions, their inverses, and some of their compositions are shown in Fig-

ure 1.2.2. Additionally, we notice that the homeomorphisms of I are either monotone increasing

0

1

0 1
0

1

0 1
0

1

0 1

f g h

0

1

0 1
0

1

0 1
0

1

0 1

f−1 g−1 h−1

0

1

0 1
0

1

0 1
0

1

0 1

f ◦ g g ◦ h f ◦ g ◦ h

Figure 1.2.2: Some Homeomorphisms of [0, 1]
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from 0 to 1 or monotone decreasing from 1 to 0. The identity map is monotone increasing. The

inverses and compositions of monotone increasing homeomorphisms are also monotone increas-

ing. In fact, the set of monotone increasing homeomorphisms of I forms an index 2 subgroup of

Homeo(I).

The following theorem provides a powerful tool to construct new continuous functions with

existing continuous functions.

Theorem 1.2.11 (The Pasting Lemma). Let X = A∪B, where A and B are closed subsets of

X. Let f : A −→ Y and g : B −→ Y be continuous functions. If f(x) = g(x) for all x ∈ A ∩ B,

the the function h : X −→ Y defined by

h(x) =

{
f(x), if x ∈ A,
g(x), if x ∈ B

is continuous.

Proof. Let U be an open subset of Y . Let C = Y − U . Then C is closed. Thus

h−1(C) = f−1(C) ∪ g−1(C) = (f−1(Y )− f−1(U)) ∪ (g−1(Y )− g−1(U))

= (A− f−1(U)) ∪ (B − g−1(U)).

Because both f and g are continuous, it follows that f−1(U) and g−1(U) are open in A and

B, respectively. Then (A− f−1(U)) and (B − g−1(U)) are closed in A and B, respectively, and

thus both closed in X because A and B are closed sets. Thus h−1(C) is closed in X. Therefore,

h−1(U) = X − h−1(C) is open in X, and thus h is continuous.

1.3 The Quotient Topology

It would be helpful to introduce the idea of the quotient topology for studying the topological

structures and properties of fractals. In the coming sections and chapters, we will introduce the

Cantor set C, which can be thought to be the blueprint of fractals, and view some of the fractals

that we will study as a quotient space of C.
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Definition 1.3.1. Let X and Y be topological space. Let p : X −→ Y be a surjective map. The

map p is said to be a quotient map provided that a subset U of Y is open in Y if and only if

p−1(U) is open in X.

Notice that the condition for a map to be a quotient map is stronger than that for continuity.

Hence, every quotient map between two spaces is a continuous map. Similar with continuity,

quotient maps can also be defined with closed set. The equivalent condition in terms of closed

set is to require that a subset C of Y be closed in Y if and only if p−1(C) is closed in X. The

equivalence follows from the relation

f−1(Y − U) = f−1(Y )− f−1(U) = X − f−1(U).

The next two definitions show two special kinds of quotient maps.

Definition 1.3.2. Let X and Y be topological spaces. A map f : X −→ Y is an open map if

for each open set U of X, its image f(U) is open in Y . A map g : X −→ Y is a closed map if

for each closed set C of X, its image f(C) is closed in Y .

It follows that a surjective continuous open map between two spaces is a quotient map, so is

a surjective continuous closed map. However, there are quotient maps that are neither open nor

closed.

Lemma 1.3.3. Let X be a topological space, and let A be a set. If p : X −→ A is a surjective

map, then there exist exactly one topology T on A such that p is a quotient map. This topology

T on A is called the quotient topology induced by p.

Proof. Let T be the topology on A defined by

T = {U ⊆ A | p−1(U) is open in X}.



1.3. THE QUOTIENT TOPOLOGY 17

We verify that T is a topology. First of all, ∅ = p−1(∅) and A = p−1(X) are open. An arbitrary

union of open sets ⋃
α∈A

p−1(Uα) = p−1
( ⋃
α∈A

Uα

)
,

which is an open set. A finite intersection of open sets

n⋂
i=1

p−1(U) = p−1
( n⋂
i=1

Ui

)
,

which, once again, is an open set. Thus T is a topology on A.

Definition 1.3.4. Let X be a topological space, and let ∼ be an equivalence relation defined on

X. Let X∗ be the partition of X corresponding to the equivalence relation ∼. Let p : X −→ X∗

be the surjective map defined by

p(x) = [x],

where [x] is the equivalence class containing x. In the quotient topology induced by p, the space

X∗ is a quotient space of X.

Example 1.3.5. Let X be the rectangle [0, 1] × [0, 1]. Define an equivalence relation ∼ on X

by

(x1, y1) ∼ (x2, y2) if x1 = x2 and y1 = y2 = 0, or y1 = y2 and x1 = x2 = 0.

The partition X∗corresponding to this equivalence relation consists of all singleton sets {(x, y)}

where 0 < x < 1 and 0 < y < 1, the following two-point sets

{(x, 0), (x, 1)}, where 0 < x < 1,

{(0, y), (1, y)}, where 0 < y < 1,

and the four-point set

{(0, 0), (0, 1), (1, 0), (1, 1)}.

The resulting quotient space is a torus. Three typical open sets of this quotient space are shown

in the rectangle as well as the torus in Figure 1.3.1.
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Figure 1.3.1: Open Sets in the Quotient Space of [0, 1]× [0, 1]

1.4 Möbius Transformations and Anti-Möbius Transformations

In this section, we introduce two important families of functions defined on the Riemann

sphere Ĉ = C∪{∞}, namely, the Möbius transformations and the anti-Möbius transformations.

Definition 1.4.1. A Möbius transformation is a map f : Ĉ −→ Ĉ of the form

f(z) =
az + b

cz + d
,

where the coefficients a, b, c, d ∈ C satisfy that ad− bc 6= 0.

If we divide all coefficients by the complex square root
√
ad− bc, we can arrange that ad−bc =

1 without changing the map f . Thus the Möbius transformations can also be defined with the

coefficients satisfying ad− bc = 1.

Möbius transformations are bijective holomorphic functions of the Riemann sphere. An in-

verse of a Möbius transformation is yet another Möbius transformation. If we have a Möbius

transformation f : Ĉ −→ Ĉ defined by

f(z) =
az + b

cz + d
,

its inverse has the formula

f−1(z) =
dz − b
−cz + a

.
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A composition of Möbius transformations is also a Möbius transformation. Let f and g be

Möbius transformations defined by

f(z) =
az + b

cz + d
and g(z) =

mz + n

pz + q
,

then the composition function of f and g has the formula

(g ◦ f)(z) =
m · az+bcz+d + n

p · az+bcz+d + q
=

(ma+ nc)z + (mb+ nd)

(pa+ qc)z + (pb+ qd)
.

The composition of Möbius transformations is associative, inherited from the associativity of

functions. In addition, the identity function is a special Möbius transformation with coefficients

a = d = 1 and b = c = 0. Therefore, the set of Möbius transformations forms a group under

function composition.

Definition 1.4.2. The Möbius group, denoted by Mob, is the group of Möbius transforma-

tions.

We notice that the coefficients of g ◦ f are exactly the entries of the product of two matrices,

namely, [
m n
p q

] [
a b
c d

]
=

[
ma+ nc mb+ nd
pa+ qc pb+ qd

]
.

The following theorem shows that such phenomenon is not merely coincidence. There is a cor-

respondence between the Möbius group and matrix groups.

Theorem 1.4.3. The Möbius group Mob is isomorphic to PSL2(C).

Proof. Let ϕ : SL2(C) −→ Mob be a map defined by

ϕ(A) = fA

where

A =

[
a b
c d

]
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for any a, b, c, d ∈ C satisfying ad− bc = 1, and

fA(z) =
az + b

cz + d
.

The map ϕ is clearly surjective. Thus we have ϕ(SL2(C)) = Mob.

Let

A =

[
a b
c d

]
, and M =

[
m n
p q

]
.

Then

MA =

[
m n
p q

] [
a b
c d

]
=

[
ma+ nc mb+ nd
pa+ qc pb+ qd

]
.

Thus

ϕ(M) ◦ ϕ(A) = fM ◦ fA,

where

(fM ◦ fA)(z) =
m · az+bcz+d + n

p · az+bcz+d + q
=

(ma+ nc)z + (mb+ nd)

(pa+ qc)z + (pb+ qd)
,

and

ϕ(MA) = fMA,

where

fMA(z) =
(ma+ nc)z + (mb+ nd)

(pa+ qc)z + (pb+ qd)
.

It follows that ϕ is a homomorphism.

Now we look for the kernel of this homomorphism. Let

A =

[
a b
c d

]
.

Suppose that A ∈ ker(ϕ). Then ϕ(A) = 1Ĉ. Thus ad− bc = 1 and (az + b)/(cz + d) = z for all

z ∈ Ĉ. It follows that ker(ϕ) = {±I}. By the First Isomorphism Theorem,

SL2(C)/ ker(ϕ) ∼= ϕ(SL2(C)).

We know that ϕ(SL2(C)) = Mob, and by definition, PSL2(C) ∼= SL2(C)/{±I}. Therefore, we

conclude that Mob ∼= PSL2(C).
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There are several natural representations of PSL2(C) including conformal transformations of

the Riemann sphere Ĉ, orientation-preserving isometries of hyperbolic 3-space H3, and orienta-

tion preserving conformal maps of the open unit ball B3 ⊆ R3 to itself. The Möbius group can

act on any of these spaces described.

Given two sets of three distinct points {z1, z2, z3} and {w1, w2, w3} on the Riemann sphere Ĉ,

there exist a unique Möbius transformation under which z1, z2, z3 map to w1, w2, w3, respectively.

It is easy to check that the Möbius transformation defined by

f1(z) =
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

maps z1, z2, z3 to 0, 1,∞, respectively. Similarly, there exist another Möbius transformation f2(z)

that maps w1, w2, w3 to 0, 1,∞, respectively. The composition function g = f−12 ◦ f1 is then the

desired Möbius transformation that maps z1, z2, z3 to w1, w2, w3, respectively.

Möbius transformations are orientation-preserving conformal mappings of the Riemann

sphere. There is yet another important class of functions defined on the Riemann sphere –

the anti-Möbius transformations. They are very similar to Möbius transformations, besides the

fact that they are orientation-reversing mappings of the Riemann sphere.

Definition 1.4.4. An anti-Möbius transformation is a map f∗ : Ĉ −→ Ĉ of the form

f∗(z) =
az + b

cz + d
,

where the coefficients a, b, c, d ∈ C satisfy that ad− bc 6= 0.

It is clear that the complex conjugate of a Möbius transformation is an anti-Möbius transfor-

mation, and vice versa. Therefore, the collection of all Möbius transformations and anti-Möbius

transformations form a group Mob± = Mobo 〈s〉, where s is the complex conjugation function.

The Möbius group is an index-2 normal subgroup of G, and the collection of all anti-Möbius

transformations is the coset containing the complex conjugation function.

An important family of anti-Möbius transformations is the circle inversions.
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Definition 1.4.5. Let C be a circle on the complex plane centered at z0 with radius r. The

inverse of z ∈ C− {z0} with respect to the circle C is the point w ∈ C− {z0} lying on the ray

from z0 through z satisfying that

‖w − z0‖ · ‖z − z0‖ = r2.

We can write down an explicit expression of w in terms of z0, r, and z:

w = z0 + r2 · z − z0
‖z − z0‖2

.

We immediately run into problem when we compute the inverse of z0. In order for every point

to have an inverse, we introduce the point at infinity. The inverse of the center is defined to be

the point at infinity, and vice versa. Now we can define circle inversions.

Definition 1.4.6. The circle inversion across C centered at z0 is a map defined on Ĉ that

maps each point z ∈ C − {z0} to its inverse with respect to C. Additionally, the inversion

interchanges the center z0 of C and the point at infinity.

Example 1.4.7. Let c(z) be an anti-Möbius transformation with the expression

c(z) =
1

z
.

Suppose z = reiθ is an arbitrary complex number. Then

c(z) =
1

z
=

1

reiθ
=

1

re−iθ
=

1

r
· eiθ =

z

‖z‖2
.

It follows that c(z) is a circle inversion of the Riemann sphere with respect to the unit circle.

Any circle inversion is an anti-Möbius transformation. Let z(θ) = z0 + reiθ be an arbitrary

circle on the Riemann sphere. Because three points determines a circle, we pick three distinct

points z0 + r, z0 + ir, z0 − r on the circle. Then there exist a Möbius transformation f that

sends these three points to 1, i, −1, respectively. In particular, this Möbius transformation is

an affine linear transformation. The circle through the points 1, i, −1 is the unit circle, and
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the inversion across the unit circle is the function c in Example 1.4.7, which is an anti-Möbius

transformation. The composition of transformations g = f−1◦c∗◦f completes the circle inversion

with respect to z(θ) = z0 + reiθ. Because f−1 and f are Möbius transformations, while c is an

anti-Möbius transformation, it follows that the composition of these three functions gives an

anti-Möbiustransformation.

A circle inversion always maps circles to circles on Ĉ. This property is very useful and helps

in constructing Schottky groups of circle inversions in the following section.

1.5 Kleinian Groups and Schottky Groups

The matrix group PSL2(C) has three complex dimensions, or equivalently, six real dimensions.

We can impose a uniform topology on PSL2(C) so that it becomes a topological group. We are

particularly interested in the rich structure of subgroups of PSL2(C).

Definition 1.5.1. A Kleinian group is a discrete subgroup of PSL2(C).

Kleinian groups are discrete in a sense that they do not have limit points in PSL2(C).

Definition 1.5.2. Let C1, C2, . . . , Cn be circles with disjoint interiors. Let γ1, γ2, . . . , γn be

the circle inversions across the circles C1, C2, . . . , Cn, respectively. The group, under function

composition, generated by γ1, γ2, . . . , γn, is a Schottky group.

The generators of a Schottky group are anti-Möbius transformations. Two anti-Möbius trans-

formations compose together to give a Möbius transformation. Thus the Möbius transformations

of a Schottky group forms an index-2 normal subgroup, which is a Kleinian group. The anti-

Möbius transformations form the coset containing the generators of circle inversions.

Definition 1.5.3. Let K be a Kleinian group acting on the Riemann sphere Ĉ. Let p ∈ Ĉ be a

point. The orbit Kp of p typically accumulates on Ĉ. The set of accumulation points of Kp in Ĉ

is called the limit set of K, denoted by Λ(K). The limit set of Schottky groups can be defined

analogously.
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Figure 1.5.1: Circle Inversions and the Orbit of One Point

Notice that in the definition above, the choice of a starting point p ∈ Ĉ is arbitrary. In fact, the

limit set of a Kleinian group does not depend on the choice of the starting point p. Furthermore,

we observe that the limit set is closed in the Riemann sphere Ĉ.

Example 1.5.4. Let C1, C2, and C3 be three mutually tangent circles of the same size, and

let γ1, γ2, and γ3 be the circle inversions across C1, C2, and C3, respectively. The limit set of

the Schottky group generated by γ1, γ2, and γ3 is the circle through the three tangent points.

Figure 1.5.1 shows part of the orbit of one point under the action of this group. We can start to

see the orbit converging to a circle.

We show more examples of Schottky group limit sets in Figure 1.5.2, in which the left circles

correspond to the generating circle reflections for the Schottky groups. A lot of these limit sets

have self-similar structures that resemble fractals.
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Figure 1.5.2: Limit Sets of Schottky Groups





2

Fractals

A fractal is a natural or mathematical object that exhibits a repeating pattern, formally

called the self-similar property, that displays at different scales of the object. Fractals have

been known for more than a century and have been observed in all branches of science. Fractal

structures are ubiquitous in nature. The leaves of ferns demonstrates self-similarity – they show

the same structure at different levels (Figure 2.0.1a). The clouds in the sky also presents self-

similarity (Figure 2.0.1b). In meteorology, the demand for understanding the complex physics of

the cloud motivated physicists and mathematicians to bring up the new field of fractal analysis

in mathematics. The systematic study of fractals in mathematics started around the 1970s. In

(a) Fern Leaves (b) Clouds

Figure 2.0.1: Naturally-Occurring Fractal Structures
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1967, mathematician Benôıt Mandelbrot, by examining the coastline paradox [17], introduced

several important concepts in fractal geometry. Later in 1975, Mandelbrot first used the term

“fractal”. With the development of modern computer graphics, more and more fractals show up

in the field and enrich the study of fractals. In this chapter, we will walk through some basic

properties of fractals, including self-similarity and ways to generate fractals. We will also briefly

investigate several paradigms of fractals in mathematics, namely, the Cantor set, the Sierpinski

gasket (SG), and Julia sets.

2.1 Basic Properties of Fractals

2.1.1 Self-similarity

An object is said to be self-similar if the whole object is exactly or approximately similar to

part of itself. Fractals are usually self-similar objects. For example, if the Koch curve is magnified

about a portion of itself, the shape is still the Koch curve (Figure 2.1.1).

Figure 2.1.1: Zooming into the Koch Curve

Not only fractals are self-similar. A closed-up look of a portion of a line segment is simply

a line segment. Thus any line segment is self-similar. In section 2.4, we will see that the line

segment joining 2 and −2 on the complex plane is a Julia set.

2.1.2 Ways to generate fractals

There are numerous ways to generate fractals. The commonly-used methods include iterated

function systems, escape-time method, strange attractors, L-systems, etc. We will mainly focus

on iterated function systems and escape-time method. Among the examples in this chapter,
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the Cantor set and the Sierpinski gasket are usually generated by iterated function systems,

although there are other ways to give rise to these two fractals. The Julia sets are paradigms of

fractals generated by escape-time method. Here, we introduce iterated function systems based

on the set up given in [14]. In Section 2.4, we will give an expository introduction to escape-time

method with the background given in [8].

Definition 2.1.1. Let (M,d) be a metric space. A map f : M −→M is a contracting map if

there is a real number λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ λ · d(x, y) for all x, y ∈M.

Theorem 2.1.2 (Banach fixed-point theorem). Let M be a complete metric space and let f : M

−→M a contracting map. Then there exist a unique fixed point for f in M .

Proof. See [22].

Theorem 2.1.3. Let M be a complete metric space and {f1, . . . , fn} a family of contracting

maps on M . Denote the collection of all nonempty compact subsets of M by K(M). If we define

the transformation F : K(M) −→ K(M) by

F (X) =

n⋃
i=1

fn(X).

Then there exist a unique compact subset X ⊆M such that F (X) = X.

Proof. See Theorem 2.6 in [10].

Definition 2.1.4. The set X given in Theorem 2.1.3 is called a homogeneous self-similar

fractal set, and the family of functions {f1, . . . , fn} is usually called an iterated function

system (i.f.s. for short).

The middle-third Cantor set and the Sierpinski gasket presented in the following two sections

are classic examples of fractals generated from iterated function systems.
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2.2 The Cantor Set

The Cantor set was introduced by German mathematician Georg Cantor in 1883 in an abstract

way. The most commonly-referred Cantor set is the middle-third Cantor set. In this section, we

construct the middle-third Cantor set, and show a remarkable topological property of the Cantor

set.

2.2.1 The middle-third Cantor set

A classic way to obtain the Cantor set is by repetitively removing the middle thirds of line

intervals. An iterated function system is used to generate the Cantor set.

Definition 2.2.1. Let I ⊆ R be the closed interval [0, 1]. Let γ1, γ2 : I −→ I be maps defined by

γ1(x) =
x

3
, and γ2 =

x− 1

3
+ 1

for all x ∈ I. Define C0 = I, and inductively, Cn+1 = γ1(Cn) ∪ γ2(Cn). Notice that the sets

{Cn}n∈N are nested, i.e., Cn+1 ⊆ Cn for all n ∈ N. The Cantor set C is defined to be the limit

of the sequence of sets, i.e.,

C =
⋂
n∈N

Cn.

Figure 2.2.1 shows the first few stages of approximation of the Cantor set.

2.2.2 {0, 1}∞

Definition 2.2.2. Let M be a metric space. We say M is a Cantor space if M is compact,

non-empty, perfect, and totally disconnected.

Figure 2.2.1: The First Few Stages of Approximation of the Cantor Set
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Theorem 2.2.3 (Moore-Kline Theorem). Every Cantor space is homeomorphic to the middle-

third Cantor set.

Proof. See Theorem 69 in [23].

The countable product {0, 1}∞ is a Cantor space by definition, thus it is homeomorphic to

the middle-third Cantor set. In fact, any countable product of finite discrete spaces is a Cantor

space, and thus homeomorphic to the Cantor set.

2.3 The Sierpinski Gasket

The Sierpinski gasket is a fractal described by Polish mathematician Waclaw Sierpinski in

1915. It is alternatively called the Sierpinski triangle or the Sierpinski sieve. It has been a

popular candidate for the study of fractals.

2.3.1 Construction

There are many different ways to construct the Sierpinski gasket. One of the most commonly

used method is repeated triangle removals as shown in Figure 2.3.1. We start with the closed

equilateral triangle (SG0). The equilateral triangle is then subdivided into four identical con-

gruent equilateral triangles. We remove the interior of the central one, which gives us the first

stage of the construction (SG1). This process of removing triangles is repeated for each of the

remaining smaller triangles, and the result of each stage SGn is a closed subspace of SG0. The

Sierpinski gasket (SG) is defined by

SG =
⋂

n∈Z≥0

SGn. (2.3.1)
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· · ·

Figure 2.3.1: Construction of the Sierpinski Gasket

An alternative way to construct the Sierpinski gasket is through iterated function systems.

Let f1, f2, and f3 be the maps defined on the complex plane by

f1(z) = z/2,

f2(z) = (z − 1)/2 + 1,

f3(z) = (z − i)/2 + i,

for all z ∈ C. The homogeneous self-similar fractal set of the iterated function system {f1, f2, f3}

is a Sierpinski gasket embedded on the complex plane.

Theorem 2.3.1. The Sierpinski gasket SG is a path-connected compact Hausdorff space.

Proof. SG is Hausdorff follows from SG ⊆ R2, in which case R2 is Hausdorff. For all n ∈ Z≥0,

the subspace SGn is closed. Then SG is closed by definition. Because SG is also bounded, it

follows that SG is compact.

The path-connectedness of SG is shown in [16].

2.3.2 Address system

In order to describe points in the Sierpinski gasket (SG), we need an address system that

assigns addresses. The address system described in this section is based on the visual geometry

of the Sierpinski gasket. The basic components of the Sierpinski gasket are cells, and each cell

is divided into three subcells. The complete Sierpinski gasket is built from one main cell.

The structure of the Sierpinski gasket is described by a replacement system. As shown in

Figure 2.3.2, we may start with the main cell, and apply the replacement rule to components
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Ω

1

2 3

−→
Ω1

Ω2 Ω3

1

2 3

1

2 3

1

2 3

Figure 2.3.2: Replacement System of the Sierpinski Gasket

of the main cell. If we keep applying the replacement rule to subsequent cells, the limit of these

graphs will eventually be the Sierpinski gasket. In addition, every point in the Sierpinski gasket

can be described by an address – an infinite sequence of 1, 2, and 3. For example, if a cell has

address ω, its three immediate subcells shall have addresses ω1, ω2, and ω3, respectively.

Definition 2.3.2. The symbol space of points in the Sierpinski gasket is the collection ΩSG =

{1, 2, 3}∞ of infinite sequences with the alphabet {1, 2, 3}.

The collection ΩSG = {1, 2, 3}∞ is a topological space with product topology. It is homeomor-

phic to the Cantor set.

Definition 2.3.3. A cell of the Sierpinski gasket is the collection of all points with the same

initial n digits in their addresses. Formally, a collection of points S is a cell if there exist n ≥ 1

such that S = ω × {1, 2, 3}∞ for some finite word ω ∈ {1, 2, 3}n. The integer n is the depth of

the cell S, and the finite word ω is the address of the cell S. The cell S is referred to as the

ω-cell, or simply cell ω when there is no confusion.

Definition 2.3.4. The only cell with depth 1 in the Sierpinski gasket is the main cell.

It is clear that the complete Sierpinski gasket is the main cell.

There are points in the Sierpinski gasket with multiple addresses. The replacement rule tells

us three types of points with two distinct addresses:

ω12 = ω21, ω23 = ω32, ω13 = ω31 (2.3.2)
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for any finite word ω ∈ {A,B} × {1, 2, 3}k−1 of length k.

The equivalence relation in 2.3.2 defines a surjective map q from the symbol space ΩSG to the

Sierpinski gasket. Surjective continuous functions from a compact space to a Hausdorff space is

a quotient map. Thus the Sierpinski gasket is homeomorphic to the quotient space of ΩSG with

quotient topology induced by q.

2.3.3 Homeomorphisms

It is clear that SG exhibits D3 symmetry. It is not as clear that the only homeomorphisms of

SG are the elements of D3. This fact was previously proven by Joel Louwsma using the idea of

local cut points [16]. In this section, we show the group structure of Homeo(SG) with the help

of the following claim on the structure of SG.

Claim 2.3.5. The points p1, p2, p3 shown in the figure below form the only set of three points

on SG whose removal results in the disconnection of SG into three mutually disjoint subsets.

p3 p2

p1

This claim was shown in a proof of Theorem 6.1 in [16].

Theorem 2.3.6. The homeomorphism group Homeo(SG) of the Sierpinski gasket is the dihedral

group D3 of the triangle.

Proof. Let P = {p1, p2, p3} be the collection of three points in Claim 2.3.5. Because P has the

topological property stated in Claim 2.3.5, it follows that P is invariant under any homeomor-

phism of SG. Let ϕ : SG −→ SG be a homeomorphism. Then there exists a σ ∈ D3 such that
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(σ ◦ ϕ)(pi) = i for i ∈ {1, 2, 3}. Let ψ = σ ◦ ϕ. Notice that ψ is a homeomorphism of SG that

fixes p1, p2, p3. It suffices to show that ψ is the identity map on SG.

We look at the three components separated by the set P . The closure of each component

is a sub-Sierpinski gasket. Let x be an arbitrary point in the cell with address 1. Because the

Sierpinski gasket is path-connected, there exist paths γ2 and γ3 lying entirely in the cell with

address 1, connecting x with p2 and p3, respectively. Then the images of γ2 and γ3 under the

homeomorphism ψ must lie entirely within a single component of the Sierpinski gasket. Because

ψ fixes p2 and p3, this component must be the cell with address 1. Thus ψ(x) is in the same

component as x is, i.e., each cell of depth 1 is invariant under ψ.

Now we take a closer look at the cell with address 1. Because this cell has the structure of a

Sierpinski gasket, it also has a set of three special points q1, q2, q3, whose removal disconnects this

cell into three disconnected components. By their special topological property, the set {q1, q2, q3}

is invariant under the homeomorphism ψ. We show that ψ actually fixes all three of them.

q3 q2

q1p3 p2

T

L R

We call the three components of this cell T , L, and R. Each component is a sub-Sierpinski

gasket. There exist a path α1 lying entirely in the L component connecting p3 to q1, and a path

α2 lying entirely in the R component connecting p2 to q1. We have shown that ψ(p3) = p3 and

ψ(p2) = p2. Suppose that ψ(q1) = q2. Then the image of the path α1 cannot lie entirely in one

single component, which contradicts that φ is a homeomorphism. Hence, ψ(q1) 6= q2. Similarly,

we can show that ψ(q1) 6= q3. Thus ψ fixes q1. There exist a path α3 lying entirely in the L

component connecting p3 to q3. Now suppose that ψ(q3) = q2. Then the image of the path α3



36 2. FRACTALS

cannot lie entirely in one single component. Hence, q3 is also fixed by ψ, and q2 is automatically

fixed.

This process can be iterated to show that every point on the Sierpinski gasket where two cells

meet each other is fixed by ψ. Such points form a dense subset of SG. Then ψ agrees with the

identity map on a dense subset of SG. Because ψ is a homeomorphism, it follows that ψ is the

identity map. Therefore, we conclude that the homeomorphism group of the Sierpinski gasket

is the dihedral group D3.

2.4 Julia Sets

The notion of Julia sets arises from complex dynamical systems. The construction of a Julia

set fractal uses escape-time method. In this section, we will give the definition of Julia sets and

provide some examples of Julia sets.

Definition 2.4.1. Let Λ be a metric space with metric d, and let f : Λ −→ Λ be a continuous

map. We say f exhibits sensitive dependence on initial conditions if there exist ε > 0 such

that for any x ∈ Λ and any neighborhood U of x, there exist n > 0 and y ∈ U such that

d(fn(x)− fn(y)) > ε.

The idea of sensitive dependence is the following. No matter how close we choose two points

on the metric space as our initial conditions, the orbits of these two points diverges by at least ε

units.

Definition 2.4.2. We say that f : Λ −→ Λ is chaotic if f exhibits sensitive dependence on

initial conditions at every point in Λ.

Definition 2.4.3. The Julia set of f , denoted by J(f), is the set of all points at which f

exhibits sensitive dependence. In another word, J(f) is the chaotic set for f .
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Example 2.4.4. The Julia set of the function f(z) = z2 is the unit circle on the complex plane.

For any values z with ‖z‖ < 1, the orbit converges to 0, and for any values z with ‖z‖ > 1,

the orbit converges to ∞. For z on the unit circle, the function f doubles the argument of z

modulo 2π, and such doubling function is a chaotic map.

Example 2.4.5. The Julia set of the function f(z) = z2 − 2 is the line segment connecting 2

and −2 on the complex plane.

Julia sets usually have fractal structure. Figure 2.4.1 shows some Julia sets generated by

Mathematica.
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f(z) = z2 − 0.123 + 0.745i f(z) = z2 + i

f(z) = z2 − 1 f(z) = z−2 − 1

f(z) =
z3− 16

27
z f(z) = 3z2

3√2(z3−1)

Figure 2.4.1: Julia Sets of Complex-Valued Functions
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The Apollonian Gasket

The first fractal structure we investigate is the Apollonian gasket (Figure 3.0.1). The Apol-

lonian gasket is constructed by pasting the vertices of two Sierpinski gaskets together. The

homeomorphism group for the Sierpinski gasket is finite, particularly, isomorphic to the dihe-

dral group D3 [16]. In this chapter, we show that the homeomorphism group for the Apollonian

gasket is infinite and finitely generated by a set of three generators.

Figure 3.0.1: The Apollonian Gasket and the Sierpinski Gasket
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3.1 Construction of the Apollonian Gasket

There are several equivalent constructions of the Apollonian gasket. In particular, the Apollo-

nian gasket can be constructed by pasting the three vertices of two Sierpinski gaskets together. It

can also be constructed by placing four Sierpinski gaskets on alternating faces of the octahedron.

Figure 3.1.1 illustrates both of these two constructions.

The Apollonian gasket can also be constructed by Apollonian circles (Figure 3.1.2). To start,

we draw three mutually tangent circles A, B, and C. Descartes’ Theorem states that there are

Figure 3.1.1: Two constructions of the Apollonian Gasket Using Sierpinski Gaskets

A

B

C

A

B

C

D

E A

B

C

D

EF A

B

C

D

EF

G

H

Figure 3.1.2: Construction of the Apollonian Gasket with Apollonian Circles

...

Figure 3.1.3: The Apollonian Gasket as a Limit Set
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two other non-intersecting circles, D and E, that are tangent two all of the three starting circles,

which are called Apollonian circles. If we choose three mutually tangent circles out of the five we

have, B, C, and D for example, there are two Apollonian circles, one of them being the original

circle A, and the other a new circle F . The addition of Apollonian circles can be continued in

the same pattern indefinitely, and the limit of the set of circles is the Apollonian gasket.

The most useful construction of the Apollonian gasket is the Schottky groups and their limit

sets. As defined in Section 1.5, Schottky groups are groups of functions defined on the Riemann

sphere. They are generated by circle inversions on Ĉ. Readers should keep in mind that the planar

structure of Schottky groups can be realized through stereographic projection of Ĉ onto R2.

If we look at the Schottky group starting with three mutually tangent identical circles to-

gether with a little circle in the middle tangent to all the other three, and we apply the circle

inversions, the limit set we obtain for this Schottky group turns out to be the Apollonian

gasket (Figure 3.1.3). This construction of the Apollonian gasket is very convenient for find-

ing homeomorphisms, in which case the corresponding Schottky group has provided abundant

homeomorphisms of the fractal.

3.2 Addresses and Cells

Most of the definitions in this section will be analogous to those of the Sierpinski gasket given

in Section 2.3.

In order to describe points in the Apollonian gasket (AG), we need and address system that

assigns addresses. The address system described in this section is based on the visual geometry

of the Apollonian gasket. The basic components of the Apollonian gasket are cells, and each cell

is divided into three subcells. The complete Apollonian gasket is composed of two main cells as

illustrated in Figure 3.2.1.

The structure of the Apollonian gasket is described by a hypergraph replacement system. As

shown in Figure 3.2.2, we may start with a base graph, and apply the replacement rule to
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Figure 3.2.1: Cells, Subcells, and Main Cells of the Apollonian Gasket
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Figure 3.2.2: Base Graph and Replacement Rule for the Apollonian Gasket

components of the base graph. If we keep applying the replacement rule to subsequent graphs,

the limit of these graphs will eventually be homeomorphic to the Apollonian gasket. In addition,

every point in the Apollonian gasket can be described by an address – an infinite sequence of

{0, 1, 2} with one of {A,B} at the beginning.

Definition 3.2.1. The symbol space of the Apollonian gasket is the set of infinite sequences

ΩAG = {A,B} × {1, 2, 3}∞.

The set ΩAG = {A,B}× {1, 2, 3}∞ is a topological space with product topology. It is homeo-

morphic to the Cantor set.

There are points in the Apollonian gasket with multiple addresses. For example, the junction

points between the main cells A and B can be viewed as in either A or B. The address A1
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refers to the same point in the Apollonian gasket as the address B1 does. We give the following

proposition for equivalent addresses on the Apollonian gasket.

Proposition 3.2.2. The following addresses are identified

A1 = B1, A2 = B3, A3 = B2. (3.2.1)

In addition, given any finite word ω ∈ {A,B} × {1, 2, 3}k−1 of length k, the following addresses

are identified

ω12 = ω21, ω23 = ω32, ω13 = ω31. (3.2.2)

The rules defined in this proposition induces a quotient map q : ΩAG −→ AG. The Apollonian

gasket is homeomorphic to the quotient space of ΩAG with the quotient topology induced by q.

Definition 3.2.3. A cell of the Apollonian gasket is the collection of all the points with the

same initial n digits in their addresses. Formally, a set of points S is a cell if there exist n ≥ 1

such that S = ω×{1, 2, 3}∞ for some finite word ω ∈ {A,B}×{1, 2, 3}n−1. The integer n is the

depth of the cell S, and the finite word ω is the address of the cell S. The cell S is referred to

as the ω-cell, or simply cell ω when there is no confusion.

Definition 3.2.4. A cell of depth 1 is a main cell of the Apollonian gasket. There are two

main cells of the Apollonian gasket, namely, the A-cell and the B-cell.

The following claim helps us understand the connection pattern of the Apollonian gasket.

Claim 3.2.5. The removal of a set of three points from the Apollonian gasket disconnects the

Apollonian gasket if and only if at least one of the disconnected component is a cell.

If we pick a cell with address ω, and we remove the three boundary points, namely the ones

with addresses ω1, ω2, and ω3, the ω-cell is naturally disconnected from its complement in the

Apollonian gasket. The converse is rather clear from the geometry of the Apollonian gasket.

We introduce a useful notation for the manipulation of addresses. Let ω ∈ {1, 2, 3}∞ be an

infinite word, and let a be an element of the permutation group. The infinite word obtained by
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replacing each letter of ω according to the permutation a is denoted πaω. Notice that for any

word ω and any two permutations a, b, we have πbπaω = πbaω.

3.3 Generators

In this section, we present several homeomorphisms in terms of the addresses. In the section

following, we will show that three of these homeomorphisms generate the homeomorphism group

Homeo(AG) of the Apollonian gasket.

Definition 3.3.1. Let r be the counterclockwise 120◦ rotation of the Apollonian gasket. Sym-

bolically, we have r : ΩAG −→ ΩAG with

r(Aω) = B2ω, r(B2ω) = B3ω, r(B3ω) = Aω, r(B1ω) = B1π(1 2 3)ω (3.3.1)

for all ω ∈ {1, 2, 3}∞.

Definition 3.3.2. Let s be the horizontal reflection of the Apollonian gasket. Symbolically, we

have s : ΩAG −→ ΩAG with

s(Aω) = Aπ(2 3)ω, s(Bω) = Bπ(2 3)ω (3.3.2)

for all ω ∈ {1, 2, 3}∞.

Figure 3.3.1: The Homeomorphisms r, c, and a of the Apollonian Gasket
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It is clear that r and s are homeomorphisms of the Apollonian gasket and they generate the

dihedral group D3, and therefore, D3 is a subgroup of Homeo(AG).

Definition 3.3.3. Let c be the circle inversion across the circle Oc. The map c : ΩAG −→ ΩAG

is symbolically defined by

c(Aω) = B11π(2 3)ω, c(B2ω) = B12π(1 2)ω, c(B3ω) = B13π(1 3)ω,

c(B11ω) = Aπ(2 3)ω, c(B12ω) = B2π(1 2)ω, c(B13ω) = B3π(1 3)ω, (3.3.3)

for all ω ∈ {1, 2, 3}∞.

Definition 3.3.4. Let a be the circle inversion across the circle Oa. The map a : ΩAG −→ ΩAG

is symbolically defined by

a(Aω) = B1π(2 3)ω, a(B2ω) = B2π(1 2)ω,

a(B1ω) = Aπ(2 3)ω, a(B3ω) = B3π(1 3)ω, (3.3.4)

for all ω ∈ {1, 2, 3}∞.

We need to verify that c and a are homeomorphisms of the Apollonian gasket. In order to

do that, we need to show that both of them are bijective maps under which the identification

rules 3.2.1 and 3.2.2 are invariant.

Lemma 3.3.5. The maps c and a are homeomorphisms of the Apollonian gasket.

Proof. The definitions of c and a gives well-defined homeomorphisms on ΩAG. We need to show

that the equivalence relations within ΩAG specified by Proposition 3.2.2 are invariant under the

maps c and a. Recall that the equivalence relations include

A1 = B1, A2 = B3, A3 = B2, (3.3.5)

and

ω12 = ω21, ω23 = ω32, ω13 = ω31, (3.3.6)
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for any finite word ω ∈ {A,B} × {1, 2, 3}k−1 of length k.

We first show that the rules in 3.3.5 are invariant under c and a. Apply the maps to the rules

in 3.3.5, we get

c(A1) = B1, c(B1) = A1, c(A2) = B113, c(B3) = B131, c(A3) = B112, c(B2) = B121,

and

a(A1) = B1, a(B1) = A1, a(A2) = B13, a(B3) = B31, a(A3) = B12, a(B2) = B21.

It follows from 3.3.5 and 3.3.6 that

c(A1) = c(B1), c(A2) = c(B3), c(A3) = c(B2),

and

a(A1) = a(B1), a(A2) = a(B3), a(A3) = a(B2).

Now we show that the rules in 3.3.6 are invariant under c and a. The proof is fairly mechanical.

We show the proof for one case of a, the rest and the proof for c follows a similar argument.

Let ω ∈ {1, 2, 3}k be a finite word of length k. Then

a(Aω12) = B1π(2 3)ω13, a(Aω23) = B1π(2 3)ω32, a(Aω13) = B1π(2 3)ω12,

a(Aω21) = B1π(2 3)ω31, a(Aω32) = B1π(2 3)ω23, a(Aω31) = B1π(2 3)ω21.

By 3.3.6, we have

a(Aω12) = a(Aω21), a(Aω23) = a(Aω32), a(Aω13) = a(Aω31).

Similarly, we are able to deduce that

a(B1ω12) = a(B1ω21), a(B1ω23) = a(B1ω32), a(B1ω13) = a(B1ω31),

a(B2ω12) = a(B2ω21), a(B2ω23) = a(B2ω32), a(B2ω13) = a(B2ω31),



3.3. GENERATORS 47

a(B3ω12) = a(B3ω21), a(B3ω23) = a(B3ω32), a(B3ω13) = a(B3ω31).

Hence, we conclude that the identification rules 3.3.5 and 3.3.6 are invariant under a. With

the same approach, we can prove the same argument for c. Therefore, both c and a are homeo-

morphisms of the Apollonian gasket.

Lemma 3.3.6. The group generated by r and a is isomorphic to the permutation group S4.

Proof. We consider the four cells α, β, γ, δ shown in the figure below.

Α

Β

Γ

∆

The map r cyclically permutes the cells α, β, and γ and preserves the cell δ, and a switches the

cells α and δ and preserves the other two cells. Hence, a homomorphism ϕ : 〈r, a〉 −→ S4 can be

defined by

ϕ : r 7→ (α β γ) and a 7→ (α δ).

Incidentally, (α β γ) and (α δ) generate S4, which makes ϕ an isomorphism.

Therefore, S4 is a subgroup of Homeo(AG). Furthermore, because D3
∼= S3 ≤ S4, it follows

that s ∈ 〈r, a〉. We can figure out that s = r2ar2arar.

Definition 3.3.7. Let b be the map defined by the composition of maps b = arcr2a.

By composing the symbolic definitions of r, c, and a, we may figure out that the symbolic

interpretation of the map b : ΩAG −→ ΩAG is described by

b(Aω) = Bπ(2 3)ω, b(Bω) = Aπ(2 3)ω (3.3.7)
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Figure 3.3.2: Geometric Presentation of the Map b

for all ω ∈ {1, 2, 3}∞. Geometrically, the map b is the circle inversion that switches the A-cell

with the B-cell as shown in Figure 3.3.2.

Definition 3.3.8. Let t be the map defined by the composition of maps t = rar2.

The symbolic dynamics of the map t : ΩAG −→ ΩAG is described by

t(Aω) = Aπ(1 3)ω, t(Bω) = Bπ(1 2)ω (3.3.8)

for all ω ∈ {1, 2, 3}∞. Geometrically, the map t preserves both the A-cell and the B-cell but

switches the A1-cell with the A3-cell as well as switching the B1-cell and the B2-cell.

Lemma 3.3.9. 〈s, t〉 is isomorphic to the permutation group S3.

Proof. Both s and t preserves the location of the A-cell. The map s switches the labels 1 and 2

on the A-cell, and the map t switches the labels 1 and 3 on the A-cell. Hence, a homomorphism

ϕ : 〈s, t〉 −→ S3 can be defined by

ϕ : s 7→ (1 2) and t 7→ (1 3).

Incidentally, (1 2) and (1 3) generates S3, which makes ϕ an isomorphism.

Readers should keep in mind that both subgroups 〈r, s〉 and 〈s, t〉 of Homeo(AG) are isomor-

phic to S3. These are two different copies of S3 in Homeo(AG). In fact, there are countably

many copies of S3 inside of Homeo(AG).
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3.4 Proof of Generation

In this section, we will show that the homeomorphism group of the Apollonian gasket is

generated by a set of three generators, namely, {r, c, a}.

Corollary 3.4.1. 〈r, c, a〉 is a subgroup of Homeo(AG).

Proof. The argument follows directly from the fact that r, c, a ∈ Homeo(AG) shown in

Lemma 3.3.5.

Lemma 3.4.2. Let S ⊆ AG be a cell. Then there exist x ∈ 〈r, c, a〉 such that x(A) = S.

Proof. Because we have the map b = arcr2a that switches the A-cell with the B-cell, it suffices

to show the argument for any subcell of the A-cell. We use proof by induction.

Base Case 1. The map w1 = ba maps the A-cell onto the A1-cell.

Let ω ∈ {1, 2, 3}∞ be an infinite word. Then

w1(Aω) = b(a(Aω)) = b(B1π(2 3)ω) = A1ω

It is clear that w1(A) = A1.

Base Case 2. The map w2 = br2s maps the A-cell onto the A2-cell.

Let ω ∈ {1, 2, 3}∞ be an infinite word. Then

w2(Aω) = b(r2(s(Aω))) = b(r2(Aπ(2 3)ω)) = b(B3π(2 3)ω) = A2ω.

It follows that w2(A) = A2.

Base Case 3. The map w3 = brs maps the A-cell onto the A3-cell.

Let ω ∈ {1, 2, 3}∞ be an infinite word. Then

w2(Aω) = b(r(s(Aω))) = b(r(Aπ(2 3)ω)) = b(B2π(2 3)ω) = A3ω.

It follows that w3(A) = A3.
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Inductive Step. Let σ ∈ {1, 2, 3}k be a finite word of length k. Suppose that there exist a map

x ∈ 〈r, c, a〉 such that x(A) = Aσ. Let ω ∈ {1, 2, 3}∞ be an infinite word. Then x(Aω) = Aσω.

Thus w1x(Aω) = w1(Aσω) = A1σω. It follows that w1x maps the A-cell onto the A1σ-cell.

Similarly, w2x and w3x maps the A-cell onto the A2σ-cell and the A3σ-cell, respectively.

Hence, given any subcell S of the A-cell, there exist x ∈ 〈r, c, a〉 such that x(A) = S. The

same result follows immediately for any cell of the Apollonian gasket.

Corollary 3.4.3. Let S, T ⊆ AG be two cells. Then there exist z ∈ 〈r, c, a〉 such that z(T ) = S.

Proof. Lemma 3.4.2 ensures the existence of maps x, y ∈ 〈r, c, a〉 such that x(A) = S and

y(A) = T . Let z = xy−1. Then z(T ) = x(y−1(T )) = x(A) = S.

Lemma 3.4.4. Let φ : AG −→ AG be a homeomorphism of the Apollonian gasket. The image

of a cell in AG under the map φ is either a cell or the complement of a cell.

Proof. Let S ⊆ AG be a cell. Let T = φ(S) be the image of S. There exist a homeomorphism x

such that x(S) is the A-cell. Then bx(S) is the B-cell. Thus x(S)∪bx(S) = AG and x(S)∩bx(S)

is a set of three points P = {p1, p2, p3} with addresses A1, A2, and A3. Notice that the removal

of P from AG disconnects AG into two components. Because x and φ are homeomorphisms,

it follows that φx−1(x(S)) ∪ φx−1(bx(S)) = AG, and φx−1(x(S)) ∩ φx−1(bx(S)) contains three

points, whose removal disconnects AG into two components. But φx−1(x(S)) = φ(S) = T , and

φx−1(bx(S)) is the complement of T in AG. It follows from Claim 3.2.5 that T is either a cell

or the complement of a cell.

Theorem 3.4.5. Homeo(AG) = 〈r, c, a〉.

Proof. Let φ ∈ Homeo(AG). Then φ(A) is either a cell or the complement of a cell. If φ(A) is

a cell, then there exist x ∈ 〈r, c, a〉 such that x(A) = φ(A). Since each cell of the Apollonian

gasket is homeomorphic to the Sierpinski gasket, and the homeomorphism group of the Sierpinski

gasket is isomorphic to S3, it follows that there exist u ∈ 〈s, t〉 such that xu = φ. If φ(A)
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is the complement of a cell, then φ(B) has to be a cell, and there exist y ∈ 〈r, c, a〉 such

that y(A) = φ(B). There exist v ∈ 〈s, t〉 such that yv = φ. Thus φ ∈ 〈r, c, a〉. Hence, we

have Homeo(AG) ≤ 〈r, c, a〉. Together with Corollary 3.4.1, we conclude that Homeo(AG) =

〈r, c, a〉.





4

The Eyes Julia Sets

Another fractal structure we investigated was the Eyes Julia set (Figure 4.0.1). The Eyes Julia

set corresponds to the rational function f(z) = (z2 + 1)/(z2− 1). We also investigated a 3-piece

modification of the Eyes Julia set, which corresponds to the algebraic function g(z) = f(z3/4)4/3.

In this chapter, we will construct fractals E4 and E3 according to the structure of these two

Julia sets, respectively, and show finite generation of the homeomorphism group of E3 by a

set of four generators. Additionally, we will give preliminary arguments to showing that the

homeomorphism group of the fractal E4 is finite.

Figure 4.0.1: The 4-Piece and 3-Piece Eyes Julia Sets
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4.1 Construction of the E4 and E3 Fractals

Similar to the approach for the Apollonian gasket, we use a hypergraph replacement system

to construct the E4 and E3 fractals. In the next section, we will use an address system, according

to the geometric structure of the E3 fractal defined by this replacement system, to describe the

location of points within the fractal.

The global structures of E4 and E3 are captured by two different base graphs, and their com-

mon local structure is described by a replacement rule shown in Figure 4.1.1. The replacement

rule can be applied to each subcell the fractals, and the fractals can be obtained by taking the

limit of all the graphs under such replacement rule. We notice that the only difference between

the base graphs of E4 and E3 is the order of the labels 1, 2, 3, 4 appearing on the boundary of

the B-cell. We also notice that in the replacement rule, the order of the labels in subcells are

different from that in the starting cell. However, if we apply the replacement rule once more, we

are able to get the original order back to the next level of subcells, which is shown in Figure 4.1.2.

AB

1

2

4

3

4

3

1

2

AB

1

2

4

3
1

2

3

4

12

3 4

Ω →

14

3 2

14

3 2

Ω1

Ω2

Figure 4.1.1: Base Graphs of E4 and E3 together with Their Replacement Rule

12

3 4

Ω →

14

3 2

14

3 2

Ω1

Ω2

→

12

3 4

12

3 4

1 2

34

1 2

34
Ω11Ω12

Ω22 Ω21

Figure 4.1.2: Applying the Replacement Rule Twice Retains the Order of Labels
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4.2 Addresses and Cells of E3

The definitions on addresses and cells in this section will be constructed in analogous to those

of the Sierpinski gasket and Apollonian gasket given in Section 2.3 and 3.2, respectively. From

now on, we will use the picture of the Julia set as a visualization of the E3 fractal, but readers

should keep in mind that the E3 fractal only appear to be homeomorphic to the Julia set. We

will not show homeomorphism relation between these two objects in this project.

In order to describe points in the E3 fractal, we need an address system, based on the hyper-

graph replacement system defined in the previous section, to assign addresses to points inside

of the fractal. The basic components of the E3 fractal are cells, and each cell is divided into two

subcells. The complete E3 fractal is composed of two main cells, as shown in Figure 4.2.1

Based on the hypergraph replacement system, we assign symbols A and B to the main cells of

the E3 fractal. The replacement rule gives the way to assign symbols to subcells by concatenating

1 or 2 to the symbol of the starting cell. The replacement rule can be applied to each subcell of

E3, and E3 can be obtained by taking the limit of all the graphs under such replacement rule.

Similar to the case of the Apollonian gasket, every point in E3 can be described by an address,

which is an infinite sequence of {1, 2} with one of {A,B} at the beginning.

Figure 4.2.1: Main Cells of the E3 Fractal
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Definition 4.2.1. The symbol space of the E3 fractal is the set of infinite sequences ΩE3 =

{A,B} × {1, 2}∞.

If we consider ΩE3 as a topological space with product topology, it is homeomorphic to the

Cantor set.

Definition 4.2.2. A cell of E3 is the collection of all the points with the same initial n digits in

their addresses. Formally, a set of points S is a cell if there exist n ≥ 1 such that S = ω×{1, 2}∞

for some finite word ω ∈ {A,B} × {1, 2}n−1. The integer n is the depth of the cell S, and the

finite word ω is the address of the cell S. The cell S is referred to as the ω-cell, or simply cell

ω when there is no confusion.

Definition 4.2.3. A cell of depth 1 is a main cell of E3. There are two main cells of E3,

namely, the A-cell and the B-cell.

We observe that, unlike the case in the Sierpinski gasket or the Apollonian gasket, the order

of labels on the edges of each cell is not preserved after applying the replacement rule. However,

it is preserved under two applications of the replacement rule. Therefore, given the address of

an ω-cell, we can write down the addresses of its four edges:

1 : ω1, 2 : ω12, 3 : ω2, 4 : ω21. (4.2.1)

The addresses of points in the E3 fractal are not uniquely determined. For example, the

junction points between two adjacent cells may have two different addresses since they lie on the

intersection of two different cells. The replacement rule tells us that, in each cell, there are two

pairs of addresses, each pair referring to one single point of the cell. We provide the following

proposition for these identified addresses.

Proposition 4.2.4. The following addresses are identified

A1 = B12, A12 = B2, A2 = B21, A21 = B1. (4.2.2)
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In addition, given any finite word ω ∈ {A,B} × {1, 2}k−1 of length k, the following addresses

are identified

ω12 = ω221, ω112 = ω21. (4.2.3)

Definition 4.2.5. The pinch points in E3 are points that correspond to two different addresses

in ΩE3 identified by Proposition 4.2.4.

Each boundary point of cells is a pinch point in E3. Furthermore, the rules defined by Propo-

sition 4.2.4 induces a quotient map q : ΩE3 −→ E3. The E3 fractal is homeomorphic to the

quotient space of ΩE3 with quotient topology induced by q.

Claim 4.2.6. Each cell is path connected, and there exists a unique set of two points in each

cell, whose removal disconnects the cell into two cells.

The validity of this claim is fairly clear from the geometry of the cells. It helps in proving the

following theorem.

Theorem 4.2.7. The full homeomorphism group of a cell S is isomorphic to the Klein-4 group

Z/2× Z/2.

Proof. Notice that there is a Klein-4 group generated by the horizontal and vertical reflections

within the homeomorphism group of S. We will refer to this Klein-4 group asD2. Let P = {p1, p2}

be the set of two points according to Claim 4.2.6. Furthermore, we can have a unique set of four

points Q = {q1, q2, q3, q4}, whose removal following the removal of P disconnects the cell into

four subcells. Each subcell is then further partitioned into two sub-subcells. We denote these

eight cells with labels 1 through 8. Because P and Q have the topological property stated,

both P and Q must be invariant under any homeomorphism of the cell. Let ϕ : S −→ S be

a homeomorphism. Then there exist a σ ∈ D2 such that (σ ◦ ϕ)(pi) = pi for i ∈ {1, 2}. Let

ψ = σ ◦ ϕ. Then ψ is a homeomorphism of SG that fixes p1 and p2. We will first show that

ψ ∈ D2.
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p1

p2

q2 q1 q3 q4

2 1

3 4

8 7

5 6

Each cell is path connected. Thus there exist a path lying entirely within cell 1 that connects

from q1 to p1. If ψ(q1) = q2, there cannot be any paths lying entirely within one cell that connects

from ψ(q1) to ψ(p1). Hence, ψ(q1) 6= q2. For the same reason, we have ψ(q1) 6= q4, ψ(q3) 6= q4,

and ψ(q3) 6= q2. Furthermore, because ψ is a homeomorphism, we have ψ(q2) 6= q1, ψ(q4) 6= q1,

ψ(q4) 6= q3, and ψ(q2) 6= q3. Therefore, there are only two candidates for ψ, namely, ψ1 : S −→ S,

whose restriction on Q is the identity map, and ψ2 : S −→ S, whose restriction on Q is defined by

ψ2 : q1 7→ q3, q2 7→ q4, q3 7→ q1, q4 7→ q2.

It then suffices to show that ψ1 is the identity map on S.

Now we take a closer look at the cell composed of 1 and 2. This cell has a unique set of

two points R = {r1, r2} whose removal disconnects the cell into 1 and 2, and ψ1(R) = R.

Furthermore, each of 1 and 2 can be subdivided into two cells. We denote these four cells within

this subcell TL, BL, TR, and BR.

p1

q1q2

r1

r2

TL

BL

TR

BR



4.2. ADDRESSES AND CELLS OF E3 59

There exist a path lying entirely within the TR cell that connects r1 with p1. Suppose that

ψ1(r1) = r2, then any path connecting ψ1(r1) and ψ1(p1) = p1 cannot sit entirely in one of these

four cells, and ψ1 would not be a homeomorphism. Thus ψ1(r1) = r1 and ψ2(r2) = r2.

This process can be iterated to show that every point within a cell S where two subcells meet

each other is fixed by ψ1. Such points form a dense subset of S. Then ψ1 agrees with the identity

map on a dense subset of S. Because ψ1 is a homeomorphism, it follows that ψ1 is the identity

map. We conclude that the full homeomorphism group of a cell S is D2
∼= Z/2× Z/2.

Claim 4.2.8. The removal of a set of four points from the E3 fractal disconnects E3 if and only

if at least one of the disconnected component is a cell.

If we pick a cell with address ω, and we remove the boundary points of the cell, namely

the ones with addresses ω1, ω12, ω2, and ω21, the ω-cell is naturally disconnected from its

complement in E3. The converse is rather clear from the geometry of E3.

At the end of this section, we introduce two useful notations for manipulating the addresses

of points in E3.

Definition 4.2.9. Let ω ∈ {1, 2}∞ be an infinite word. The negation operation on ω, denoted

by ω−1, is defined by replacing every letter 1 in ω by 2, and every 2 by 1.

Definition 4.2.10. Let ω ∈ {1, 2}∞ be an infinite word. We can break ω into two-digit words

by placing a break at every other digit. There are four possible two-digit words, namely 11, 12,

22, and 21. The reflection operation on ω, denoted by ω∗, is defined by replacing every word

11 by 12, 12 by 11, 22 by 21, and 21 by 22.
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The following automata show the negation and the reflection operations on a word ω.

Ω-1 s

1�2

2�1

Ω* t s

1�1

2�2

2�1

1�2

We notice that both the negation and reflection operations are inverses of themselves, i.e.

(ω−1)−1 = ω, and (ω∗)∗ = ω for all ω ∈ {1, 2}∞. Moreover, these two operations commutes

with each other, i.e. (ω−1)∗ = (ω∗)−1 for all ω ∈ {1, 2}∞. We shall denote the composition of

these two operations on ω by ω∗−1, and the automaton for this composition is shown below.

Ω*-1t s

1�1

2�2

2�1

1�2

4.3 Generators

In this section, we present four homeomorphisms of E3 in terms of the addresses. In the section

following, we will show that these four homeomorphisms generate the homeomorphism group

Homeo(E3) of the E3 fractal.

Definition 4.3.1. Let r be the counterclockwise 120-degree rotation of the E3 fractal. Symbol-

ically, we have r : E3 −→ E3 with

r(A1ω) = Bω, r(A2ω) = A1ω, r(Bω) = A2ω, (4.3.1)

for all ω ∈ {1, 2}∞.
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Definition 4.3.2. Let s be the horizontal reflection of the E3 fractal. Symbolically, we have

s : E3 −→ E3 with

s(A1ω) = A2ω∗, s(A2ω) = A1ω∗, s(Bω) = Bω∗, (4.3.2)

for all ω ∈ {1, 2}∞.

The following lemma verifies that r and s are homeomorphisms of E3.

Lemma 4.3.3. The maps r and s are homeomorphisms of the E3 fractal.

Proof. The definitions of r and s ensures that they give well-defined homeomorphisms o ΩE3 .

We need to show that the equivalence relations in Proposition 4.2.4 are invariant under r and s.

Recall that the equivalence relations include

A1 = B12, A12 = B2, A2 = B21, A21 = B1, (4.3.3)

and

ω12 = ω221, ω112 = ω21. (4.3.4)

for any finite word ω ∈ {A,B} × {1, 2}k−1 of length k.

We first show that the rules in 4.3.3 are preserved under r and s. Applying the maps to the

rules in 4.3.3 gives

r(A1) = B1, r(B12) = A21, r(A12) = B21, r(B2) = A2,

r(A2) = A12, r(B21) = A221, r(A21) = A112, r(B1) = A21,

and

s(A1) = A21, s(B12) = B1, s(A12) = A2, s(B2) = B21,

s(A2) = A12, s(B21) = B2, s(A21) = A1, s(B1) = B12.

It then follows from 4.3.3 that

r(A1) = r(B12), r(A12) = r(B2), r(A2) = r(B21), r(A21) = r(B1),
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and

s(A1) = s(B12), s(A12) = s(B2), s(A2) = s(B21), s(A21) = s(B1).

Now we show that the rules in 4.3.4 are invariant under r and s. Let ω ∈ {1, 2}k be a finite

word of length k. Then

r(A1ω12) = Bω12, r(A1ω221) = Bω221, r(A1ω112) = Bω112, r(A1ω21) = Bω21,

r(A2ω12) = A1ω12, r(A2ω221) = A1ω221, r(A2ω112) = A1ω112, r(A2ω21) = A1ω21,

r(Bω12) = A2ω12, r(Bω221) = A2ω221, r(Bω112) = A2ω112, r(Bω21) = A2ω21,

By 4.3.4, we have

r(A1ω12) = r(A1ω221), r(A2ω12) = r(A2ω221), r(Bω12) = r(Bω221),

r(A1ω112) = r(A1ω21), r(A2ω112) = r(A2ω21), r(Bω112) = r(Bω21).

Hence, we conclude that the rules in 4.3.4 are preserved under the map r. The case for s is a little

more complicated. Let ω ∈ {1, 2}2k be an arbitrary finite word of even length 2k. Then both

sets {ω1, ω2} and {1ω, 2ω} can represent the collection of arbitrary finite word of odd length.

Now we investigate s in detail in three cases.

s(A1ω12) = A2ω∗112, s(A1ω112) = A2ω∗1221, s(A1ω212) = A2ω∗2221,

s(A1ω221) = A2ω∗21, s(A1ω1221) = A2ω∗112, s(A1ω2221) = A2ω∗212,

s(A1ω112) = A2ω∗12, s(A1ω1112) = A2ω∗121, s(A1ω2112) = A2ω∗221,

s(A1ω21) = A2ω∗221, s(A1ω121) = A2ω∗1112, s(A1ω221) = A2ω∗2112.

By 4.3.4, we have s(A1ω12) = s(A1ω221) and s(A1ω112) = s(A1ω21) for any finite word ω ∈

{1, 2}k of any length k. Similarly, we can show s(A2ω12) = s(A2ω221), s(A2ω112) = s(A2ω21),
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s(Bω12) = s(Bω221), and s(Bω112) = s(Bω21) with the same approach. The process is fairly

technical, and we omit the details here.

Therefore, we can conclude that the rules in 4.3.4 and 4.3.3 are preserved by both r and s.

Both r and s are homeomorphisms of the E3 fractal.

Definition 4.3.4. Let c be the inversion across the central circle. The map c : E3 −→ E3 is

symbolically defined by

c(Aω) = Aω∗, c(B1ω) = B2ω∗, c(B2ω) = B1ω∗, (4.3.5)

for all ω ∈ {1, 2}∞.

Definition 4.3.5. Let a : E3 −→ E3 defined symbolically by

a(Aω) = Bω, a(Bω) = Aω−1, (4.3.6)

for all ω ∈ {1, 2}∞.

Lemma 4.3.6. The maps r and s are homeomorphisms of the E3 fractal.

Proof. The proof for this lemma is very similar to the proof for Lemma 4.3.3 and it is very

technical. We omit the detail of this proof here.

The geometric interpretation of these homeomorphisms is shown in Figure 4.3.1.

The following theorems show some subgroups of the homeomorphism group of E3 generated

by part of {a, c, r, s}, all of which are useful in the next section for finding a presentation of

Homeo(E3). Theorem 4.3.10 is especially important in the following section for the proof of

finite generation of Homeo(E3).

Theorem 4.3.7. 〈c, r, s〉 is isomorphic to the dihedral group D6.

Proof. We take a look at the geometric interpretation of c, r, and s. Generator c switches cells

B1 with B2, A11 with A12, A21 with A22; generator r cyclically permutes cells B1, A11, A21
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↑ r

c←− s−→

↓ a

Figure 4.3.1: Four Homeomorphisms in Homeo(E3)
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and cells B2, A12, A22; generator s switches cells A12 with A22 and cells A11 with A21.

B2

A21A12

B1

A22 A11

Σ

Ρ

Hence, a homomorphism ϕ : 〈c, r, s〉 −→ D6 can be naturally defined by

ϕ : c 7→ ρ3, r 7→ ρ2, and s 7→ σ.

We then have ϕ(cr2) = ρ. Because ρ and σ generates the dihedral group D6, it follows that

〈c, r, s〉 = 〈cr2, s〉 ∼= D6 with ϕ as an isomorphism.

Theorem 4.3.8. 〈a, c〉 is isomorphic to the dihedral group D4.

Proof. We take a look at the geometric interpretation of a and c. Generator a cyclically permutes

the cells A1, B1, A2, and B2, while generator c switches the B1-cell and the B2-cell, retaining

the A1-cell and the A2-cell.

A1 B1

A2B2

Σ
Ρ

Hence, a homomorphism ϕ : 〈a, c〉 −→ D4 can be defined by

ϕ : a 7→ ρ and c 7→ σ.

Incidentally, the rotation ρ and the reflection σ generatesD4, which makes ϕ an isomorphism.

We notice that a2c is a map that switches the A1-cell and the A2-cell, retaining the other two

cells. The following lemma shows the symbolic equivalence between the maps s and a2c.
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Lemma 4.3.9. The homeomorphism s = a2c.

Proof. Let ω ∈ {1, 2}∞ be an infinite word. Then

a2c(A1ω) = a2(A1ω∗−1) = a(B1ω∗−1) = A2ω∗ = s(A1ω),

a2c(A2ω) = a2(A2ω∗−1) = a(B2ω∗−1) = A1ω∗ = s(A2ω),

a2c(B1ω) = a2(B2ω∗) = a(A1ω∗−1) = B1ω∗−1 = s(B1ω),

a2c(B2ω) = a2(B1ω∗) = a(A2ω∗−1) = B2ω∗−1 = s(B2ω).

It then follows that a2c = s for all words in ΩE3 .

Theorem 4.3.10. 〈c, s〉 is isomorphic to the Klein-4 group Z/2× Z/2.

Proof. Let σ ∈ {A1, A2, B1, B2}, and let ω ∈ {1, 2}∞ be an infinite word. Then

s(σω) = (π(A1 A2)σ)ω∗, and c(σω) = (π(B1 B2)σ)ω∗.

Thus c and s commute, and

cs(σω) = (π(A1 A2)(B1 B2)σ)ω.

It is clear that 〈c, s〉 = {e, c, s, cs}, and all elements except the identity have order 2. Thus we

conclude that 〈c, s〉 ∼= Z/2× Z/2.

It is worth noticing that 〈c, s〉 is the maximal subgroup of Homeo(E3) that fixes both the

main cells, because, as Theorem 4.2.7 stated, the full homeomorphism group of an individual

cell is isomorphic to the Klein-4 group.

4.4 Proof of Generation

In this section, we will show that the homeomorphism group Homeo(E3) of the E3 fractal is

generated by the set of four generators {a, c, r, s}.

Corollary 4.4.1. 〈a, c, r, s〉 is a subgroup of Homeo(E3).



4.4. PROOF OF GENERATION 67

Proof. This argument follows directly from the fact that a, c, r, s ∈ Homeo(E3) shown in

Lemma 4.3.3 and 4.3.6.

Lemma 4.4.2. Let S ⊆ E3 be a cell. Then there exist x ∈ 〈a, c, r, s〉 such that x(A) = S.

Proof. Because we have the map a that switches the A-cell with the B-cell, it suffices to show

the argument for any subcell of the A-cell. We use proof by induction.

Base Case 1. The map w1 = r2a maps the A-cell onto the A1-cell.

Let ω ∈ {1, 2}∞ be an infinite word. Then

w1(Aω) = r2(a(Aω)) = r2(Bω) = A1ω.

It is then clear that w1(A) = A1.

Base Case 2. The map w2 = ra maps the A-cell onto the A2-cell.

Let ω ∈ {1, 2}∞ be an infinite word. Then

w2(Aω) = r(a(Aω)) = r(Bω) = A2ω.

It follows that w2(A) = A2.

Inductive Step. Let σ ∈ {1, 2}k be a finite word of length k. Suppose that there exist a map

x ∈ 〈a, c, r, s〉 such that x(A) = Aσ. Let ω ∈ {1, 2}∞ be an infinite word. Then x(Aω) = Aσω.

Thus w1x(Aω) = w1(Aσω) = A1σω. It follows that w1x maps the A-cell onto the A1σ-cell.

Similarly, we can show that w2x maps the A-cell onto the A2σ-cell.

In conclusion, given any subcell S of the A-cell, there exist x ∈ 〈a, c, r, s〉 such that x(A) = S.

The same result follows immediately for any cell of the E3 fractal.

Corollary 4.4.3. Let S, T ⊆ E3 be two cells. Then there exist z ∈ 〈a, c, r, s〉 such that z(T ) = S.

Proof. Lemma 4.4.2 ensures the existence of maps x, y ∈ 〈a, c, r, s〉 such that x(A) = S and

y(A) = T . Let z = xy−1. Then z(T ) = x(y−1(T )) = x(A) = S.
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Lemma 4.4.4. Let φ : E3 −→ E3 be a homeomorphism of the E3 fractal. The image of a cell

in E3 under the homeomorphism φ is either a cell or the complement of a cell.

Proof. Let S ⊆ E3 be a cell. Let T = φ(S) be the image of S. There exist a homeomorphism x

such that x(S) is the A-cell. Then ax(S) is the B-cell. Thus x(S)∪ax(S) = E3 and x(S)∩ax(S)

is a set of four points P = {p1, p2, p3, p4} with addresses A1, A12, A2, and A21. Notice that

the removal of these four points from E3 disconnects E3 into two components. Because x and

φ are homeomorphisms, it follows that φx−1(x(S)) ∪ φx−1(ax(S)) = AG, and φx−1(x(S)) ∩

φx−1(ax(S)) is a set of four points whose removal disconnects E3 into two components. But

φx−1(x(S)) = φ(S) = T , and x−1(ax(S)) is the complement of T in E3. It then follows from

Claim 4.2.8 that T is either a cell or the complement of a cell.

Theorem 4.4.5. Homeo(E3) = 〈a, c, r, s〉.

Proof. Let φ ∈ Homeo(E3). Then φ(A) is either a cell or the complement of a cell. If φ(A) is a

cell, then there exist x ∈ 〈a, c, r, s〉 such that x(A) = φ(A). Since the homeomorphism group of

each individual cell is isomorphic to Z/2× Z/2, and the maximal subgroup of Homeo(E3) that

fixes the main cells is 〈c, s〉 ∼= Z/2× Z/2, it follows that there exist u ∈ 〈c, s〉 such that xu = φ.

If φ(A) is the complement of a cell, then φ(B) must be a cell, and there exist y ∈ 〈a, c, r, s〉

such that y(A) = φ(B), and there exist v ∈ 〈s, t〉 such that yv = φ. Thus φ ∈ 〈a, c, r, s〉. Hence,

we have Homeo(E3) ≤ 〈a, c, r, s〉. Together with the result from Corollary 4.4.1, we conclude

that Homeo(E3) = 〈a, c, r, s〉.

4.5 E4 Has Finite Homeomorphism Group

In this section, we will provide a primary observation on why the homeomorphism group of

E4 is finite. Section 5.7 will provide a more structured argument using Bass-Serre theory and a

polyhedral complex associated with E4. Eventually, we shall show that Homeo(E4) ∼= D4×Z/2.
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We observe that the Julia set associated with the rational map f(z) = (z2 + 1)/(z2 − 1) is

invariant under negation, complex conjugation, and unit circle inversion on the complex plane

because

f(−z) = f(z),

f(z) = f(z),

f(1/z) = −f(z).

We shall expect the E4 fractal to exhibit the same symmetries.

Lemma 4.5.1. D4 × Z/2 ≤ Homeo(E4).

Proof. The E4 fractal has a clear D4 symmetry. In addition, we observe that the “inversion”

across the central circle also acts on the E4 fractal as illustrated in Figure 4.5.1. Therefore,

the full symmetry group D4 × Z2 of a square prism is a subset of the homeomorphism group

of E4.

Lemma 4.5.2. Homeo(E4) is a finite group.

Proof. From Claim 4.2.8, we know that the removal of four corner points on a cell of E3 discon-

nects E3 into two components. We observe that E4 also has this property. Among all the choices

of four points of disconnection in E4, there are two special sets of points illustrated as the red

Figure 4.5.1: The “Circle Inversion” Acts on the E4 Fractal
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Figure 4.5.2: Two Sets of Special Points in E4

points and blue points in Figure 4.5.2. The removal of each set disconnects E4 into two compo-

nents, and the subsequent removal of the other set further disconnects each of these two com-

ponents into two smaller components. Because of the special topological property they posses,

these eight points forms an invariant set under any homeomorphism of E4. The four components

resulted from the removal of these eight points are cells of E4. Let φ : E4 −→ E4 be a homeomor-

phism. It then follows that φ permutes the eight special points. Let ψ : Homeo(E4) −→ S8 be a

homomorphism defined by the permutation of the eight special points by a homeomorphism of

E4. Theorem 4.2.7 has shown that the only homeomorphism with the four boundary points fixed

is the identity map. Thus ψ has trivial kernel. It then follows that |Homeo(E4)| ≤ |S8| = 8!.



5

Presentation of Homeo(E3)

This chapter gives a presentation of the group Homeo(E3) using the tools from Bass-Serre

Theory provided in [18]. We only need a special case in Bass-Serre Theory, and we will present

this special case with some examples in this chapter.

5.1 Graph Theoretic Preliminaries

In this preliminary section, we present some useful graph theoretic definitions as well as

examples. Readers are assumed to have familiarity with basic definitions in graph theory.

Definition 5.1.1. A tree is an undirected connected graph without cycles.

Example 5.1.2. Two trees are shown here.

Definition 5.1.3. For a positive integer k, an k-regular graph is a graph whose vertices all

have degree k.
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Example 5.1.4. The only possible simple connected 1-regular graph is the graph with two

vertices and an edge between them. For k ≥ 2, the possible structures of k-regular graphs are

much more varied. Examples of finite 2-regular, 3-regular, and 4-regular graphs are shown below.

The following definition connects graph theory with group theory. It provides a method to

construct a graph with respect to the structure of any given group.

Definition 5.1.5. Let G be a group and let X be a set of generators of G. The Cayley graph

Γ = Γ(G,X) is the graph with vertices the elements of G and with an edge between g, h ∈ G if

h = gx or g = hx for some x ∈ X.

In fact, there are several slightly different definitions of the Cayley graph. In [24], the defi-

nition requires the Cayley graph to be directed; in [5], the definition requires the edges to be

directed and colored according to different generators. We do not require any of these additional

structures, just to reveal the very basic structure of Cayley graphs.

It is important to specify the generating set of a group in order to construct its Cayley graph.

Different choices of generators can result in different Cayley graphs for the same group.

Example 5.1.6. There are two different presentations for the dihedral groups with different

generating sets:

Dn = 〈r, s | rn, s2, rsrs〉 = 〈s, t | s2, t2, (st)n〉.
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We show the Cayley graphs of D4 with respect to these two presentations below

s rs

r2 sr3 s

e r

r2r3

e

s

sts

stst

tst

t

ts st

5.2 Free Groups

Definition 5.2.1. The free group of rank n, denoted by Fn, is a group with presentation

Fn = 〈x1, x2, . . . , xn | ∅〉.

A free group is free of non-trivial relations between its generators. The only relations that

apply to the free groups are the group axioms (e.g. xx−1 = e and ex = xe = x, where e refers

to the identity element).

When n = 1, the free group of rank 1 has presentation F1 = 〈x | ∅〉. It follows immediately

that F1
∼= (Z,+) by observing the presentation. For n ≥ 2, the free group Fn has more than one

generators, and there is no relations between the generators. In particular, for two generators x

and y of the free group Fn, there is no relation between x and y saying that xy = yx. Hence, F1

is the only free group that is abelian. Moreover, two words written with the generators as the

alphabet are distinct elements of the free group Fn if and only if they cannot be reduced to the

same word by only the group axioms. For example, the word xyx−1y−1 is the same element in

F2 with xy2y−1x−3x2y−1, while xyxy−1 is a word different from the previous two in F2.

By Cayley’s Theorem, a group acts faithfully and transitively on itself, and thus on its Cayley

graph as a subgroup of the automorphism group of the Cayley graph. The Cayley graphs of

F1 = 〈x〉 and F2 = 〈x, y〉 are shown in Figure 5.2.1.
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In the action of F1 on its Cayley graph, the generator x acts on the graph so that each vertex

shifts to its immediate neighbor on the right. Because F1
∼= (Z,+), this action can also be

thought as the action of the additive group of integers Z on itself by addition.

The case for F2 is a lot more interesting. In the Cayley graph of F2, the vertex in the center

corresponds to the identity element. Each vertex has a connected path starting from the identity

vertex. The address along this path corresponds to the group element at the vertex. For example,

vertices A and B shown in Figure 5.2.1b corresponds to the group elements xyx and y−1x2,

respectively. The right action of the free group of rank 2 is simply the right concatenation of

the acting word onto the word representing the group elements. In particular, the right action

of the generator x acts on the graph so that each vertex shifts to its immediate neighbor on

the right (along the red edges), and the other generator y right acts on the graph so that each

x

(a) Cayley Graph of F1

x

y
A

B

(b) Cayley Graph of F2

Figure 5.2.1: Cayley Graphs of Free Groups
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vertex shifts to its immediate neighbor above it (along the blue edges). However, because F2 is

not abelian, the left actions are different from the right actions, and it is the left action that is

of more interest to us.

The Cayley graph of F2 has an intrinsic self-similar structure. It has four branches, and each

branch consists of a root (black) and three branches (red, green, and blue).

It is clear to see that the x-axis of the Cayley graph corresponds to the subgroup of F2 generated

by x, and this subgroup is isomorphic to F1. Each vertex on the x-axis roots two branches,

one upwards and one downwards, forming a vertical vertex-branch system. The left action of

the generator x shifts every vertex-branch system on the x-axis to its immediate neighboring

vertex-branch system on the right along the x-axis.

x−−−−→

Similarly, the left action of y shifts each horizontal vertex-branch system on the y-axis to its

immediate neighboring vertex-branch system above it.
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5.3 Groups Acting on Trees

The Cayley graphs of F1 and F2 are examples of regular trees.

Definition 5.3.1. For a positive integer k, a k-regular tree, denoted by Tk, is a tree whose

vertices all have degree k.

Lemma 5.3.2. For k ≥ 2, a k-regular tree is infinite.

Proof. We show this fact by contradiction. Suppose that G is a finite k-regular tree with n

vertices for some n ≥ 1. Because G is k-regular, there are a total of nk/2 edges. However, as a

tree, G is supposed to have n − 1 edges. Because k ≥ 2, we have nk/2 ≥ n > n − 1, at which

point we arrive at a contradiction. Thus when k ≥ 2, a k-regular tree is always infinite.

Example 5.3.3. The Cayley graph of F1 is the 2-regular tree T2; the Cayley graph of F2 is

the 4-regular tree T4 (Figure 5.2.1, disregarding the arrows illustrating the direction of group

action).

Example 5.3.4. Figure 5.3.1 shows the 3-regular tree T3. For clarity purpouse, the drawing of

the vertices is removed, and a vertex is assumed at each junction of edges. We will show in the

next section that the modular group acts on this tree.

Figure 5.3.1: The 3-Regular Tree T3
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Definition 5.3.5. Let m,n ≥ 2 be distinct integers. A biregular tree Tm,n is a tree with

vertices of degree m or n, connected in the way such that (i) each vertex of degree m is adjacent

to m vertices of degree n, and (ii) each vertex of degree n is adjacent to n vertices of degree m.

Example 5.3.6. Figure 5.3.2 shows a biregular tree T3,4. The red vertices all have degree 4,

and the blue vertices all have degree 3. Each edge connects a red vertex with a blue vertex.

Now that we have formulated the definitions of regular trees and biregular trees. We are ready

to see some group actions on these trees.

Definition 5.3.7. Let Γ be a graph, and let G be a group. We say that the group G acts on

the graph Γ if there exist a homomorphism ϕ : G −→ Aut(Γ).

Example 5.3.8. The free group F1 = 〈x〉 acts on T2 with the action by generator x shown in

Figure 5.2.1a. The homomorphism ϕ : F1 −→ T2 is defined such that ϕ(x) corresponds to shifting

each vertex to its immediate neighbor on the right.

Example 5.3.9. The free group F2 = 〈x, y〉 acts on T4. The homomorphism ϕ : F2 −→ T4 is

defined such that ϕ(x) and ϕ(y) correspond to the automorphisms shown in Figure 5.3.3.

Figure 5.3.2: A Biregular Tree T3,4
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x−−−−→

y−−−→

Figure 5.3.3: F2 Acting on T4

Example 5.3.10. The cyclic groups Z/4 and Z/3 both acts on the biregular tree T3,4 as rotations

about vertices of the tree. Suppose that Z/4 is generated by x, and Z/3 is generated by y. The

homomorphisms ϕ4 : Z/4 −→ T3,4 and ϕ3 : Z/3 −→ T3,4 are defined such that ϕ4(x) and ϕ3(y)

corresponds to the rotations a and b, respectively, shown in Figure 5.3.4. The dihedral groups D4

and D3 also act on T3,4 so that the reflections in the dihedral groups correspond to the reflection

actions along edges of T3,4. Furthermore, the symmetric groups S4 and S3 (isomorphic to D3) act

on T3,4 so that the branches extending from each vertex are permuted under the corresponding

group actions. The actions by Z/4 and Z/3 are orientation-preserving because only rotations

are allowed in the group actions. The actions by D4 and D3 are geometry-preserving since the

group actions do not involve rearrangements of geometric structures of the graph. It follows

immediately that orientation preserving actions are geometry-preserving.
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a

b

Figure 5.3.4: Z/4 and Z/3 Acting on T3,4

Example 5.3.11. The cyclic group Z/3 acts on T3 as rotations around a vertex. Furthermore,

the 180-degree rotation about the center of each edge is another orientation-preserving auto-

morphism of T3, and thus the cyclic group Z/2 acts on T3. Figure 5.3.5 shows the actions of Z/3

and Z/2 on T3. Notice that we have converted the 3-regular tree T3 to a biregular tree T2,3, and

an orientation preserving group action on T3 naturally acts on T2,3, and vice versa.

a

b

Figure 5.3.5: Z/3 and Z/2 Acting on T3
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5.4 Free Products and Amalgamated Free Products

We will first investigate the group Aut+(T3,4) of orientation-preserving automorphisms on

T3,4. Example 5.3.10 has shown that a, b ∈ Aut+(T3,4), with |a| = 4 and |b| = 3. What is the

relation between a and b? In particular, is there a finite composition of a and b that can give

rise to the identity automorphism?

The subgroup 〈a〉 ≤ Aut+(T3,4) acts on T3,4 so that it stabilizes the center red vertex. Similarly,

〈b〉 stabilizes the blue vertex around which the action of b rotates the tree. We shall call these two

vertices the basic vertices, and the edge connecting them the basic edge. In fact, we can assign

a coset of 〈a〉 to each red vertex, and a coset of 〈b〉 to each blue vertex. For each red vertex,

the group actions in the corresponding coset map the basic red vertex to it, and the same thing

applies to each blue vertex. For example, the cosets corresponding to the blue vertices around

the center red vertex are, respectively, 〈b〉, a〈b〉, a2〈b〉, and a3〈b〉, and the coset corresponding

to the blue vertex on the bottom left corner of the tree (shown in Figure 5.4.1) is a3ba2〈b〉.

Furthermore, there is an edge between two vertices if and only if the intersection of the cosets

corresponding to the vertices is not empty. In this case, the intersection is always a singleton

Xa\ Xb\

aXb\

a2Xb\

bXa\
a3ba2 Xb\

Figure 5.4.1: Vertex Labeling of T3,4 by Cosets of 〈a〉 and 〈b〉
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set that sends the basic edge to this edge. It is clear to see that the cosets of the basic vertices

are the only ones that contain the identity element. Hence, there does not exist any composition

involving both a and b that results in the identity element, and it follows that there is no relation

between a and b. We can write down a presentation of the group

Aut+(T3,4) = 〈a, b | a4, b3〉.

Notice that a and b have the same relation with the generators of Z/4 and Z/3, respectively.

The group Aut+(T3,4) is generated by an isomorphic copy of Z/4 and an isomorphic copy of Z/3,

where there is no interaction between the subgroups 〈a〉 and 〈b〉. In the following definition, we

define this method of combining two groups into a new one through group presentations.

Definition 5.4.1. Let G and H be groups. Suppose that

G = 〈S1 | R1〉, and H = 〈S2 | R2〉

are presentations of G and H, where S1 and S2 are disjoint sets of generators, and R1 and R2

are sets of relations within S1 and S2, respectively. The free product of G and H, denoted by

G ∗H, is the group with presentation

〈S1 ∪ S2 | R1 ∪R2〉.

Example 5.4.2. Now we look at the orientation-preserving automorphisms of T3. As mentioned

in Example 5.3.11, the orientation preserving automorphisms on T3 are the same as those on the

biregular tree T2,3. The assignment of cosets to vertices of T2,3 is shown in Figure 5.4.2. Thus the

subgroup 〈a〉 ∼= Z/3 stabilizes the basic red vertex, and the subgroup 〈b〉 ∼= Z/2 stabilizes the

basic blue vertex. Only the identity automorphism (which forms the trivial subgroup) stabilizes

the basic edge. The orientation-preserving automorphism group Aut+(T3) is then presented as

Aut+(T3) = Z/3 ∗ Z/2 = 〈a, b | a3, b2〉.

It was shown in [2] that Z/3 ∗ Z/2 ∼= PSL2(Z). The latter is usually referred to as the modular

group.
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Xa\ Xb\
b Xa\

a Xb\

a2 Xb\

b Xa\a

b Xa\a2

Figure 5.4.2: Vertex Labeling of T2,3 by Cosets of 〈a〉 and 〈b〉

Both of the examples shown here have trivial stabilizer of the basic edge. A more general

construction is to allow nontrivial automorphisms that fixes the basic edge. This generalization

corresponds to allowing common generator and relation in the presentation of two groups for

the product. We will give the definition of the amalgamated free product and shown an example

of this generalized version of free product.

Definition 5.4.3. Let G and H be groups whose intersection is a common subgroup K. Suppose

that

G = 〈S1 | R1〉, and H = 〈S2 | R2〉

are presentations of G and H, where S = S1 ∩ S2 is not empty, and the subgroup generated by

S is K. The amalgamated free product of G and H, denoted by G ∗K H is the group with

presentation

〈S1 ∪ S2 | R1 ∪R2〉.

It is clear that the free product is a special case where the amalgamation is achieved with

respect to the trivial group.
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We now present some useful results in [18] without giving proofs. For a rigorous deduction of

the following theorems, see Chapter 3 of [18].

Theorem 5.4.4. The group Z/m ∗ Z/n acts transitively on the edges of Tm,n.

Theorem 5.4.5. Every free product of groups A ∗ B can be realized as a group of symmetries

of a biregular tree. If A and B are both finite, the tree is T|A|,|B|.

Corollary 5.4.6. The stabilizers of the vertices of the tree associated to a free product A ∗ B

are conjugates of A and B.

Corollary 5.4.7. The stabilizer of an edge of the tree associated to a free product A ∗ B is

trivial.

Theorem 5.4.8. Let T be a tree, and let G be a subgroup of the automorphism group of T .

Suppose that T has exactly two orbits of vertices and one orbit of edges. Let e be an edge of T

with endpoints v and w. Let V , W , and E be the stabilizer subgroups of v, w, and e, respectively.

Then

G ∼= V ∗E W.

a

b

c

(a) Generators of the Group

D4 D3

Xc\
a2D3

Za2 c^

b D4

a3b a2 D3

a3b a2 Xc\

(b) Cosets on Vertices and Edges

Figure 5.4.3: Geometry-Preserving Automorphism Group of T3,4
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Example 5.4.9. We consider the group of geometry-preserving automorphisms of T3,4. We will

call the reflection across the basic edge c (Figure 5.4.3a). Thus the subgroup 〈a, c〉 ∼= D4 acts on

T3,4 so that it stabilizes the basic red vertex, and 〈b, c〉 ∼= D3 stabilizes the blue basic vertex. The

stabilizer for the basic edge is the intersection of these two subgroups 〈c〉 ∼= Z/2. Similar with

the previous cases, we can assign cosets to each vertex of T3,4, and there is an edge between two

vertices if and only if the intersection of their corresponding cosets is not empty. In particular,

the intersection is a coset of 〈s〉, which can be assigned to the edge. Figure 5.4.3b shows some

of the cosets: each red vertex gets a coset of D4 assigned; each blue vertex gets a coset of D3

assigned, and every edge gets a coset of 〈c〉 assigned. This group is obtained by the amalgamated

free product of the dihedral groups D4 and D3 with respect to the subgroup generated by the

basic reflection 〈c〉:

D4 ∗Z/2 D3 = 〈a, b, c | a4, b3, c2, acac, bcbc〉.

5.5 A Tree Representation of the Apollonian Gasket

We presented the construction of the Apollonian gasket using an octahedron in Chapter 3.

It can be constructed by placing four Sierpinski gaskets on alternating faces of an octahedron.

There is a similar construction of the Apollonian gasket using a tetrahedron, which will be useful

in this context. We can place four Sierpinski gaskets on the center of the faces of a tetrahedron

to obtain the Apollonian gasket. Figure 5.5.1 shows the equivalence of these two constructions.

Figure 5.5.1: The Octahedral and Tetrahedral Constructions of the Apollonian Gasket
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Figure 5.5.2: Pasting Two Apollonian Gaskets

There is a Sierpinski gasket on each face of the tetrahedron. Additionally, we know from

Lemma 3.4.4 that the complement of each face is also a Sierpinski gasket. Therefore, we can

paste two of these tetrahedrons together so that the resulting structure is still an Apollonian

gasket (Figure 5.5.2). By doing this pasting, three subcells on the same face of the Apollonian

tetrahedron becomes a face of the resulting polyhedron. We can repetitively paste Apollonian

tetrahedrons together (disregarding spatial overlap) so that every cell of the Apollonian gasket

can eventually become a face during the pasting process. In the next few paragraphs, we will

use the background set-up in [11] to define a simplicial complex and to describe the resulting

structure of the pasting process.

Definition 5.5.1. A k-simplex is a k-dimensional polytope which is the convex hull of k + 1

affinely independent vertices.

The notion of simplices is a generalization of triangles and tetrahedrons into higher dimensions.

A single point, a line segment, a triangle, and a tetrahedron are examples of 0-simplex, 1-simplex,

2-simplex, and 3-simplex, respectively.

Definition 5.5.2. A simplicial complex is a set V together with a collection ∆ of finite

subsets of V (the simplices) such that
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(1) For all v ∈ V , we have {v} ∈ ∆, and

(2) If S ∈ ∆ and T ⊆ S is nonempty, then T ∈ ∆.

The definition of a simplicial complex we give here is purely combinatorial. We provide a

geometric insight into simplicial complexes. A simplicial complex can be realized by gluing

simplices together. The set V is the set of vertices in the simplices, and the collection ∆ of finite

subsets specifies the simplices in the simplicial complex.

Definition 5.5.3. A simplicial k-complex is a simplicial complex K where the largest dimen-

sion of any simplex in K equals k.

A graph is a collection of vertices (0-simplices) and edges (1-simplices). Thus graphs are

examples of simplicial 1-complexes.

We take the resulting structure of the infinite pasting of Apollonian tetrahedrons, and define

a simplicial complex for the Apollonian gasket.

Definition 5.5.4. Let V be the collection of complementary disks in the Apollonian gasket, and

let ∆ be subsets of V for which the disks are mutually tangent. The structural complex of

the Apollonian gasket, denoted by KAG is defined by the set of vertices V and the collection

∆ of subsets of V .

We notice that there cannot be more than four disks on Ĉ that are mutually tangent. It is

then clear that KAG is a simplicial 3-complex. The simplices in KAG are described as follows.

0-simplices: complementary disks of the Apollonian gasket;

1-simplices: choices of two tangent complementary disks, or equivalently, all points with two

different addresses in the Apollonian gasket;

2-simplices: choices of three mutually tangent complementary disks, or equivalently, choices

of three points on the Apollonian gasket whose removal disconnects the Apollonian gasket

into two components;
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Figure 5.5.3: The Structural Tree TAG of the Apollonian Gasket

3-simplices: choices of four mutually tangent complementary disks of the Apollonian gasket,

or equivalently, choices of six points on the Apollonian gasket whose removal disconnects

the Apollonian gasket into four components.

Notice that two 3-simplices share a common 2-simplex if and only if their corresponding

choices of disks have three in common. Analogously, two 2-simplices share a common 1-simplex

if and only if their corresponding choices of disks have two in common.

From the structural complex of the Apollonian gasket, we can construct its structural tree,

denoted by TAG with the following rules. Each 3-complex is assigned a red vertex; each 2-

complex is assigned a blue vertex. An edge can only connect between a red vertex and a blue

vertex precisely when the 2-simplex corresponding to the blue vertex belongs to the 3-simplex

corresponding to the red vertex. It is then clear that TAG is a biregular tree with vertices of

degree 2 and 4 as illustrated in Figure 5.5.3.

Readers should keep in mind that the red vertices are at the center of tetrahedrons, and the

blue vertices are at the center of the faces. The graph has a tetrahedral structure because the

dual polyhedron of a tetrahedron is a tetrahedron.

An example of the correspondence between the vertices of TAG and parts of the Apollonian

gasket is illustrated in Figure 5.5.4. The degree-2 vertex labeled in blue corresponds to a 2-
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Figure 5.5.4: A Correspondence between TAG and the Apollonian Gasket

simplex of KAG, or three mutually tangent complementary disks, and thus the blue part in the

planar presentation. The degree-4 vertex labeled in red corresponds to a 3-simplex, or the choice

of four mutually tangent disks labeled in blue and red in the planar presentation, while the other

degree-4 vertex labeled in green corresponds to the choice of blue disks and the green disk. The

red and green vertices corresponds to two 3-simplices that share a common 2-simplex. Their

common choice of tangent disks are the blue ones shown in Figure 5.5.4.

We have shown that there is an isomorphic copy of S4 as a subgroup of Homeo(SG) that acts

on the Apollonian gasket so that the four cells shown in Lemma 3.3.6 are permuted. We have

also shown in Corollary 3.4.3 that there exist g ∈ Homeo(SG) that maps any cell to any other

cell. Hence, the desired group acting on TAG should include all geometry-preserving actions, i.e.,

rotations, reflections, translations, and any compositions of these actions.

The degree-4 and degree-2 vertices, respectively, form exactly two orbits of vertices, and all

the edges are in one orbit under the action of Homeo(AG). We pick the red and blue vertices in

Figure 5.5.4 together with the edge connecting them for further analysis.

The stabilizer of the red vertex is supposed to preserve the four disks in blue and red. The

isomorphic copy of S4 generated by r and a shown in Lemma 3.3.6 permutes the cells as well

as these four circles. Furthermore, we know that s ∈ 〈r, a〉 with s = r2ar2arar. Notice that
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s = s−1. Thus this vertex stabilizer is S4 with presentation 〈a, r | a2, r3, (ar)4〉, or equivalently,

S4 ∼= 〈a, r, s | a2, r3, (ar)4, sr2ar2arar〉.

The stabilizer for the blue vertex is supposed to preserve the three disks in blue. The isomor-

phic copy of D3 generated by r and s preserves these three disks. However, the circle inversion c

also preserves these disks, but c is not in 〈r, s〉. Hence, the vertex stabilizer for the blue vertex

is 〈r, s〉o 〈c〉 ∼= D6 with presentation

D6
∼= 〈r, s, c | r3, s2, c2, rsrs, crcr−1, cscs〉.

The edge stabilizer is the intersection of these two groups, and it preserves the disks in blue

as well as fixes the red disk. It is easily verified that the edge stabilizer is D3 with presentation

D3
∼= 〈r, s | r3, s2, rsrs〉.

Now we are ready to use Theorem 5.4.8 to find a presentation for Homeo(AG). The amalga-

mated free product S4 ∗D3 D6 gives the isomorphic type of the group Homeo(AG). The presen-

tation of the product is

S4 ∗D3 D6
∼= 〈a, c, r, s | a2, c2, r3, s2, (ar)4, sr2ar2arar, rsrs, crcr−1, cscs〉.

Hence, a presentation of Homeo(AG), written in terms of the generators a, c, r, s presented in

Section 4.3, can be

Homeo(AG) = 〈a, c, r, s | a2, c2, r3, s2, (ar)4, sr2ar2arar, rsrs, crcr−1, cscs〉. (5.5.1)

5.6 A Tree Representation of E3

Similar to the approach of the Apollonian gasket, we shall embed the E3 fractal on a poly-

hedron, paste the polyhedra in a specific pattern to mimic the self-similar structure of E3. We

shall again use the results from Bass-Serre theory to find a presentation of Homeo(E3).
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As we mentioned in Section ??, there is an isomorphic copy of the symmetry group D6 of a

triangular prism as a subgroup of Homeo(E3). It is then natural to embed the E3 fractal on a

triangular prism with equilateral triangular bases and square sides. Each side of the triangular

prism has a copy of a cell defined in Definition 4.2.2 and illustrated in the replacement system

in Figure 4.1.1. Adjacent cells have two points in common, represented by two vertices on the

adjacent edge of two side faces of the triangular prism.

Each cell of E3 is composed of two subcells, whoso intersection is a set of two points. However,

the orientation of these two subcells is different from their immediate supercell. We need a clever

way of pasting the triangular prisms to realize the decomposition of E3 into smaller and smaller

cells.

One way of pasting the prisms together is shown in Figure 5.6.1. When the second prism is

attached, it is orientated “perpendicular” to its adjacent prism so that the resulting structure is

still an E3 fractal. By doing such pasting, two subcells on one face of the triangular prism become

a face of the resulting polyhedron. We can repetitively paste E3 prisms together (disregarding

spacial overlap) so that every cell of the E3 fractal can eventually become a face during the

pasting process. Notice that the boundary points of each cell are pinch points in E3, and they

Figure 5.6.1: A Triangular Prism Embedding of E3 and Its Pasting Method
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are arranged in a circular order. We will use adjacency of boundary points on one cell specified

by this circular order.

We construct a polyhedral complex for the result of the infinite pasting of E3 prisms in anal-

ogous to the simplicial complex for the Apollonian gasket. We will skip the rigorous definition

of a polyhedral complex but provide a construction of the polyhedral complex by specifying the

vertices, edges, faces, and polyhedra.

Vertices: all pinch points in E3;

Edges: there is one edge between each pair of pinch points that are adjacent boundary points

of the same cell;

Triangular faces: any 3-cycles of edges;

Square faces: choices of four pinch points that are the boundary points of the same cell, or

equivalently, choices of four points on E3 whose removal disconnects E3 into two compo-

nents;

Triangular prisms: choices of six points in E3 whose removal disconnects E3 into three com-

ponents, at least two of which are cells of E3.

We call the polyhedral complex defined above the structural complex of the E3 fractal, and

we denote it by KE3 .

From the structural complex of the E3 fractal, we can construct the structural tree of E3,

denoted by TE3 with the following rules. Each triangular prism is assigned a red vertex; each

square face is assigned a blue vertex. An edge can only connect between a red vertex and a blue

vertex precisely when the square face corresponding to the blue vertex belongs to the triangular

prism corresponding to the red vertex. It is then clear that TE3 is a biregular tree with vertices

of degree 2 and 3 as shown in Figure 5.6.2.
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Figure 5.6.2: The Structural Tree TE3 of the E3 Fractal

Here we show an example of the correspondence between the structural tree TE3 and the E3

fractal in Figure 5.6.3. The degree-2 vertex labeled in blue corresponds to a square face of KE3 ,

and thus the blue points in the planar presentation of E3. The central degree-3 vertex labeled

in red corresponds to the choice of six points labeled in red and blue in E3, while the degree-3

vertex labeled in green corresponds to the choice of points labeled in green and blue. It is clear

that the removal of either sets of points corresponding to the red and green vertices, respectively,

can disconnect the E3 fractal into three separate piece, and at least two of them are cells.

Figure 5.6.3: A Correspondence between TE3 and the E3 Fractal
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Analogous to the case for the Apollonian gasket, the the desired group, which is expected to be

isomorphic with Homeo(E3), acting on TE3 should include all geometry-preserving actions, i.e.,

rotations, reflections, translations, and any compositions of these actions. We use Theorem 5.4.8

to show a representation of this group.

The degree-3 and degree-2 vertices, respectively, form exactly two orbits of vertices, and all the

edges are in one orbit under the action of Homeo(E3). If we take a look at the pink and purple

vertices and the edge connecting them in Figure 5.6.3, we can see that the stabilizer subgroup

of the degree-3 red vertex is isomorphic to D6, and the stabilizer subgroup of the degree-2 blue

vertex is isomorphic to D4. The edge stabilizer is the intersection of these two subgroups, which

is isomorphic to the Klein-4 group Z/2× Z/2.

D4D6

Z/2× Z/2

It follows that the group Homeo(E3) acting on the biregular tree TE3 is given by the amalgamated

free product D6 ∗Z/2×Z/2 D4.

We have shown in Section 4.3 the generation of D6, D4, and Z/2 × Z/2 with generators of

Homeo(E3). The presentations of these groups can be written as

D6
∼= 〈c, r, s | c2, r3, s2, rsrs, crcr−1, cscs〉,

D4
∼= 〈a, c | a4, c2, acac〉 = 〈a, c, s | a4, c2, s2, acac, a2cs〉,

Z/2× Z/2 ∼= 〈c, s | c2, s2, cscs〉.

The generators c, r, s all stabilize the red vertex, and the generators a and c stabilize the blue

vertex. Hence, a presentation of Homeo(E3), written in terms of the generators a, c, r, s presented

in Section 4.3, can be

Homeo(E3) = 〈a, c, r, s | a4, c2, r3, s2, rsrs, crcr−1, cscs, acac, a2cs〉. (5.6.1)
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5.7 E4 Has D4 × Z/2 Homeomorphism Group

In this section, we will show that the full homeomorphism group of the E4 fractal is isomorphic

to D4 × Z/2.

We construct the structural complex KE4 of E4 in analogous to the structural complex of E3.

However, instead of a triangular prism, we need to start from a square prism (more precisely,

a cube) because E4 has four cells to start with. Subsequently, we paste triangular prisms onto

the starting polyhedron, and we construct our desired structure complex. The vertices, edges,

faces, and polyhedra of this structural complex are specified as follows.

Vertices: all pinch points in E4;

Edges: there is one edge between each pair of pinch points that are adjacent boundary points

of the same cell;

Triangular faces: any 3-cycles of edges;

Square faces (triangular prisms): choices of four pinch points that are the boundary points

of the same cell, or equivalently, choices of four points on E4 whose removal disconnects

E3 into two components;

Triangular prisms: choices of six points in E4 whose removal disconnects E3 into three com-

ponents, at least two of which are cells of E3.

A visualization of the first stage of pasting on this structural complex is shown in Figure 5.7.1.

Notice that all but one of the polyhedra in this structural are triangular prisms. Only the starting

polyhedron is a cube. This fact is very useful in showing the group structure of Homeo(E4).

Theorem 5.7.1. Homeo(E4) ∼= D4 × Z/2.

Proof. The construction of the structural complex KE4 of E4 naturally defines a homeomorphism

ϕ : KE4 −→ E4. Thus Homeo(E4) ∼= Aut(KE4). Let ψ : KE4 −→ KE4 be an automorphism.
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→

Figure 5.7.1: The Starting Cube and Subsequent Pasting of Triangular Prisms on KE4

Because there is only one cube in the polyhedron complex KE4 , the automorphism ψ must fix the

cube. Furthermore, because the top and the bottom of the cube has different geometric meanings

with its sides, ψ must act on the cube so that either both the top and the bottom are preserved or

they switch position. In another word, the only possible actions on the cube are the full symmetry

group D4×Z/2 of a square prism. Thus we have Aut(KE4) ≤ D4×Z/2. Lemma 4.5.1 has shown

that D4 × Z/2 ≤ Homeo(E4). We can conclude that Homeo(E4) ∼= Aut(KE4) ∼= D4 × Z/2.
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E3 as a Limit Set

The previous chapter has given a nice presentation of the group Homeo(E3) with four gen-

erators a, c, r, s. Three of these generators have clear geometric interpretations. Generator c is

the inversion across the unit circle; generator r is the 120-degree rotation about the origin; gen-

erator s is the complex conjugation function, which reflects everything across the real axis. All

of these three maps are well-defined Möbius transformations or anti-Möbius transformations on

the complex plane. However, we are not sure about the geometric meaning of the map a. All we

know from Section 4.3 is that a is an inversion composed with a rotation of the Riemann sphere.

In this chapter, we will develop a geometric interpretation of the generators of Homeo(E3). The

first section will focus on the orientation-preserving subgroup of Homeo(E3) and find a presen-

tation of this subgroup. In Section 6.2, we will show that this orientation-preserving subgroup

is isomorphic to a Kleinian group. The limit set of this Kleinian group is homeomorphic to the

E3 fractal. In Section 6.3, we will use Tietze transformation to change the generator r into an

anti-Möbius transformation so that the group can be generated by four anti-Möbius transforma-

tions. We will investigate the geometric meaning of these four maps and present a conjugated

limit set that has the same structure with E3 as well as the limit set shown in Section 6.2.
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6.1 Orientation-Preserving Homeomorphisms in Homeo(E3)

The homeomorphism group Homeo(E3) of the E3 fractal contains orientation-preserving

and orientation-reversing homeomorphisms. The orientation-preserving transformations in

Homeo(E3) form an index-2 normal subgroup of Homeo(E3), and it should act on the structural

tree TE3 of E3 as the orientation-preserving automorphisms, which include rotations, transla-

tions, and compositions of these two types of automorphisms, but not reflections. We denote this

group by Homeo+(E3), and apply the method used in Sections 5.5 and 5.6 to find a presentation

of Homeo+(E3).

We will use the specification of edges and vertices shown in Figure 5.6.3, and focus only on

the orientation-preserving actions on TE3 . We isolate the pink and purple vertices and the edge

connecting them from the tree, and find the orientation-preserving stabilizing actions. It then

follows that the stabilizer subgroup of the pink vertex is isomorphic to D3, and the stabilizer

subgroup of the purple vertex is isomorphic to Z/2×Z/2. The edge stabilizer is the intersection

of these two subgroups, which is isomorphic to Z/2.

Z/2× Z/2D3

Z/2

The stabilizer subgroups are subgroups of D6, D4, and Z/2×Z/2, respectively, presented at the

end of Section 5.6. We enumerate the group elements of D3, and Z/2× Z/2, and Z/2 in terms

of the generators for the former.

D3 = {1, r, r2, cs, rcs, r2cs},

Z/2× Z/2 = {1, a2, ac, a3c} = {1, cs, ac, as},

Z/2 = {1, cs}.

We define the transformations x = cs and y = ac, and write down the presentation of the groups

listed above. Notice that a, c, s are orientation-reversing homeomorphisms, but both x and y are
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orientation-preserving.

D3 = 〈r, x | r3, x2, rxrx〉,

Z/2× Z/2 = 〈x, y | x2, y2, xyxy〉,

Z/2 = 〈x | x2〉.

Therefore, a presentation of Homeo+(E3), written in terms of generators r, x, and y, can be

Homeo+(E3) = 〈r, x, y | r3, x2, y2, rxrx, xyxy〉. (6.1.1)

6.2 Homeo+(E3) as a Kleinian Group

Because The E3 fractal appears to have tangent complimentary regions, just like the Apol-

lonian disks in the Apollonian gasket, we attempt to find a Kleinian group that is isomorphic

to Homeo+(E3). We first define a homomorphism ξ : Homeo+(E3) −→ Mob by specifying where

to map the generators of Homeo+(E3) into the group of Möbius transformations. In this chap-

ter, the symbols r, x, y are used as orientation-preserving homeomorphisms of E3. The symbols

rξ, xξ, yξ stand for the images of r, x, y, respectively, under the homomorphism ξ. They are all

Möbius transformations.

By the presentation in 6.1.1, the homeomorphism x is an order-2 element. Thus its image xξ

shall be a Möbius transformation of order-2. All Möbius transformations of order-2 are conjugates

with each other. For convenience, we shall pick one order-2 Möbius transformation as xξ.

xξ(z) = 1/z, (6.2.1)

On the other hand, we know that the homeomorphism r is an order-3 element, and 〈r, s〉 forms

a subgroup isomorphic to D3. Thus rξ must be an order-3 Möbius transformation that forms a

D3 subgroup with xξ. We shall pick the following Möbius transformation as rξ.

rξ(z) = ze2iπ/3. (6.2.2)
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The following lemma shows the validity of picking these two Möbius transformations as the

images of x and r under the homomorphism ξ.

Lemma 6.2.1. There exist a Möbius transformation yξ such that the map

ξ : Homeo+(E3) −→ Mob

is a homomorphism.

Proof. To show that ξ is a homomorphism, we need to find a Möbius transformation yξ such

that rξ, xξ, yξ satisfies the relations specified in 6.1.1. Let yξ be a Möbius transformation

y(z) =
Az +B

Cz +D
,

with undetermined coefficients A,B,C,D ∈ C. There are two relations that yξ needs to satisfy.

First of all, yξ is an order-2 Möbius transformation by the relation y2. Iterating yξ on any value

z ∈ C should get z back. We use 0 and ±1 as the input values of z to solve for the relation

between the undetermined coefficients, and we get the equations

A · (B/D) +B

C · (B/D) +D
= 0,

A · A+BC+D +B

D · A+BC+D +D
= 1, and

A · B−AD−C +B

D · B−AD−C +D
= −1. (6.2.3)

Secondly, yξ has to commute with xξ by the relation xyxy and the fact that both xξ and yξ are

order-2 Möbius transformations. Thus yξ(xξ(z)) = xξ(yξ(z)) for all z ∈ C. Again, we use 0 and

±1 as the input values of z to solve for another relation between the undetermined coefficients

(for the equation with z = 0, we take the limit as z −→ 0), and we get the equations

A

C
=
B

D
,
A+B

C +D
=
C +D

A+B
and

B −A
D − C

=
D − C
B −A

. (6.2.4)

Combine Equations 6.2.3 and 6.2.4 and solve, we get two sets of solutions{
D = −A,
C = −B,

and

{
A = D = 0,

B = C.



6.2. HOMEO+(E3) AS A KLEINIAN GROUP 101

The second set yields the map xξ. It is clear that xξ is order-2 and commutes with xξ, but it

is not the map we want. We want the other one with coefficients D = −A and C = −B as the

map yξ. Let q = B/A, the closed-form expression for yξ can then be written as

yξ(z) = − z + q

qz + 1
, (6.2.5)

with an arbitrary value q ∈ C. Now we have made ξ a homomorphism.

We notice that this is a one-parameter family of Kleinian groups isomorphic to Homeo+(E3)

with a parameter q ∈ C. For different values of q, we computed the orbit of points on the complex

plane, and plot them to approximate the associated limit set. For different values of q, we obtain

different structures for the associated limit set. The structures of the resulting limit sets include

space-filling orbits, circles, Cantor dusts, carpets, and post-critically finite fractals in which we

are interested. We show some of the resulting limit sets in Figure 6.2.1. When q = 0.66 + 0.75i,

the resulting limit set appears to have similar structure with the E3 fractal. To find out the

exact value of q for this limit set that resembles E3, we need to understand how the map y, as

a homeomorphism, acts on the E3 fractal.

Theorem 6.2.2. Let ξ : Homeo+(E3) −→ Mob be the homomorphism defined above, where

rξ(z) = ze2iπ/3, xξ(z) = 1/z, and yξ(z) = − z + q

qz + 1

for an undetermined coefficient q ∈ C. Suppose that there exist a homeomorphism f : E3 −→

Λ(〈rξ, xξ, yξ〉) that commutes with the action of Homeo+(E3), then q is a root of the polynomial

4q4 + q2 + 4.

Proof. In Homeo(E3), the map y is defined to be the composition of a and c. The sequential

action of c followed by a on the E3 fractal is shown in Figure 6.2.2. We focus on four special

points on the E3 fractal, namely, the points labeled p1, p2, p3, p4 in Figure 6.2.2. These four

points form an invariant set under the actions of both c and a. The image of each point under



102 6. E3 AS A LIMIT SET

q = 5 q = 0.55

q = i q = 1 + i

q = 0.6 + 0.8i q = 0.66 + 0.75i

Figure 6.2.1: Orbit-Approximated Limit Sets with Different Parameter q
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c−−→ a−−→

Figure 6.2.2: Action of y on E3

the actions is also shown in the figure. Points p2 and p4 are fixed under the action of y, while

points p1 and p3 switch their positions.

Now we return to our desired Kleinian group and its limit set. We denote the corresponding

points permuted by yξ with q1, q2, q3, q4 ∈ C. By D3 symmetry of the limit set, we know that

the argument of q1 and q2 is −2π/3, and the argument of q3 and q4 is 2π/3. By the unit circle

inversion as a symmetry operation, we know that the norm of q2 and q3 is inverse of the norm of

q1 and q4. We suppose that q1 corresponds to the complex number Re−2iπ/3, where R > 1 is an

undetermined coefficient. Then q2, q3, and q4 correspond to e−2iπ/3/R, e2iπ/3/R, and Re2iπ/3,

respectively. Hence, we have the following equations

y(Re−2iπ/3) = e2iπ/3/R, (6.2.6)

y(e−2iπ/3/R) = e−2iπ/3/R, (6.2.7)

y(e2iπ/3/R) = Re−2iπ/3, (6.2.8)

y(Re2iπ/3) = Re2iπ/3. (6.2.9)

We can solve this system of equations for the undetermined coefficients q and R, and we get

q ≈ 0.6614 + 0.75i and R ≈ 2.189, (6.2.10)
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with minimal polynomials 4q4 + q2 + 4 and R4 − 5R2 + 1, respectively. Hence, we are able to

write the map yξ as

yξ(z) = − z + q

qz + 1
, (6.2.11)

where q is the root of the quartic polynomial 4q4 + q2 + 4 with approximated value 0.6614 +

0.75i.

The limit set of the Kleinian group generated by rξ, xξ, and yξ appears to be homeomorphic

to E3. Figure 6.2.3 shows part of the orbit of an arbitrary complex number on the complex

plane under this Kleinian group. We can clearly see the structure of E3 in the orbit. In the next

section, we will show another Kleinian group whose limit set has the same structure. However,

the Kleinian group in the next section is conjugate to the Kleinian group generated by rξ, xξ, yξ.

In fact, up to conjugacy, there is only one Kleinian group with limit set homeomorphic to E3.

Definition 6.2.3. Let K+ be the Kleinian group generated by rξ, xξ, and yξ. Let K be the

group K+ o 〈sξ〉, where sξ is the complex conjugation function.

The group K contains Möbius transformations and anti-Möbius transformations. The anti-

Möbius transformations in K forms a coset of K+ in K. The following lemma shows the relation

between the groups K+ and K.

Lemma 6.2.4. The limit set of K is the same as the limit set of K+.

Proof. The statement follows immediately from the fact that the limit set of K+ is invariant

under the complex conjugation function sξ.

Lemma 6.2.5. The homomorphism ξ : Homeo+(E3) −→ Mob extends to an onto homomorphism

ξ± : Homeo(E3) −→ K.

Proof. Let ξ± : Homeo(E3) −→ K be a homomorphism defined by

ξ± : s 7→ sξ, r 7→ rξ, c 7→ xξs
−1
ξ , a 7→ yξsξx

−1
ξ .
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Figure 6.2.3: K+-Orbit of an Arbitrary Point on the Complex Plane

Figure 6.2.4: Complementary Disks in the Limit Set of K+
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Figure 6.2.5: Limit Set of K+
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It then follows that

ξ±(x) = ξ±(cs) = ξ±(c)ξ±(s) = xξs
−1
ξ sξ = xξ,

and

ξ±(y) = ξ±(ac) = ξ±(a)ξ±(c) = yξsξx
−1
ξ xξs

−1
ξ = yξ.

Thus ξ± is an extension of ξ. Furthermore, because K contains all finite words written with the

alphabet {rξ, xξ, yξ, sξ}, it follows that ξ± is onto K.

Because ξ± is an extension of ξ, we shall extend our notation for the anti-Möbius transforma-

tions under the map of ξ±. The images of a and c shall be denoted by aξ and cξ, respectively.

Unlike the Julia set, the limit set has disks as its complementary regions. From the solution

we obtain in 6.2.10, we know the circle that encloses the whole limit set as the circle C centered

at the origin with radius R ≈ 2.189. The limit set is an invariant set under the action of K+,

so is the complement of the limit set. Hence, the complementary disks of the limit set maps to

complementary disks under the action of K+. A sequential application of the generators rξ, xξ, yξ

on the circle C, as shown in Figure 6.2.4, will give us all the complementary regions of the limit

set, hence providing another way of visualizing the limit set. Figure 6.2.5 shows a visualization

of the limit set using this method, and it surely appears homeomorphic to the E3 fractal.

6.3 Geometric Interpretation of K

Recall that Homeo(E3) has the presentation

Homeo(E3) = 〈a, c, r, s | a4, c2, r3, s2, rsrs, crcr−1, cscs, acac, a2cs〉. (6.3.1)

Lemma 6.2.5 has shown that there exist an onto homomorphism ξ± : Homeo(E3) −→ K. It follows

that K is a quotient of Homeo(E3), and it is generated by aξ, cξ, rξ, and sξ with presentation

〈aξ, cξ, rξ, sξ | R ∪ {a4ξ , c2ξ , r3ξ , s2ξ , rξsξrξsξ, cξrξcξr−1ξ , cξsξcξsξ, aξcξaξcξ, a
2
ξcξsξ}〉, (6.3.2)
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where R is an additional set of relations on the generating set {aξ, cξ, rξ, sξ}. We suspect that

R is the empty set, in which case we would have K ∼= Homeo(E3). Furthermore, K would act

on the polyhedral complex associated with E3 embedded in hyperbolic 3-space H3.

Among these four generators, we understand the geometric interpretations of cξ, rξ, and sξ

on the Riemann sphere. Generator cξ has the equation cξ(z) = 1/z for all z ∈ Ĉ, and it

is the inversion across the unit circle; generator rξ is the 120-degree rotation about the origin;

generator sξ is the complex conjugation function, which corresponds to a reflection across the real

axis. However, the geometric interpretation of aξ is limited to Figure 4.3.1 and its permutation

on the points {q1, q2, q3, q4} in the proof for Theorem 6.2.2 by the rule

q1
aξ−−→ q2

aξ−−→ q3
aξ−−→ q4

aξ−−→ q1.

The actual geometric meaning of aξ is still a mystery. In order to obtain a better understanding

of aξ, we conjugate aξ with a Möbius transformation m so that the transformation α = maξm
−1

has a better-understood geometric interpretation.

Lemma 6.3.1. There exist a Möbius transformation m such that α = maξm
−1 acts on the

complex plane as an inversion across the unit circle followed by a 90-degree rotation around the

origin.

Proof. We know that given two sets of points {z1, z2, z3} and {w1, w2, w3} on the Riemann

sphere Ĉ, there exist a unique Möbius transformation under which z1, z2, z3 map to w1, w2, w3,

respectively. In this case, m is the conjugator Möbius transformation that maps q1, q2, q3 to

i, i2, i3, respectively.

Let R ≈ 2.189 be the solution in 6.2.10. Let ω = e2iπ/3. Suppose that m is the Möbius

transformation with expression

m(z) =
Az +B

Cz +D
,
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where A,B,C,D ∈ C are undetermined coefficients. According to the mapping conditions, we

get the system of equations

m(ω2R) = i, (6.3.3)

m(ω2/R) = i2 = −1, (6.3.4)

m(ω/R) = i3 = −i. (6.3.5)

Because Mob ∼= PSL2(C), we can force the condition

A = 1. (6.3.6)

Solving this system of four equations gives the undetermined coefficients

A = B = 1, C = −D ≈ 0.475− 0.475i, (6.3.7)

where C and D both have minimal polynomial 9x8 + 46x4 + 9. Hence, we can write m with the

expression

m(z) =
z + 1

C(z − 1)
, (6.3.8)

where C is a constant with minimal polynomial 9x8 + 46x4 + 9 and approximated value 0.475−

0.475i. It is then easy to verify that α(z) = i/z for all z ∈ Ĉ.

Now we are ready to change the generators of K. We hereby introduce Tietze transformations

as the tool for doing the change of generators. The definition we adopt here is from [12].

Definition 6.3.2. Let G be a group with presentation G = 〈S | R〉. We define four types of

Tietze transformations as follows:

R+: If r is a word in X and r = e is a relation that holds in G, then

G ∼= 〈S | R ∪ {r}〉.

R−: If r ∈ R is a relation such that r = e holds in the group 〈S | R− {r}〉, then

G ∼= 〈S | R− {r}〉.
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S+: If w is a word in S and s is a symbol not in S, then

G ∼= 〈S ∪ {s} | R ∪ {sw−1}〉.

S−: If s ∈ S and w is a word in S − {s} such that sw−1 = e, then substitute w for s in every

other relation of R to get R̃, and

G ∼= 〈S − {s} | R̃〉.

Theorem 6.3.3. Two finite presentations define isomorphic groups if and only if it is possible

to pass from one to the other by a finite sequence of Tietze transformations.

Proof. See proofs for Theorem 1 and 2 in Chapter 4 of [12].

We first apply Tietze transformations S+ and S− to substitute the generator rξ with tξ =

rξsξ. The map tξ is an anti-Möbius transformation, and it corresponds to a circle inversion on

the Riemann sphere Ĉ. The purpose of changing this generator is to simplify the geometric

interpretation of generators because a nice geometric interpretation of a Möbius is not always

guaranteed, but a circle inversion conjugated by a Möbius transformation is always another

circle inversion. The presentation of K after applying the transformations then becomes

K = 〈aξ, cξ, sξ, tξ | R̃ ∪ {a4ξ , c2ξ , s2ξ , t2ξ , (sξtξ)3, cξtξsξcξsξtξ, cξsξcξsξ, aξcξaξcξ, a2ξcξsξ}〉, (6.3.9)

where R̃ is the result of Tietze transformations S+ and S− on the set of relations R.

Now we apply Tietze transformations S+ and S− again to substitute each generator with

its conjugate under the map m. Notice that this set of transformation does not change the

presentation in 6.3.9. We define the group

CE = 〈α, γ, σ, τ | mR̃m−1 ∪ {α4, γ2, σ2, τ2, (στ)3, γτσγστ, γσγσ, αγαγ, α2γσ}〉,

where α = maξm
−1, γ = mcξm

−1, σ = msξm
−1, and τ = mtξm

−1 as anti-Möbius transforma-

tions, and mR̃m−1 is the set of relations R̃ under the conjugation of m. Hence, CE is a group
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isomorphic to K. We can also reason that CE contains an index-2 Kleinian subgroup CE+,

which contains all Möbius transformations in CE, with presentation

CE+ = 〈ρ, φ, ψ | R′ ∪ {ρ3, φ2, ψ2, ρφρφ, φψφψ}〉,

where ρ = mrξm
−1, φ = mxξm

−1, and ψ = myξm
−1 as Möbius transformations, and R′ is a

set of additional relations on the generating set {ρ, φ, ψ}. We would also expect the limit set

Λ(CE+) of CE+ to be homeomorphic to the limit set Λ(K+) of K+.

Finally, we analyze the geometric meaning of the other three generators γ, σ, and τ of CE.

Readers should keep in mind that all of cξ, sξ and tξ are circle inversions on the Riemann sphere,

thus their conjugation under m shall also be circle inversions. The mapping relation of some of

the points in the limit sets are shown in Figure 6.3.1. The image of the circles (lines) about

which the anti-Möbius transformations reflect is also shown in Figure 6.3.2.

It is then clear that α is the reflection across the unit circle followed by a 90-degree rotation; γ

and σ are reflections across the lines Re(z)+Im(z) = 0 and Re(z)− Im(z) = 0, respectively. But

what is the circle associated with τ? We use the conformal property of Möbius transformations

to answer this question.

We denote the circle associated with a Möbius transformation labeled hξ by Ch. Notice that Ct

intersects Cc twice at right angle, and Ct intersects Cs twice (once at infinity) with a 60◦ angle.

Additionally, Ct intersects Ca twice with an unknown angle. We notice that the intersection

points between Ct and Ca are the points q1 and q2. There exist a unique circle that intersects

Cγ at right angle, intersects Cσ at 60-degrees, and passes through m(q1) = i and m(q2) = −1,

namely the circle Cτ associated with the circle inversion τ . The center of Cτ is

(1 +
√

7

6
,−1 +

√
7

6

)
,

and the radius of Cτ is
√

2 +
√

14

3
.
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Figure 6.3.3 shows the limit set of CE+ generated with the same method as the limit set of

K+. It indeed appears to be homeomorphic to the limit set of K+ as well as the E3 fractal.

The relatively simple geometric interpretation of CE+ possibly provides a pathway to showing

homeomorphic relations between Λ(CE+), Λ(K+), and the E3 fractal.

m−−−→

Figure 6.3.1: Mapping Relation of Points under Conjugator m

aΞ

sΞ

tΞ

cΞ

m−−−→

Α

Σ

Τ

Γ

Figure 6.3.2: Mapping Relation of Circles under Conjugator m
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Figure 6.3.3: Limit Set of CE+
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