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Abstract

Belk and Forrest construct a specific class of graph replacement systems that give sequences
of graphs that converge to fractals. Given a polynomial, we have an algorithm that gives a
replacement system that leads to a graph sequence which we conjecture converges to the Julia
set. We prove the conjecture for the quadratic polynomial z2 + c where c is a real number and
the critical point is in a three cycle. We present some additional results and observations on
replacement systems obtained from certain polynomials.
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Introduction

Thompson’s groups are three groups F ,T , and V are finitely presented infinite groups that are

of interest to group theorists because of their unusual properties. These groups act as piece-wise

linear homeomorphisms on the circle, the interval, and the Cantor set. In [4], Belk and Forrest

presented a Thompson-like group that acts by homeomorphisms on the Basilica, which is the

Julia set of the quadratic polynomial z2−1. In their paper, they mention that their eventual goal

is to associate a Thompson-like group to the Julia set of every quadratic polynomial, in a way

such that the original three Thompson’s groups are associated to the quadratic polynomials with

Julia sets that are homeomorphic to the circle, the interval, and the Cantor set. Two previous

senior projects at Bard, [8] [10], have been written to further this program. Jasper Weinhart-

Burd developed a Thompson-like group for the Julia set of the post-critically finite quadratic

rational function with both critical points in the same three cycle, and Will Smith developed a

Thompson-like group for the function z2 + i.

Belk and Forrest’s subsequent paper, [5], acts as a more general intermediate step towards

the goal of associating a Thompson-like group to every quadratic polynomial. In it, they de-

fine rearrangement groups of fractals, which are a generalization of Thompson’s groups. The

construction works by approximating each fractal with a sequence of finite graphs, called the

expansion sequence, such that the fractal is homeomorphic to the limit space. The sequence
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is given by the first graph of the sequence, the base graph, and graph rewriting rules called

replacement rules. Each graph in the sequence is constructed by applying the replacement

rules to the previous graph. Each element of the rearrangement group associated to a given

fractal acts as as a piecewise homeomorphism of one of the graphs in the expansion sequence.

Now to associate a rearrangment group to an arbitrary polynomial, we need some way of

finding the expansion sequence that has a limit space that is homeomorphic the correct Julia set.

The essential information about the structure and dynamics of a post-critically finite polynomial

is captured by a certain tree connecting the post-critical points within the Julia set, called

the Hubbard tree. This construction is described in [7]. Belk and Forrest have developed

an unpublished algorithm to obtain a base graph and replacement rules starting with just the

Hubbard tree, which they conjecture gives a limit space that is homeomorphic to the starting

Julia set. In chapter 2 we give a proof of this conjecture for the Airplane Julia set, the Julia set

for the quadratic polynomial with a critical point that is in a three-cycle where all three points

are on the real line.

Additionally, in chapter 3 we present finite state automata that give some progress towards

how one might go about defining rearrangement groups for matings, which are rational functions

that can be constructed from two quadratic polynomials.
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Background

1.1 Introduction to Dynamical Systems

Most of the material of this section is taken from [1]. The theory of dynamical systems is the

study of how physical systems evolve over time. It has its origins in Newton’s study of planetary

motions, and has since found applications in virtually every scientific field. Mathematically,

a dynamical system refers to a set of possible states, together with a rule that determines the

present state in terms of past states [??]. For example, population models in biology are generally

modeled as dynamical systems, such that a state corresponds to a population size, and the rule

is something like f(x) = 2x (if the population size doubles each generation).

Until the second half of the 20th century, scientists were generally under the impression a

dynamical system starting from an initial state will eventually settle down into a steady state or

end up oscillating among a subset of possible states, like the motion of the planets. In the 1970s,

a third option came to the world’s attention: ”chaos”. In Maxwell’s investigation of gas laws,

he showed that if two particles with random positions and equal but opposite velocities collide,

then all direction of travels will be equally likely after the collision. This behavior is distinct

from that of systems that simply have quasi-periodic behavior with a large number of periods,

in that chaotic systems exhibit sensitive dependence on initial conditions, meaning that
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Figure 1.1.1. The Mandelbrot Set

an arbitrarily small change of the initial state will have large, essentially unpredictable affects

on the long term behavior of the system.

The introduction of ”chaos”1 into the vernacular of dynamical systems theorists coincided with

the introduction of computer visualization to the field. Edward Lorenz, the meteorologist who

gave the famous talk ”Predictability: does the flap of a butterfly’s wing in Brazil set off a tornado

in Texas?” , in the same talk presented a computer graphic of a strange attractor, a subset

of states the dynamical system tends to and in which the system behaves chaotically. 2 Strange

attractors have fractal structures, meaning that they exhibit self similarity at increasingly small

scales.

One of the most well known mathematical structures in the popular consciousness is the

Mandelbrot set, a fractal first visualized by Benoit Mandelbrot on an IBM computer in 1980.

The Mandelbrot set is the set of c values for which the critical point of the function z2 + c does

not diverge, and so in this sense it indexes the set of complex quadratic polynomials, which will

be the objects of focus in this project.

1The term ”chaos theory” was coined by James Yorke, one of the authors of [1]
2The existence of the Lorenz attractor would not be proved analytically until the year 2000.
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Figure 1.2.1. The Basilica Julia set

1.2 Dynamics on the Complex Plane

We begin by presenting some basic definitions from complex dynamics, taken from [3].

Definition 1.2.1. The orbit of a point p on the complex plane under a function f : C → C

refers to the set

{p, f(p), f(f(p)), f(f(f(p))), . . . }.

The filled Julia set of f is the set of points that have a bounded orbit.

Example 1.2.2. Let f = z2. The orbits of points under iteration of f include:

{i,−1, 1, 1, . . . }, {1

2
,
1

4
,
1

8
, . . . }, {2i,−4, 16, 256, . . . }

It general, if |p| ≤ 1, then the orbit of p is bounded, and if |p| > 1, then the orbit of p is

unbounded. Thus the filled Julia set of z2 is the closed unit disc.

Definition 1.2.3. The Julia set of a polynomial is defined as the boundary of the closed Julia

set. (Equivalently, it is the closure of the set of repelling periodic points.)

1.3 Hubbard Trees

Most of the material in this section is taken from [7], and many of the pictures are from Belk.
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Figure 1.2.2. The Douady Rabbit Julia set

Figure 1.2.3. z2 + i
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Recall that a critical point of a polynomial f is a point z such that f ′(z) = 0. If a point p

is in the orbit of a critical point, we call p a postcritical point. If f has a finite number of

postcritical points, we say that f is postcritically finite. In other words,

Definition 1.3.1. A polynomial function p is postcritically finite if every critical point of p

is periodic or pre-periodic.

In this project we will only be concerned with post-critically finite polynomials. The Julia

sets and filled Julia sets of post-critically finite polynomials are compact, connected, locally

connected. Moreover, there is a simple criterion for when the Julia set has interior.

Theorem 1.3.2. Let f be a postcritically finite polynomial. If f has no periodic critical points,

then the Julia set has empty interior. If f has at least one periodic critical point, then the interior

is non-empty.

When the interior of f is empty, then the Julia set is called a dendrite. One example is the

Julia set for z2 + i. When the interior of f is nonempty, then the interior of the Julia set is the

union of all points whose orbits converge to a cycle containing a critical point. Properties of

interior components are summarized in the following theorem:

Theorem 1.3.3. Suppose f is postcritically finite and has Julia set Kf with non-empty interior.

Then:

1. Each interior component of Kf is homeomorphic to an open disk.

2. If U is an interior component of Kf , then so is f(U). If U does not contain a critical

point, then f maps U homeomorphically to f(U).

3. For each interior component U ⊂ Kf , there exists a unique point p ∈ U whose forward

orbit a periodic critical point. We call p ∈ U the center point of U .

Definition 1.3.4. Let Kf be a Julia set with interior, and let U be an interior component of

Kf . Then there is a family of Riemann maps φ : D2 → U that maps 0 to the center point of U .
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The internal rays of U are the images of radial lines under the Riemann maps. Note that the

definition does not depend on which map you choose.

Example 1.3.5. Some internal rays of the Basilica.

Definition 1.3.6. An arc A ⊂ Kf is regulated if for each interior component U of Kf , A
⋂
U

is contained in at most two internal rays of U .

Theorem 1.3.7. Let Kf be the filled Julia set of a post-critically finite polynomial. For any two

points p and q in Kf , there is a unique regulated arc with p and q as endpoints.

Definition 1.3.8. Let Kf be a filled Julia set. The restricted hull of a set of points P ∈ Kf

is the union of all regulated arcs with endpoints in P .

Example 1.3.9. The restricted hull for some points in the Basilica.
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Definition 1.3.10. Let f be a post-critically finite polynomial. The Hubbard tree Hf is the

restricted hull of the postcritical points of f .

Example 1.3.11. The Basilica together with its Hubbard tree (the regulated hull of 0 and −1).

We will remember on a Hubbard tree H the following information:

Definition 1.3.12. Let H be the Hubbard tree of a post-critically finite quadratic polynomial

f . We will remember on H the structure given by a set of data called the primary structure,

consisting of:

1. the topology

2. the cyclic order of the branches at branch points

3. the set P of post-critical points
⋃
n≥0 f

◦n(0)

4. the dynamics on P , i.e. f|P : P → P .

5. The degree of elements of P under the mapping f (i.e. 0 has degree 2 and all other post-

critical points have degree 1)

Theorem 1.3.13 (Corollary 6.2 of the Orsay notes). Let f : z 7→ z2 + c1 and g : z 7→ z2 + c2

be two quadratic polynomials. If there exists a homeomorphism from Hf to Hg preserving the

primary structure, then we have c1 = c2.

Thus quardratic polynomials are uniquely determined by the primary structure of their Hub-

bard trees.
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1.4 Replacement Systems

Using graph replacement systems, we can recover the topology of a Julia set from the combi-

natorial information given by the Hubbard tree. Informally, a graph replacement system can be

thought of an algorithm to ”draw” a sequence of representations of fractals that have increasing

levels of accuracy. We start by drawing a base graph. Given an graph Gn in the graph replace-

ment sequence, we obtain Gn+1 by replacing edges of Gn with other graphs, adding ”detail” to

the representation. This is formalized in the following definition:

Definition 1.4.1. An (edge) replacement rule is a pair of the form e→ R, where

1. e is a single edge with two vertices, with one marked as the initial vertex and the other

marked as the terminal vertex, and

2. R is a finite directed graph with two distinct vertices marked as the initial vertex and the

terminal vertex.

Given a directed graph G and a replacement rule e→ R, we can expand any edge ε of G by

removing ε and pasting in a copy of R, such that the initial vertex of R is attached to the initial

vertex of ε and the terminal vertex of R is attached to the terminal vertex of ε.

Definition 1.4.2. A colored graph replacement system R consists of the following data:

1. A finite set of colors C.

2. A base graph G0, which is a finite directed graph with all edges colored by elements of C.

3. For every c ∈ C, a directed graph Rc with two distinguished vertices (the initial vertex

and the terminal vertex).

From the initial data, we construct a sequence of directed graphs called the expansion se-

quence:

Definition 1.4.3. Given a colored replacement system R, the full expansion of the base graph

G0 is the graph G1 obtained by expanding each edge ε of G0 with a replacement rule e → Rc,
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such that c is the color of ε.

Iterating this process gives us the full expansion sequence {Gn}∞n=0, where Gn is the full expan-

sion of Gn−1 for every n.

Note that each edge of every graph Gn of the expansion can be written as a finite sequence of

edges

ε0ε1ε2 . . . εn

where ε0 is an edge of the base graph and if εk has color c then εk+1 is an edge of Rc.

The graphs in the replacement sequence converge to the limit space, which we will define as

a quotient of an infinite product of edges.

Example 1.4.4. The replacement system for the Vicsek snowflake, along with some graphs

from its expansion sequence.

T

L R

B

��

0

1

3
4 2

Figure 6: The Vicsek replacement system.

We shall refer to elements of the union
�
�

n�0 V �Gn� as gluing vertices for the
replacement system R. A point ε0ε1ε2 � � � � Ω represents a gluing vertex v if
the edge ε0 � � � εn in Gn is incident on v for all sufficiently large n.

We will prove in Proposition 1.22 that two distinct points in Ω are identified
under the gluing relation if and only if they represent the same gluing vertex.
Moreover, the function that maps each gluing vertex to the corresponding point
in X is an injection. From now on, we will identify each gluing vertex with its
image in X. Thus ε0ε1ε2 � � � represents a gluing vertex v if and only if ε0ε1ε2 � � �
maps to v under the quotient map Ω � X.

We now introduce our second main example of a replacement system and
the corresponding limit space.

Example 1.12 (The Vicsek Fractal). Consider the replacement system shown
in Figure 6. The first few graphs in the full expansion sequence for this replace-
ment system are shown in Figure 7.

The symbol space for this fractal is Ω � �T, L,R,B� � �0, 1, 2, 3, 4��. The
limit space is the compact Hausdorff space shown in Figure 1(b), which is known
as the Vicsek fractal. The gluing relation � on Ω is given by

e03 � e13 and e10 � e20 � e30 � e40

for every edge e � ε0 � � � εn in Gn, and also T0 � L0 � R0 � B0.

G1 G2 G3

Figure 7: Three graphs from the full expansion sequence for the Vicsek replace-
ment system. To improve readability, we have removed the arrowheads from G2

and G3, and we have removed the vertex dots from G3.
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Definition 1.4.5. Let R be a colored replacement system. The symbol space Ω of R is the

space of infinite sequences

ε0ε1ε2ε3 . . .
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where ε0 is an edge of the base graph and if εk has color c then εk+1 is an edge of Rc. Alternatively,

it is the space of infinite sequences with the property that every finite sub-sequence ε0 . . . εn is

an edge in some graph Gn of the expansion sequence.

Definition 1.4.6. The gluing relation on Ω is the equivalence relation ∼ such that two

sequences ε0ε1ε2 . . . and ε′0ε
′
1ε
′
2 . . . are equivalent if for all n the edges ε0ε1 . . . εn and ε′0ε

′
1ε
′
2 . . . ε

′
n

share a vertex in Gn.

The limit space is the quotient Ω/ ∼.

In order for the gluing relation to be an equivalence relation, the following restrictions must

be placed on the replacement system:

Definition 1.4.7. A colored graph replacement system R is said to be expanding if the

following conditions are satisfied:

1. Neither G0 or any of the Rc have any isolated vertices.

2. None of the Rc have an edge connecting the initial and terminal vertices.

3. Each Rc has at least three vertices and two edges.

Theorem 1.4.8. If the colored graph replacement system R is expanding, then the gluing

relation is an equivalence relation and the limit space Ω/ ∼ is compact and metrizable.

Given a polynomial f , we construct a replacement system from the Hubbard tree H. This

construction is due to Belk and Forrest (unpublished).

Definition 1.4.9. The replacement system derived from the post-critically finite polynomial f

is obtained according the following procedure:

Step 1. Compute the Hubbard tree H for f .

Step 2. If T is a tree, then the blow up of T , denoted T , is the graph obtained by replacing

every vertex of T with a counterclockwise directed cycle.

Construct the blow up of H, denoted H. This is the base graph. Step 3. Let H1 be the pre-image

of H under f . Construct the blowup of H1, H1.
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Step 4. Orient the edges of the blowup H. Choose a distinct color for each edge.

Step 5. The branched covering map from H1 → H induces a covering map H1 → H. Use

this covering to lift the orientations and colors of the edges of H to the edges of H1, so that the

covering map preserves orientations and colors.

Step 6. The set obtained by cutting H at F is the disjoing union of the closures of the

connected components of H\F . Since every vertex of H is a vertex of H1, removing the vertices of

H from H and H1 cuts them into corresponding pairs of components, which are the replacement

rules.

Example 1.4.10. Using Definition 1.4.9, we compute a replacement system for the Basilica.

Step 1: The Basilica Hubbard tree:

Step 2: The blow-up of the Hubbard tree

Step 3: The pre-image of the Basilica Hubbard tree, and the blow up:

Step 5: The edges are already oriented, and the edge labels are the colors.

Step 6: We obtain the following replacement rules:
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Note that the subscripts are necessary in the first replacement rule to differentiate between

the two edges labeled with c.

In general, the gluing relation we originally defined is not an equivalence relation on replace-

ment systems obtained from the above procedures. The following definition for the gluing relation

turns out to be an equivalence relation for this class of replacement systems, even though they

are not necessarily expanding:

Definition 1.4.11. The gluing relation for replacement systems obtained from Julia sets is

the relation ∼ such that two edge addresses ε0ε1ε2 . . . and ε′0ε
′
1ε
′
2 . . . are related if there is a

finite upper bound on the distance between ε0ε1ε2 . . . εn and ε′0ε
′
1ε
′
2 . . . ε

′
n for all n.

We can make the following simplifications to the replacement system.

Step 1: If for any replacement rule e → Rc, Rc is a single edge with color c′ (where c 6= c′),

recolor every edge in the replacement system that was colored with c with c′ instead.

Step 2: Once all the redundant colors from Step 1 are removed, if there are trivial replacements

where Rc is a single edge with color c, then contract all edges colored with c.

Lemma 1.4.12. For any replacement system obtained from a Julia set according to Definition

1.4.9, procedure outlined in Step 1 and Step 2 above gives an expanding replacement system with

limit space homeomorphic to the limit space of the original replacement system.

1.5 Laminations

The material in this section is adapted from [9] and [2]. A more topological perspective on Julia

sets is to study them as quotients of a circle. This idea was introduced by Thurston. Suppose we
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have a monic polynomial p with degree d ≥ 2, such that its Julia set Kp is connected3. The trick

is to study the dynamics on the Julia set by associating points of the Julia set with points on

S1, the unit circle a way such that the map conjugates the dynamics of p on Kp to to zd on S1.

This map is known as the Carathéodory loop, and in general it is defined as the extension of

a Riemann map from the open disc to the interior of Kp. The existence of such a Riemann map

follows from the Riemann mapping theorem:

Theorem 1.5.1. If U is a non-empty simply connected open subset of the complex plane that

is not all of C, then there exists a biholomorphic mapping from U onto the open disc, known as

a Riemann mapping.

Then since the complement of Kp is locally connected, Carathéodory’s theorem lets us extend

the inverse of the Riemann map onto the boundary of the disc. This extension maps the unit

circle to Kp.

Theorem 1.5.2. Let f be a Riemann map from an open subset U to the open disc D2, and let

g = f−1. The map g extends to a continuous map ḡ defined on the closed disc D̄2 if and only if

the complement S2 − U is locally connected.

Now let’s suppose we have a Carathéodory loop σ that maps the unit circle to Ū , where Ū

is the boundary of some open subset U . Unless Ū is topologically equivalent to the unit circle,

σ will not be injective, and some points in the unit circle will be identified with one another

under the mapping. It turns out that the structure of the set of identifications cannot be too

complicated - if x and y are two points in Ū , then the convex hull of the preimages of x is

disjoint from the convex hull of the preimages of y. Given this fact, it is convenient to draw a

picture of the identifications by drawing the convex hulls (called leaves) of each pair of points

that get identified under the mapping σ. The set of leaves is called the lamination.

3Recall that Kp is connected if and only if the forward orbits of the critical points (aside from infinity) are bounded.
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If the Carthéodory loop mapping R/Z to Kp maps α to a point z ∈ Kp, then we say that α

is an external ray that lands at Kp.

If a point in Kp has two external angles α1 and α2, then we stipulate that there is a leaf in the

lamination connecting eiα1 and eiα2 . If a point in Kp has more than two external angles, then we

draw leaves connecting points on the circle that correspond to adjacent angles, so that all exter-

nal angles corresponding to the point are the vertices of a single polygonal gap in the lamination.

From the lamination, we obtain a model of the Julia set as a quotient of the circle by identifying

points that are connected by leaves. This is called the pinched disc model of the Julia set.

Example 1.5.3. Below we have a picture of the Basilica with external rays marked, as well as

a lamination for the pinched disc model of the Basilica.

0

1/24

1/12

1/81/65/241/47/241/33/8

5/12

11/24

1/2

13/24

7/12

5/8 2/3 17/24 3/4 19/24 5/6 7/8

11/12

23/24
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1/24

1/12

1/6
5/247/24

1/3

5/12

11/24

13/24

7/12

2/3
17/24 19/24

5/6

11/12

23/24

A natural question to ask is which quotients of the circle can be realized by Julia sets. Thurston

approached this problem by first defining laminations more abstractly as disjoint sets of chords

on the unit disc, and then classifying the set of laminations that are forwards and backwards

invariant under the function z 7→ z2. The definitions and results below are from Thurston’s

manuscript on invariant laminations:

Definition 1.5.4. A geodesic lamination L is a closed set of chords, called leaves, on the

closed unit disc D2 that are disjoint, except possibly at the endpoints.

A gap of a lamination is the closure of a component of the complement of
⋃
L. Any gap is the

convex hull of its intersection with a boundary of the disc.

Definition 1.5.5. A geodesic lamination L is quadratic invariant, i.e. invariant under the

map f(z) = z2, if it satisfies the following conditions:

1. Forward invariance: If a leaf pq is in L, then either f(p) = f(q) or f(p)f(q) is a leaf in L.

2. Backwards invariance: If pq is a leaf in L, then there are two disjoint leaves connecting a

preimage of p with a preimage of q.
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3. Gap invariance: For any gap G, the convex hull of G
⋂
S1 is either

(a) a gap,

(b) a leaf,

(c) or a single point

If the image of G is a gap, then the image of a point moving clockwise around G must move

clockwise around the image of G. In other words, the boundary of G must map locally

monotonically to the boundary of the image gap with positive orientation.

Definition 1.5.6. If the two endpoints of a leaf map to the same point, then that leaf is a

critical leaf. If the degree of the map from a gap to its image gap is not 1, then that gap is a

critical gap

Definition 1.5.7. The length of a leaf in a lamination is the length of the smaller arc between

the two endpoints on the circle. The perimeter of the circle is defined to have length 1, so the

length of a leaf is at most 1/2, and a leaf with length 1/2 is a critical leaf.

The following definitions are from Definition II.6.2 of Thurston’s manuscript.

Definition 1.5.8. Let L be a quadratic invariant lamination, and let M be the longest length

of a leaf of L. Unless M = 1/2, there are two leafs with length M . We will call any leaf of length

M a major leaf. If there are two major leaves, then their images coincide. We will call the image

of a major leaf the minor leaf of the lamination.

The following is from Definition II.6.3 of Thurston’s manuscript.

Definition 1.5.9. A lamination is clean if no three leaves have a common endpoint.

The following theorem is part (a) of Proposition II.6.7 of Thurston.

Theorem 1.5.10. Any invariant lamination which is clean is the minimal lamination with its

given minor leaf.

Corollary 1.5.11. If a clean invariant lamination has the same minor leaf as the lamination

that gives the pinched disc model of a Julia set, then the two laminations are the same.
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Bandt and Keller take a more abstract view of the pinched disc model, defining it more directly

as an equivalence relation on the circle, given by identifying itineraries of points on the circle

under the angle doubling map. The notation is summarized in the following definition:

Definition 1.5.12. T = R/Z is the unit circle, and h : β 7→ (2β mod 1) is the angle doubling

map.

Fix α ∈ T . The diameter (critical leaf) (α2 ,
α+1

2 ) divides T into the open semi-circles Tα1 and Tα0

such that α ∈ Tα1 .

Definition 1.5.13. An equivalence relation on {0, 1}∗ is forward invariant under the shift σ if

s ∼ t implies σ(s) ∼ σ(t).

Theorem 1.5.14. Let α be a periodic angle. Among all forward invariant equivalence relations

on T that do not identify Tα0 with Tα1 , there is a largest lamination ∼α.

Let f be a periodic quadratic polynomial of period p with critical value c and Julia set Jf .

Suppose that the fixed point under fp on the basin containing c has external angle α. Then

(Jf , f) is conjugate to (T/ ∼α, h).

Corollary 1.5.15. Let f be a periodic quadratic polynomial. The lamination of the pinched disc

model for f is the largest clean lamination that does not have a leaf connecting a point from Tα0

to a point from Tα1 . The points α
2 and α+1

2 are each an endpoint of a major leaf.
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2
The Airplane

2.1 The Replacement System

The Airplane is the Julia set of the polynomial z2 + c, where c is the real root of c3 + 2c2 + c+ 1

(which turns out to be around −1.75488).

The critical point is periodic with period three. All three points in the orbit are on the real axis,

and the Hubbard tree is a path.

The pre-image of the Hubbard tree H1 is also a path.
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Below we have the blow-ups of H0 and H1.

We construct H1 by gluing together two copies of H0. Then we use the vertices of H0 to cut H0

and H1 into corresponding pairs of components, and assign addresses to H1 accordingly.

From the cuts we get our first set of replacement rules:
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Our function f maps every edge in H1 to an edge in H. Our second set of replacement rules are

of the form e1 → e2 if e1e2 is an address of H1. The set of possible edge addresses in the symbol

space correspond to paths in the following graph:

There are four gluing vertices on the base graph, which have addresses:

ebe = fac = fad

eeb = cfa = dfa

bee = acf = adf

bebe = dfac = cfad

Note that the replacement system can actually be simplified to just two colors: a and e, making

it into an expanding replacement system.

2.2 The Lamination

The airplane is in the component of the Mandelbrot set that has an external ray of α = 3
7 . We

construct the corresponding lamination Sα0 according to the methods of Bandt and Keller.

The diameter of the circle that maps to α under the angle doubling map has endpoints at 5
7 and

3
14 . This diameter divides the circle T = R/Z into two semicircles T0 and T1, where 0 = 1 is in

T1. The itinerary of a point β ∈ T with respect to α is defined as
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I(β) = s1s2s3 . . . with si =


0 hi−1(β) ∈ T0

1 hi−1(β) ∈ T1

∗ h−1(β) ∈ { 3
14 ,

5
7}

Note that our α is periodic with period three, where h(α) = 6
7 and h2(α) = 5

7 . Our kneading

sequence, which is the itinerary of α, is 01∗. The characteristic symbol of α is 1, so we consider

the pre-image of α which is periodic to be in T1 and the pre-image of α which is pre-periodic to

be in T0. I.e., 5
7 ∈ T1 and 3

14 ∈ T0.

Now all points of T have 01 itineraries. Now we say that two 01 sequences β and γ are equivalent

if and only if either I(β) = I(γ), or {I(β), I(γ)} = {w101001, w001101} for any 01 word w, or

{I(β), I(γ)} = {w001, w101} for any 01 word w that does not end in 001 or 101.

Below is the lamination of the airplane, L:
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The minor leaf m of the airplane is the leaf connecting 3/7 and 4/7, and the major leaves are

(2/7, 5/7) and (3/14, 11/14).

Let L0 be the lamination containing the major leaves and all forward images of the major

leaves. L0 is shown below.

-

Note that from Thurston, we know that the airplane lamination has the property that any

other lamination having minor leaf (3/7, 4/7) contains the airplane lamination. From Bandt and
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Keller, we know that the airplane lamination is the largest forward invariant lamination that

does not have a leaf connecting a point of T0 with a point ofT1.

Thus to check that a lamination is equal to the airplane lamination, it is enough to check that

the lamination is invariant, has minor leaf (3/7, 4/7), and does not identify a point of T0 with a

point of T1.

Here are some observations that are helpful in determining whether or not a lamination has

minor leaf (3/7, 4/7). If a leaf is in a three-cycle, there are only three possibilities for what the

three cycle looks like. Those possibilities are shown below:

0/1

1/7

2/7

3/7

4/7

5/7

6/7

0/1

1/7

2/7

3/7

4/7

5/7

6/7

0/1

1/7

2/7

3/7

4/7

5/7

6/7
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Definition 2.2.1. Notice that the cycle containing the leaf (3/7, 4/7) is the only three cycle

with disjoint leaves. Call the forward invariant lamination consisting of the three leaves in this

cycle LF .

2.3 Laminations of the Replacement System

Next, we construct a sequence of laminations that give the graphs of the expansion sequence

defined in the previous section.

Definition 2.3.1. Let L0 be the following lamination. We also show the base graph H of the

airplane replacement system again for reference:

-

It will be important for us to distinguish between the lamination L0 on S1 and the graph

consisting of an edge for each labeled arc on S1 in L0, where two edges are adjacent if the

corresponding arcs are adjacent on S1. Clearly this graph is homeomorphic to a circle. We will

call it C0.

L0 is exactly the set of leaves that identifies each point on the closure of er or br with its

conjugate on el or bl. H0 is homeomorphic to the quotient of the circle obtained by the points

connected by the leaves.

C0 is the boundary of the external face of H.

Similarly, the preimage of the base graph, H1, is given by identifying endpoints of leaves the

lamination L1 shown below. Note that the degree 2 covering map from H1 to H extends to

a degree 2 covering map from C1, the boundary of the external face of H1, to C0. That map
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extends to a degree 2 covering map from L1 to L0. The labels in the below figure correspond to

the labels that each arc maps to under the map.

-

Lemma 2.3.2. L0 contains LF .

Proof. From Definition 1.4.9, we know that the map from f H1 to H extends to a covering map

f̂ from H1 to H. Thus f̂ maps the vertices of H1 to the vertices of H. We can restrict the map

to the vertices of H. Since f was an extension of f , it must map the two vertices that are the

endpoints of c and d to the vertex on f , the vertex on f to the vertex on a, and the vertex on

a to one of the endpoints of c and d. Each one of these vertices is an endpoint of e or b, and

thus corresponds a leaf of the lamination L0 (marked in blue in the image). Also note that all

the leaves of L0 are disjoint. Thus this three-cycle must be LF .

Definition 2.3.3. We define the following replacement system (which we will refer to as the

circle replacement system:

Step 1: Let C0 from Definition 2.3.1 be the base graph.

Step 2: As we do with Julia sets in 1.4.9, use the vertices of C0 to partition C1 into paths. The

corresponding pairs of components (where each component in C0 is an edge and each component

in C1 is an edge or a path) are the replacement rules.
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The limit space of this replacement system is homeomorphic to a circle, and we will refer to

it as the circle limit space, C∞.

We would like to define an equivalence relation ∼C on the circle limit space such that C∞/ ∼C

is homeomorphic to the limit space of the airplane replacement system.

Definition 2.3.4. For each finite expansion graph Cn, there is a surjection σn from the set of

edge addresses of Cn to the set of edge addresses graph Gn of the airplane expansion sequence,

such that two edge addresses map to the same edge addresses if they are equal if you drop all

subscripts from edge labels in the edge addresses.

Similarly, we can define σ∞, such if s is an edge address of C∞, σ(s) = t t is the sequence

obtained by removing the subscripts from any letter of s with a subscript.

This gives us an equivalence relation ∼C such that two edge labels are equivalent if they are

the same edge label, and additionally,

er ∼C el and br ∼C bl.

Two edge addresses ε1ε2 . . . and ε′1ε
′
2 . . . are equivalent under ∼C if εk ∼C ε′k for all k ∈ N.

In other words, two edge addresses are equivalent if they map to the same point under σ.

We state the following proposition without proof:

Proposition 2.3.5. The shift map on edge addresses of the circle limit space is a degree 2

covering map on the circle. Furthermore, it is conjugate to the angle doubling map z 7→ z2.

Definition 2.3.6. L∞ be the lamination such that two points are connected by a leaf if is

the image under the conjugation from the previous proposition of two points of C∞ that are

equivalent by ∼C .

Lemma 2.3.7. All leaves of L∞ are disjoint.

Proof. First we want to show that no two leaves cross within the disc. This is equivalent to

the statement that if a and b are two edge addresses of C∞ such that there are two other edge

addresses a′, b′, a ∼C a′ and b ∼C b′, a and a′ are on the same arc connecting b and b′. This
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is true in the base graph C0, and the expansion rules preserve this property, thus it is true for

all Cn by induction. Since the limit space is a Hausdorff space, we can find 4 disjoint cells that

contain a, b, a′, and b′, so it is enough to prove the statement for the finite expansions.

If two points are connected by a leaf, then they are in the same equivalence class under the

relation ∼C . Each equivalence class of points on the circle limit space under the equivalence

relation from contains at most two points. Thus if two leaves share at least one endpoint, they

must be the same leaf.

Lemma 2.3.8. LF is a subset of L∞.

Proof. Under σ0 from Definition 2.2.4, the endpoints of each leaf in Lf map to vertices of G0

which in the limit space can be represented by an edge addresses containing only e and b. Thus in

G∞, the vertices in a three cycle must have two pre-images under σ∞, and they must correspond

to leaves.

Lemma 2.3.9. L∞ contains all pre-images of the leaves in LF .

Proof. Each edge address in the symbol space of G∞ has two preimages (see the graph of edge

addresses in Section 1 of this chapter). If an point in G∞ has two preimages under σ∞, then its

pre-image also has two preimages under σ∞.

Lemma 2.3.10. L∞ is closed.

Proof. Since the endpoints of e and b correspond to leaves, for each Ln, Ln is closed in the disc

and D/Ln is open in the disc. The complement of L∞ is the set in S1 × S1 for which a leaf

connecting the two coordinates would cross some preimage of the critical leaf. This is an open

set, so L∞ is a closed lamination.

Lemma 2.3.11. L∞ does not identify a point of T
3/7
0 with a point of T

3/7
1 .

Proof. We know that C0 does not identify any points of T 3
0 /7 with T

3/7
1 , since we have a complete

description of the identifications.Thus we can partition C0 into T
3/7
0 and T

3/7
1 . Now note that
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the expansion rules of the circle replacement system preserve the property in the statement of

the lemma.

Lemma 2.3.12. L∞ has minor leaf (3/7, 4/7).

Proof. L∞ contains the two pre-images of (3/7, 4//7), and does not identify a point of T
3/7
0 with

a point of T
3/7
1 . Thus the two preimages must be the major leaves.

Theorem 2.3.13. G∞ is homeomorphic to the airplane.

Proof. Claim: The lamination L∞ is the lamination for the pinched disc model of the airplane.

The lamination for the airplane is the closure of the union of the set of pre-images of LF . We’ve

proven that L∞ contains that union and L∞ is closed, so it must contain the airplane lamination.

The airplane lamination is the largest clean lamination that does not have leaves that connect

points from T
3/7
0 points from T

3/7
1 , so it must contain L∞.

2.4 The Correspondence

We define a map σ from the set of edge labels to {0, 1} by by

σ(a) = σ(b) = σ(d) = 0

σ(c) = σ(e) = σ(c) = 1

This extends to a map from the set of address in the symbol space to {0, 1}∞ where for

x1x2x3 · · · ∈ Ω

σ(x1x2x3 . . . ) = σ(x1)σ(x2)σ(x3) . . .

Note that the gluing vertex [ebe] maps to α.
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3
Polynomial Matings

3.1 Background

Quadratic rational functions are functions of the form p(x)/q(x), where p(x) and q(x) have

degrees of at most 2 and at least one has degree 2. Rational functions act on the Riemann

sphere Ĉ, which can be thought of as the complex plane together with a point at infinity.

In general the structure of Julia sets of rational functions are not well understood. However,

when a post-critically finite rational map has two critical points and the two critical points are

attracted to disjoint cycles, the dynamics of the rational map can be understood as the dynamics

of two post-critically finite polynomials combined in a specific way, and the rational map is then

called the mating of the two polynomials.

Definition 3.1.1. Let f, g be two post-critically finite quadratic polynomials with pinched disc

models given by laminations Lf and Lg.

Let ∼lam be the smallest equivalence relation on S1 such that two points p and q are identified

if they are connected by a leaf in Lf or 1− p and 1− q are connected by a leaf in Lg.

If the quotient S1/ ∼lam is a topological two sphere then we say that f and g are topologically

matable, and the action of the angle doubling map on Lf and Lg extends to a map on the

quotient, which we call the topological mating.
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Figure 3.1.1. A Julia set of a quadratic rational function on the Riemann sphere.

If there is a orientation preserving homeomorphism that conjugates the topological mating to a

quadratic rational function R on Ĉ, then we say that f and g are geometrically matable and

R is the geometric mating of f and g.

The original intuition for a mating comes from thinking of putting one Julia set on the top

hemisphere of the sphere and putting one Julia set on the bottom, and then stretching both

towards the equator. This is why the definition of ∼lam identifies p and q if 1− p and 1− q are

identified in Lg. When we attach the two laminations, Lg is in a sense ”upside down”.

Matings of quadratic polynomials are well-understood by the following theorem:

Theorem 3.1.2. Suppose f and g are post-critically finite quadratic polynomials. Then the

following are equivalent:

1. f and g are topologically matable.

2. f and g are geometrically matable.
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3. f and g do not lie in conjugate limbs of the Julia set.

Now if we have graph replacement systems for quadratic polynomial Julia sets, its natural to

try to extend the construction to quadratic matings, which would hopefully lead to rearrange-

ment groups on matings. In the following two sections we present, without proof, finite state

automata for the Rabbit Julia set and the Basilica Julia set that describe how the limit spaces

should be attached to give the Julia set of a mating. The finite state automata we present here

were conjectured after extensive experimentation in Mathematica.

3.2 Replacement Systems for the Rabbit and the Basilica

The replacement system for the Basilica is given in the background section on replacement sys-

tems. Here we present the simplified version, as well as the simplified version of the replacement

system for the Rabbit Julia set. The replacement systems given in this section are similar to

ones to the ones in Rearrangement Groups of Fractals. However, we do not do all of the sim-

plifications to get to the ones in that paper, as the ”delay” in the expansions of some edges is

essential information.

Definition 3.2.1. The components of the replacement system for the basilica are given below:

The base graph:

Edges labeled with 1 get replaced with the first graph below, and edges labeled with 2 get

replaced with an edge labeled with 1:

Definition 3.2.2. The components of the replacement system for the rabbit are given below:



36 3. POLYNOMIAL MATINGS

The base graph:

Edges labeled with 1 get replaced with the first graph below, edges labeled with 2 get replaced

with an edge labeled with 1, and edges labeled with 3 get replaced with edges labeled with 2:

3.3 Mating of the Rabbit and the Basilica

The goal of this section is to present a relation from the set of points in the Basilica limit space

to the set of points in the Rabbit limit space, in a way such that gluing together the two limit

spaces at points that are related gives the Julia set of the topological mating of the Rabbit and

the Basilica, and the shift map on the glued together limit spaces is conjugate to the action of

the topological mating on its Julia set.

Below are two pictures of the mating of the Basilica and the Rabbit. In the first one the critical

point in the two cycle is 0, and the critical point in the three cycle is ∞, and in the second one

the critical point in the three cycle is ∞ and the critical point in the first cycle is 0. We can see

in these pictures that the Julia set of the mating of the Rabbit and the Basilica looks like the

Julia sets for the polynomials stuck together. Indeed, one can construct the mating by gluing

together two laminations such that points with the same binary angle are glued together, and

then identifying points connected by leaves as usual.
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The finite state automata works below as follows. For a pair of edge addresses e1e2e3 . . . and

e′1e
′
2e
′
3 . . . where e1e2e3 . . . represents a point in the Basilica limit space and e′1e

′
2e
′
3 . . . represents
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a point in the Rabbit limit space, the two points of the limit spaces are identified if and only if

(e1, e
′
1), (e2, e

′
2), (e3, e

′
3) . . . is a valid sequence of state transitions in the diagram.

Start

a
b

c

f

g

e

d

(1, 1)

(1, 1)

(2, 2)

(1, 1)

(1, 1)

(21, 2)

(1, 30)

(20, 2)(1, 1)

(2, 1)
(1, 2)

(20, 1)

(1, 3)

(1, 2)

(1, 31)

(1, 2)

(21, 1)

3.4 Mating of Two Rabbits

The automata for the mating of two rabbits works the same as the automata from the section

above.
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Start

b

e

a

d

f

c

(1, 1)

(1, 2)

(2, 2)

(31, 1)

(2, 1)

(30, 1)

(2, 2)

(1, 1)

(3, 1)

(2, 2)

(1, 30)

(2, 30)

(1, 31)

(1, 3)

(2, 1)
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