
Computable Invariants for Quandles

A Senior Project submitted to

The Division of Science, Mathematics, and Computing

of

Bard College

by

Zhiwei Steven Wu

Annandale-on-Hudson, New York

May, 2012

Abstract

This senior project focuses on a collection of algebras that arise in knot theory called quan-
dles. In particular, we study how to distinguish non-isomorphic quandles using different
computational methods. Most of this work is built on The Library for Automated Deduc-
tion Research (LADR). Within LADR, the program isofilter removes the isomorphic
duplicates for a collection of first-order models, but it works very slowly in general. In this
senior project, we propose an augmented algorithm to filter quandles using computable
invariants: we separate a stream of input quandles into different buckets based on the in-
variants; then we apply isofilter to the buckets containing more than one quandles. In
fact, our invariant checking can distinguish most of the isomorphism classes for quandles
up to size 30. It thus improves the quandle filtering process by largely reducing the use of
isofilter.

Contents

Abstract 1

Dedication 5

Acknowledgments 6

1 Introduction 7

2 Quandles 10
2.1 Basic definitions . 10
2.2 Quandle Examples . 12
2.3 Congruence Relations . 16

3 Permutation Signature 18
3.1 Inner Automorphism . 18
3.2 Cycle Structures . 20
3.3 Algorithm to Compute Permutation Signature 22

4 Quandle Terms 25
4.1 Quandle Terms and Identities . 25
4.2 Normal Forms . 26
4.3 Generating Normal Form Identities . 29

5 Filtering Quandles 32
5.1 An Augmented Algorithm to Filter Quandles 32
5.2 Computational Tools . 34

5.2.1 Interpretation format . 34
5.2.2 Isofilter . 35

Contents 3

5.2.3 Clausetester . 36
5.2.4 Filtering Quandles with Prolog . 38

6 Conclusion 41
6.1 Analysis . 41

6.1.1 Minimize the Use of Isofilter . 41
6.1.2 Selecting Identities . 43

6.2 Improvement . 46

7 Appendix A 49

8 Appendix B 51

9 Appendix C 53

Bibliography 55

List of Figures

2.2.1 Right Cayley Graph for T3 . 14
2.2.2 A Triangle and its Bisectors . 15

5.1.1 Filtering Quandles with Invariants . 33

Dedication

To my parents, for supporting me financially, mentally and unconditionally.

Also to William McCune, for his wonderful LADR.

Acknowledgments

First, I would like thank my two advisors James Belk and Robert McGrail for their
guidance in my senior project, academic career and beyond. I also want to thank my
academic advisor Gregory Landweber for the past four years’ support and encouragement
in my study of mathematics, physics and computer science. For all of the understanding,
companionship and inspiration, I would like to thank my friends and mentors:

Anis

Becker

Chu

Dev

E. Fiorini

Feifan

Gu

H. Lin

J. Goh

Larson

Maria Belk

Pencil

S -Y. Lee

von Stengel

Xu× 2

Yen

Zana

1
Introduction

This senior project is motivated by previous work on quandles in The Laboratory for Alge-

braic and Symbolic Computation. We have been investigating the constraint satisfaction

problem (CSP) over finite quandles. The relationship between the CSP and finite algebras

allows us to assign to each finite algebra some subclass of NP. It was discovered that dis-

connected quandles are NP-complete, and hence classified [2]. Therefore, we can assume

quandles are connected without loss of generality. In order to study connected quandles

extensively, we need to be able to distinguish different isomorphism classes.

Within The Library for Automated Deduction Research (LADR), the program

isofilter is a tool for removing duplicates (up to isomorphism) from a collection of

first-order models, but it is very slow even for small collection of small-sized quandles.

In order to assist isofilter to distinguish different quandle isomorphism classes, it is

necessary to find invariants that can separate a stream of quandles into different buckets,

where distinct buckets cannot have isomorphic quandles. We would gain a better run-time

performance if we only apply isofilter to smaller buckets instead of the entire list of

input quandles.

1. INTRODUCTION 8

Connected quandles are well-behaved because we can associate each isomorphism class

with a cycle structure. With this cycle structure as an invariant, we are able to distinguish

some of the isomorphism classes. However, this invariant is not strong enough for our

purposes, so we need to look for new invariants. Researchers have been studying various

quandle invariants, and in this paper we introduce quandle identities as invariants. The

idea of using such invariants is very simple: we generate a set of identities and test to see

which identities each quandle satisfies. Since isomorphic quandles satisfy the same iden-

tities, we can separate two quandles in different buckets if they satisfy different subset of

identities. This procedure can be nicely implemented with another program clausetester

in LADR. With the aid of these invariants, we implemented an augmented quandle fil-

tering algorithm by incorporating isofilter, clausetester, Prolog and GAP4. It turns

out that we can distinguish most of the isomorphism classes for quandles up to size 30

just using our invariants.

This senior project is structured as follows. Chapter 2 gives a brief introduction to

quandles along with important definitions and examples. In Chapter 3, we will formulate

the notion of permutation signature, which is the cycle structure invariant for a quandle

as mentioned. Permutation signature provides a useful tool to distinguish some of the

isomorphism classes, but we will also show its limitations. At the end of this chapter, an

algorithm for computing the permutation signature is included.

In Chapter 4, we will present a new kind of quandle invariants — normal form identities.

We will first define normal form terms using normal form rewriting rules introduced by

Quay-De La Vallee [7], and in turn define normal form identities. We would also talk about

how to generate normal identities and remove equivalent identities using Prolog.

In Chapter 5, we present a new algorithm that integrates our invariants with isofilter.

The implementation details of each computational tool would be included. In the last

chapter, we will analyze the efficiency of this algorithm, and different factors that would

1. INTRODUCTION 9

affect the run-time performance. We also propose some potential improvements to our

quandle filtering algorithm.

2
Quandles

The earliest work on racks is due to the unpublished correspondence during 1959 between

John Conway and Gavin Wraith, who at the time were undergraduate students at the

University of Cambridge. In a 1982 paper[5], David Joyce introduced a special case of

rack called quandle in a context of knot theory. A quandle’s axioms are representations

of the three Reidemeister moves, which makes it a natural source of knot invariants. Over

the past decades, the study of quandles as knot invariants has provided a very useful tool

for knot theory.

2.1 Basic definitions

Definition 2.1.1. A quandle (Q, ∗, /) is a set Q together with two binary operations: ∗

and / : Q×Q → Q satisfying the following axioms:

Idempotence: ∀x(x ∗ x = x)

Right Cancellation: ∀x y((x ∗ y)/y = x)

Right Cancellation: ∀x y((x/y) ∗ y = x)

Right Self-Distributivity: ∀x y z((x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)). �

2. QUANDLES 11

The simplest quandles we can form are the unary quandles.

Example 2.1.2. An unary quandle or a trivial quandle of size n, denoted by Un, is

a quandle such that a ∗ b = a for all a, b ∈ Un. The unary quandle U3 has the following

multiplication table for operation ∗.

* 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2

♦

Since the / operation can be determined by the ∗ operation according to Definition 2.1.1,

we can describe a quandle only using the ∗ multiplication table.

Lemma 2.1.3. A quandle Q also satisfies the following:

1. x/x = x;

2. (x/y) ∗ z = (x ∗ z)/(y ∗ z);

3. (x/y)/z = (x/z)/(y/z);

4. (x ∗ y)/z = (x/z) ∗ (y/z).

Proof. Using the quandle axioms, we have

x/x = ((x ∗ x)/x) = x;

(x/y) ∗ z = (((x/y) ∗ z) ∗ (y ∗ z))/(y ∗ z)

= (((x/y) ∗ y) ∗ z)/(y ∗ z) = (x ∗ z)/(y ∗ z);

(x/y)/z = (((x/z) ∗ z)/((y/z) ∗ z))/z

= (((x/z)/(y/z)) ∗ z)/z = (x/z)/(y/z);

(x ∗ y)/z = (((x ∗ y)/z)/(y/z)) ∗ (y/z)

= (((x ∗ y)/y)/z) ∗ (y/z) = (x/z) ∗ (y/z).

We can see the right self-distributivity also works for any combination of operations.

2. QUANDLES 12

Definition 2.1.4. Let H be a nonempty subset of a quandle Q. Then H is a subquandle

of Q if, under the binary operations on Q, H itself forms a quandle. �

Definition 2.1.5. The direct product of quandles Q1, Q2 . . . Qn is a quandle defined as

Q1 ×Q2 · · · ×Qn = {(q1, q2, . . . , qn) | q1 ∈ Q1, q2 ∈ Q2, . . . , qn ∈ Qn} with the following

binary operations:

(q1, q2, . . . , qn) ∗ (q�1, q�2, . . . , q�n) = (q1 ∗ q�1, q2 ∗ q�2, . . . , qn ∗ q�n)

(q1, q2, . . . , qn)/(q
�
1, q

�
2, . . . , q

�
n) = (q1/q

�
1, q2/q

�
2, . . . , qn/q

�
n).

�

Quandle also has its own definition of “abelian”.

Definition 2.1.6. A quandle Q is medial if (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) for all

a, b, c, d ∈ Q. �

Definition 2.1.7. A quandle Q is involutory if (x ∗ y) ∗ y = x for all x, y ∈ Q. �

Definition 2.1.8. Let Q be a quandle. The right Cayley graph of Q is a graph with

one vertex for each element of Q, and an edge from a to a ∗ b for all a, b ∈ Q. �

Definition 2.1.9. A connected quandle is a quandle with a connected right Cayley

graph. �

This work is primarily concerned with connected quandles.

2.2 Quandle Examples

As shown in Section 2.1, some of the definitions in quandles are analogous to the ones for

groups. We can also define a quandle for each group, and the two binary operations are

associated with conjugations.

2. QUANDLES 13

Example 2.2.1 (Conjugation Quandle). Let G be a group, the conjugation quan-

dle of G, denoted Conj(G), is a quandle (G, ∗, /) with the operations defined as

g ∗ h = h−1gh , g/h = hgh−1. Indeed, each Conj(G) satisfies the quandle axioms in

Definition 2.1.1:

• x ∗ x = x−1 xx = x

• (x ∗ y)/y = y (y−1 x y) y−1 = x

• (x/y) ∗ y = y−1 (y x y−1) y = x

• (x ∗ y) ∗ z = z−1(y−1 x y) z = (z−1 y−1 z) (z−1 x z) (z−1 y z) = (x ∗ z) ∗ (y ∗ z)

♦

Example 2.2.2 (Transposition Quandle). Let Sym(n, 2) denote the set of all transposi-

tions in the symmetric group Sn. The transposition quandle of order n(n−1)
2 , denoted

by Tn, is defined as Conj(Sym(n, 2)). ♦

Example 2.2.3 (Forbidden Group Quandle). Not all quandles are conjugation quan-

dles. Joyce[5] observes that the quandle with the following multiplication table is not a

conjugation quandle.

* 0 1 2
0 0 0 1
1 1 1 0
2 2 2 2

We call this quandle the forbidden group quandle. Joyce[5] also shows that a quandle

Q can be written as Conj(G) for some group G if and only if it does not contain the

forbidden group quandle as a subquandle. ♦

Example 2.2.4 (Tait Quandle). Tait quandle is a quandle of size 3 with its right

Cayley Graph (ignore the loop connecting vertices to themselves) in Figure 2.2.1. And the

multiplication table:

2. QUANDLES 14

Figure 2.2.1. Right Cayley Graph for T3

* 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Tait quandle is used for tricoloring knots, and tricolorability is an invariant among knots.

Notice that Tait quandle is denoted T3 because it is also a transposition quandle.

Example 2.2.5 (Latin Quandle). A quandle Q is Latin if x ∗ y = x ∗ z implies y = z

for all elements in Q. This means the multiplication tables of Latin quandles are Latin

squares because each row and column is a permutation of the quandle elements. In other

words, a Latin quandle is a quandle that satisfies the following Latin condition.

Latin Condition ∀x, y ∈ Q, ∃!z ∈ Q such that x ∗ z = y. ♦

Corollary 2.2.6 (Latin Connectivity Theorem). Every Latin quandle is connected.

Proof. Let x ∈ Q. Since Q is a latin quandle, every other elements in Q can be reached

from x by operating once by some element in Q. Thus, the right Cayley graph of Q has

only one connected component, and hence it is connected.

Example 2.2.7. A dihedral quandle of size n with elements {0, 1 . . . , n− 1}, denoted

Dih(n), is a quandle that satisfies i∗j = 2j−i mod n, where − denotes the usual operation

of modular arithmetic. Similar to the dihedral groups, dihedral quandles also reflect the

symmetries of a regular polygon. The dihedral quandle of size 3 captures the reflections

2. QUANDLES 15

Figure 2.2.2. A Triangle and its Bisectors

among the three angle bisectors in the triangle. For example, in Figure 2.2.2 the reflection

of line 1 about line 2 is line 3, and in the dihedral quandle we have 1 ∗ 2 = 2× 2− 1 ≡ 0

mod 3. ♦

Example 2.2.8. A linear quandle LQ(n,k) is a quandle with elements {0, 1, . . . , n−1}

that satisfies x ∗ y = k(x − y) + y mod n. For example, the quandle LQ(5, 2) has the

following multiplication table:

* 0 1 2 3 4
0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

Both unary quandles and dihedral quandles are linear quandles. In particular

LQ(n, n− 1) ∼= Dih(n) and LQ(n, 1) ∼= Un.

♦

We can generalize the idea of linear quandles to the next type of quandles.

Example 2.2.9. Let (A,+) be an abelian group and t : A → A be an automorphism map.

An Alexander quandle Q = (A, ∗, /) is a quandle with the following operations

• x ∗ y = t(x− y) + y

2. QUANDLES 16

• x/y = t−1(x− y) + y.

In particular, a dihedral quandle is an Alexander quandle induced by a cyclic group. ♦

Theorem 2.2.10. Let Q be a finite Alexander quandle corresponding to an automorphism

t. Q is connected if and only if the map 1− t is also an automorphism.

Proof. Suppose that 1 − t is not an automorphism. Since Q is finite and 1 − t is a map

from Q to Q, we know that 1− t is neither one-to-one nor onto. It follows that the image

of 1− t is a strict subset of Q. Let a, b ∈ Q, we can write

(1− t)a ∗ b = t ((1− t)a− b) + b

= t(1− t)a+ (1− t)b

= (1− t)(ta+ b)

Thus, the element (1− t)a is only connected to elements in the image of 1− t. Also, for an

arbitrary element c ∈ Q, we have b� = c− ta such that (1− t)a ∗ b� = (1− t)c. Therefore,

any two elements in the image of 1 − t is connected, so the image forms a connected

component in the right Cayley graph of Q. Since such a component is a strict subgraph

by assumption, we know that the graph is not connected and Q is not connected.

Suppose 1 − t is an automorphism. Then for any x, z ∈ Q there exists a y ∈ Q such

that (1 − t)y = z − tx such that x ∗ y = t(x − y) + y = tx + (1 − t)y = tx + z − tx = z.

Therefore, Q is a Latin quandle. By Corollary 2.2.6, we know that Q is connected.

2.3 Congruence Relations

Definition 2.3.1. Let ≡ be an equivalence relation on Q. Then ≡ is a congruence

relation on Q if

x ≡ x�, y ≡ y� implies x ∗ y ≡ x� ∗ y�.

�

2. QUANDLES 17

Definition 2.3.2. Given a congruence relation ≡ on a quandle Q, the quotient of Q

modulo the congruence relation ≡ is denoted by Q/≡ and is defined by

Q/≡ = {[x] | x ∈ Q}.

where [x] is the congruence class of x.

�

Example 2.3.3. There are different congruence relations defined on a quandle. The most

obvious congruence relations are two trivial congruence relations on a quandle Q

• a ≡ b for all a, b ∈ Q

• a ≡ b if and only if a = b.

We also have component congruence: a ≡ b if and only if a and b are in the same

connected component. ♦

Corollary 2.3.4. Let C denote the component congruence relation on a quandle Q of size

n. Then we know that Q/C ∼= Un.

Proof. We know that each connected congruence class of Q is a connected component.

Thus, no two elements in Q/C is connected, so Q/C ∼= Un.

Example 2.3.5. Let F be the forbidden group quandle in Example 2.2.3, and C denote

the component congruence relation. From the multiplication table we mentioned above,

we know it has congruence classes A = {0, 1} and B = {2}. Then, F/C has the following

multiplication table:

* A B
A A A
B B B

♦

3
Permutation Signature

In this chapter, we will introduce the notion of permutation signature for connected quan-

dles. Permutation signature can serve as a useful invariant for distinguishing some of the

quandle isomorphism classes.

3.1 Inner Automorphism

Definition 3.1.1. Let Q and Q� be quandles. A quandle homomorphism is a function

rq : Q → Q� such that rq(x ∗ y) = rq(x) ∗ rq(y) and rq(x/y) = rq(x)/rq(y) for all x, y ∈ Q.

A quandle isomorphism is a bijective quandle homomorphism.

A quandle automorphism is a quandle isomorphism from a quandle to itself. The

group of all of Q’s automorphisms is called the automorphism group of Q, denoted

Aut(Q). �

Theorem 3.1.2 (Inner Automorphism Theorem). For any q ∈ Q, the map rq : Q → Q

defined by rq(x) = x ∗ q is an automorphism of the quandle Q.

3. PERMUTATION SIGNATURE 19

Proof. First, we can show that rq is a homomorphism. By right self-distributive law, we

know that

rq(x ∗ y) = (x ∗ y) ∗ q = (x ∗ q) ∗ (y ∗ q) = rq(x) ∗ rq(y)

rq(x/y) = (x/y) ∗ q = (x ∗ q)/(y ∗ q) = rq(x)/rq(y).

Since for each y ∈ Q, we have x = y/q such that rq(x) = (y/q) ∗ q = y, we know that

the map rq is onto. Suppose we have x1, x2 ∈ Q such that rq(x1) = rq(x2). It follows that

x1 ∗ q = x2 ∗ q and by right cancellation law, we have (x1 ∗ q)/q = (x2 ∗ q)/q ⇒ x1 = x2.

Thus, we know that rq is also one-to-one. Therefore, rq is a isomorphism from Q to itself,

so rq is an automorphism.

Definition 3.1.3. An inner automorphism of q in quandle Q, is the automorphism rq

defined in Theorem 3.1.2. The group generated by all inner automorphisms of Q is called

the inner automorphism group of Q, and is denoted by Inn(Q). �

Note that not every element in the inner automorphism group is a right translation.

Definition 3.1.4. The orbit of an element x ∈ Q is {rq(x) ∈ Q | q ∈ Q}, and is denoted

by Orb(x). �

The orbit of x is the set of all possible elements of Q that can be reached by repeatedly

acting on x with other elements of Q in any combination. In other words, y is in the orbit

of x if and only if y = (· · · ((x ∗ q1) ∗ q2) · · · ∗ qn−1) ∗ qn for some q1, q2 . . . , qn ∈ Q.

Corollary 3.1.5. The orbits of a quandle Q are precisely the connected components of

its right Cayley graph. Thus, Q is connected if it has only 1 orbit, in which case Inn(Q)

acts transitively on Q.

3. PERMUTATION SIGNATURE 20

3.2 Cycle Structures

From Definition 3.1.1 we know that each element a in a quandle Q defines an inner

automorphism by right action. In other words, the element a defines a permutation on the

quandle elements of Q, and this property can be reflected in Q’s multiplication table.

Definition 3.2.1. Let σ = c1 c2 . . . cn be a permutation, where c1, c2 . . . cn are disjoint

cycles. Let li be the length of ci for 1 ≤ i ≤ n, and assume that l1 ≤ l2 ≤ l3 . . . ≤ ln. The

cycle structure for σ is the n-tuple vector (l1 l2 . . . ln). �

Example 3.2.2. Consider the linear quandle LQ(5, 2) in Example 2.2.8 with the following

multiplication table:

* 0 1 2 3 4
0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

Note that the first column defines a permutation on the quandle elements: 02413. We

can decompose this permutation into 2 disjoint cycles: (0)(1 2 4 3). We say that the first

column has cycle structure (1 4) based on the length of each cycle. ♦

Theorem 3.2.3. Let Q be a quandle such that Aut(Q) acts transitively on Q. Then all

of the columns in Q have the same cycle structure.

Proof. Let q ∈ Q, rq be the inner automorphism associated with q, and π ∈ Aut(Q).

Then we know that rq, π, and the conjugate π ◦ rq ◦ π−1 are all permutations on the

elements of Q. Then we have

(π ◦ rq ◦ π−1)(x) = π(rq(π
−1(x))) (3.2.1)

= π(π−1(x) ∗ q) (3.2.2)

= x ∗ π(q) = rπ(q)(x) (3.2.3)

3. PERMUTATION SIGNATURE 21

By Proposition 9.20 in Humphreys [4], we know that π ◦ rq ◦ π−1 has the same cycle

structure as rq. Since Aut(Q) is transitive, we know that for every pair of q1, q2 ∈ Q, there

exists some π0 such that π0(q1) = q2. It follows from Equation 3.2.3 that the rq’s have the

same cycle structure for all q ∈ Q.

Furthermore, we know that each column in Q is a permutation of some rq, so all of the

columns have the same cycle structure.

Corollary 3.2.4. All of the columns of a connected quandle have the same cycle structure.

Proof. Let Q be a connected quandle. By Corollary 3.1.5, we know that Inn(Q) acts

transitively on Q. Since Inn(Q) ⊂ Aut(Q), we know that Aut(Q) acts transitively on Q.

By Theorem 3.2.3, we know that all of the columns of Q have the same cycle structure.

With this property of cycle structures, we can define a characteristic for all the connected

quandles and use it as a computational invariant.

Definition 3.2.5. Let Q be a connected quandle. The permutation signature of Q is

the cycle structure of its columns. �

With permutation signature, we can distinguish some of the isomorphism classes among

connected quandles without directly using isofilter.

Example 3.2.6. Recall the dihedral quandles in Example 2.2.7. Dih(5) is another con-

nected quandle of size 5. It has the following multiplication table:

* 0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

The permutation of the first column can be broken down to disjoint cycles (0) (1 4) (2 3),

and thus this quandle has permutation signature (1 2 2). By comparing this with the

3. PERMUTATION SIGNATURE 22

permutation signature (1 4) of LQ(5, 2), we know that Dih(5) and LQ(5, 2) are distinct

although they are both connected quandles of size 5. ♦

However, permutation signature cannot comprehensively distinguish any two connected

quandles of the same size. In the later chapter, we will introduce a stronger invariant.

Example 3.2.7. Another connected quandle of size 5 would be the linear quandle

LQ(5, 3), and it has the following multiplication table:

* 0 1 2 3 4
0 0 3 1 4 2
1 3 1 4 2 0
2 1 4 2 0 3
3 4 2 0 3 1
4 2 0 3 1 4

The first column can be decomposed as a product of two disjoint cycles: (0) and (1 3 4 2), so

this quandle has the same permutation signature as LQ(5, 2) in Example 3.2.2. We would

not be able to distinguish these two isomorphism classes just by permutation signature.

In Example 4.1.6, we will use a different invariant to distinguish these two isomorphism

classes. ♦

3.3 Algorithm to Compute Permutation Signature

Computing the permutation signature for a connected quandle is essentially computing

the cycle structure for its first column. Thus, this algorithm boils down to computing the

cycle structure of a permutation.

Our problem can be rephrased as the following: given an array of the integers containing

{1 . . . n}, how do we get the cycle structure from the ordering? The first procedure we need

to do is to initialize some cycle leader (as the first element in a cycle).

Algorithm 3.3.1.

2: procedure CycleLeader(array[1 . . . n], start)

index ← start � start is the starting array index to search

3. PERMUTATION SIGNATURE 23

4: while index < n and array[index] is already in a cycle do

index ← index+1 � Iterate until we find we find an element not in a cycle yet

6: end while

if index = n then return −1 � Indicate no more cycle

8: else return index � The new index to start a cycle

end if

10: end procedure

After finding cycle leader l, iterating its cycle is just contiguously applying the permu-

tation π on l until we have πk(l) = l. The following algorithm will output a list containing

all such k’s. Notice that we are using another array of the same size Labels to keep track

of whether an element is already contained in a cycle.

Algorithm 3.3.2. procedure CycleStruct(Perm[1 . . . n])

2: Initialize array Labels[1 . . . n] such that it contains all 1’s

Labels[1] ← 0 � The first element always forms a trivial cycle

4: start ← 2, OutList ← an empty list

while (index ← CycleLeader(Perm[], start)) �= −1 do � There is still more cycle

6: count ← 1 � Keep tracks of the current cycle length

next ← Perm[index]

8: Labels[next] ← 0 � Label this element as included in a cycle

while next �= index do � Keep looping the cycle

10: next ← array[next] � Look at the next element in the cycle

Labels[next] ← 0 , count ← count+ 1

12: end while

append count to OutList

14: start ← start+ 1

3. PERMUTATION SIGNATURE 24

end while

16: return OutList

end procedure

This algorithm is essentially telling us how to iterate through the elements {1, 2 . . . n}

based on the permutation array and the label array. We also know that the checking on

these two arrays takes constant time. Thus, this procedure should have complexity Θ(n).

The actual implementation is written in C, and is included in the appendix.

4
Quandle Terms

In this chapter, we will introduce quandle identities as another computable invariant for

quandles.

4.1 Quandle Terms and Identities

Definition 4.1.1. A term of n variables {x1, x2 . . . , xn} for a quandleQ can be recursively

defined as follows

• The expressions x1, x2, . . . xn are terms;

• If t1 and t2 are terms, then t1 ∗ t2 and t1/t2 are both terms.

�

Example 4.1.2. x ∗ y, (x ∗ y) ∗ y, and (x ∗ y)/x are examples of terms for quandles. For

dihedral quandle of size 5, we can translate a quandle term to a term in the cyclic group

of size 5. For example, x ∗ y = 2y − x mod 5 and (x ∗ y) ∗ y = 2x − (2y − x) = 3x − 2y

mod 5.

Moreover, we can view each term of n variables as a map from Q×Q · · ·×Q� �� �
n times

to Q. ♦

4. QUANDLE TERMS 26

In this senior project, I am mostly using terms of two variables although some of the

work can be extended by looking at terms of more variables.

Definition 4.1.3. A quandle identity is an expression of the form t1(x1, x2 . . . xn) =

t2(x1, x2 . . . xn) in which both t1 and t2 are quandle terms. �

Example 4.1.4. Many interesting types of quandles are defined by identities. The medial

quandles introduced in Definition 2.1.6 are defined by the identity (a ∗ b) ∗ (c ∗ d) =

(a ∗ c) ∗ (b ∗ d). The involutory quandles in Definition 2.1.7 are defined by the identity

(x ∗ y) ∗ y = x. Note that this identity can also be written as r2y(x) = x in which ry is

the inner automorphism associated with y. This implies that the permutation for ry only

contains 1-cycles and 2-cycles. ♦

Definition 4.1.5. Let t1 = t2 be an identity and Q be a quandle. We say Q models

t1 = t2 if Q satisfies the identity. Two identities are equivalent if they are provably the

same in the pure equational theory of quandles. �

Identities can be very useful invariants because isomorphic quandles satisfy the same

identities.

Example 4.1.6. Recall that in Example 3.2.7, both of the quandles LQ(5, 3) and LQ(5, 2)

have the same permutation signature. However, we can actually distinguish these two

isomorphism classes using the identity (x/y) ∗ x = y. This is because LQ(5, 2) models the

identity while LQ(5, 3) does not. ♦

4.2 Normal Forms

Because of right cancellation of the quandle axioms, each 2-variable quandle identity is

equivalent to an identity in the form of t(x, y) = x or t(x, y) = y, so that there is only one

variable on the right hand side. For example, consider the identity (x ∗ y) ∗ y = (x/y) ∗ x,

4. QUANDLE TERMS 27

which can be rewritten in two steps:

((x ∗ y) ∗ y)/x = x/y

(((x ∗ y) ∗ y)/x) ∗ y = x

Furthermore, we can rewrite each term into normal form using the rewrite system

introduced by Hannah Quay-De La Vallee [7] in her senior project. The normal form

rewriting rules are listed below, and the goal of the system is to rewrite a term into the

form: (· · · ((xi1 o1 xi2) o2 xi3) · · ·xin−1) on−1 xn in which ok ∈ {∗, /}. This term also has to

satisfy the following

• i1 �= i2

• For all 1 ≤ k ≤ n− 2, we have ok �= ok+1 implies ik+1 �= ik+2.

Note that in the following rules each of the variables X,Y, Z represents a quandle term.

1. X ∗X → X and X/X → X

2. (X ∗ Y)/Y → X and (X/Y) ∗ Y → X

3. X ∗ (Y ∗ Z) → ((X/Z) ∗ Y) ∗ Z

4. X ∗ (Y/Z) → ((X ∗ Z) ∗ Y)/Z

5. X/(Y ∗ Z) → ((X/Z)/Y) ∗ Z

6. X/(Y/Z) → ((X ∗ Z)/Y)/Z

Definition 4.2.1. A normal form term is a quandle term such that we cannot further

reduce it with any of the rewriting rules. A normal form identity is an identity of the

form t(x1, x2 . . . xn) = xi such that 1 ≤ i ≤ n and t is a normal form term. �

Proposition 4.2.2. Every quandle identity t1 = t2 is equivalent to a normal form identity.

4. QUANDLE TERMS 28

Proof. Based on the right cancellation rule and the term rewriting system, we can turn

every quandle identity t1 = t2 into a normal form identity: first rewrite the terms t1 and

t2 into normal form terms t�1 and t�2 respectively; use the right cancellation rule to remove

all of the variables in t�2 except the leftmost one and append them to t�1.

Example 4.2.3. Consider the identity x ∗ (x ∗ y) = y ∗ (y/x). We can rewrite it with the

following steps:

normal form terms on both sides: → ((x/y) ∗ x) ∗ y = ((y ∗ x) ∗ y)/x

reducing variables on the right: → (((x/y) ∗ x) ∗ y) ∗ x = (y ∗ x) ∗ y

→ ((((x/y) ∗ x) ∗ y) ∗ x)/y = y ∗ x

→ (((((x/y) ∗ x) ∗ y) ∗ x)/y)/x = y

♦

Thus, every identity is equivalent to a normal form identity, and we can use the normal

form identity to represent each identity equivalence class.

Definition 4.2.4. Let t be a term of normal form, the size of t is the number of operations

in t. Similarly, the size of the normal form identity t = xi is the size of t. �

Theorem 4.2.5. Let Tn,m be the set of all normal form terms of n variables and size m.

Then |Tn| = 2n(n− 1)(2n− 1)m−2.

Proof. Let t ∈ Tn,m. Then we can write t as a sequence of variables and operations

(v1, o1, v2, o2 . . . om, vm+1) in which vi’s are variables and oi’s are the two binary operations

for quandles. By Definition 4.2.1 and the rewrite system, we know that t satisfies the

following:

• v1 and v2 are different variables;

4. QUANDLE TERMS 29

• For i ≥ 2, vi and vi+1 must be different variables if oi−1 and oi are different opera-

tions.

For the subsequence {v1, o1, v2}, there are 2n(n−1) different combinations. In the following

subsequences {oi, vi+1} with i ≥ 2, we would have either vi and vi+1 are different variables

or oi and oi−1 are the same operation. This means at each step we have 2n − 1 ways to

append an operation along with a variable. For a total number of m operations, we would

have 2n(n− 1)(2n− 1)m−1 ways to form such a term t.

Proposition 4.2.6. Testing a normal form identity of size m with k variables on a quan-

dle of size n has complexity O(mnk).

Proof. Let t = v be a normal form identity of size m with k variables. For a quandle

with n elements, there are nk ways to substitute the variables in the identity. For each

substitution, computing the value of t takesm look-up’s in the multiplication table because

it has m operations. Overall, it takes at mostm×nk steps to verify that the quandle models

the identity, so this procedure has complexity O(mnk).

4.3 Generating Normal Form Identities

Generating a normal form identity of size m is basically generating a normal form term

and appending a correct variable on the other side. Note that each n-variable normal form

term t corresponds to exactly n−1 normal form identities. This is because for each normal

form identity t = xi, the variable xi might as well differ from the rightmost variable in

t. For example, the identity of size 3: (x ∗ y) ∗ x = x would be reduced to an identity of

size 2: x ∗ y = x by the right cancellation law. In this work, we only use 2-variable normal

form identities, so each normal term t corresponds to exactly one normal identity.

Since we are using identities to test on quandles, so we would want to avoid generating

equivalent identities. Although it is hard to determine the equivalence classes for identities,

4. QUANDLE TERMS 30

we can produce equivalent identities by using the right cancellation law and permuting the

variables. In the actual implementation, we would avoid test these equivalent identities.

Example 4.3.1. Consider the identity (((x ∗ y)/x)/x) ∗ y = x. We have

⇔ ((x ∗ y)/x)/x = x/y

⇔ (x ∗ y)/x = (x/y) ∗ x

⇔ x ∗ y = ((x/y) ∗ x) ∗ x

⇔ x = (((x/y) ∗ x) ∗ x)/y

Thus, the identity (((x∗y)/x)/x)∗y = x is equivalent to the identity (((x/y)∗x)∗x)/y = x

although their corresponding normal terms are not the same. We say that (((x∗y)/x)/x)∗y

is the reverse term of (((x/y) ∗ x) ∗ x)/y = x.

By switching the two variables we get the identity (((y ∗ x)/y)/y) ∗ x = y, which is also

equivalent to the original identity. ♦

By the proof of Theorem 4.2.5, we know that each normal form identity of size n − 1

can be extended to 3 normal form identities of size n because we are using 2 variables.

For example, the identity x ∗ y = x can be extended to (x ∗ y) ∗ y = x, (x ∗ y) ∗ x = y, and

(x ∗ y)/x = y. Then we have an algorithm for generating identities recursively.

With this inductive property, we can generate normal form terms quite easily using

Prolog. The following code allows us to generate normal form terms for all sizes. It avoids

producing the redundant terms for permutations of the variables by restricting the leftmost

variable to be x. Note that the predicate term(T, N) means T is a normal form term of

size N. The predicate variable(Z) just means that Z is either x or y.

%base case: term of size 1

term(star(x,y), 1).

term(div(x,y), 1).

%case1: We can append both x and y to form a new term

4. QUANDLE TERMS 31

term(star(star(E, x), Z), M):- M>1, N is M - 1, variable(Z),

term(star(E,x), N).

term(div(div(E,x),Z), M) :- M>1, N is M - 1, variable(Z),

term(div(E,x), N).

term(star(star(E, y), Z), M):- M>1, N is M - 1, variable(Z),

term(star(E,y), N).

term(div(div(E, y), Z), M) :- M>1, N is M - 1, variable(Z),

term(div(E,y), N).

%case2: We can only append the opposite variable to form a new term

term(star(div(E, x), y), M) :- M>1, N is M - 1, term(div(E,x), N).

term(div(star(E, x), y), M) :- M>1, N is M - 1, term(star(E,x), N).

term(star(div(E, y), x), M) :- M>1, N is M - 1, term(div(E,y), N).

term(div(star(E, y), x), M) :- M>1, N is M - 1, term(star(E,y), N).

For each normal form term T, we can generate an identity using predicate identity(T,

V), which represents T = V. The predicate switch(X, Y) ensures that the variables X and

Y are different, and hence let us append the correct variable. The Prolog code is as follows:

term(star(_, X), Y) :- switch(X,Y).

term(divide(_, X), Y) :- switch(X,Y).

We also have another predicate reverseTerm(T1, T2), which represents the relation that

T1 and T2 are mutually reverse terms as defined in Example 4.3.1. With this predicate, we

can remove all of the equivalent duplicates from a list of normal form identities (represented

by their normal form terms):

removeReverse([], []).

removeReverse([H|T], L) :- reverseTerm(H, T), removeReverse(T, L).

removeReverse([H|T], [H|L]):- not(reverseTerm(H, T)), removeReverse(T, L).

As shown above, the predicate removeReverse(L1, L2) means L2 is the list we obtain

from L1 by removing its reverse terms.

5

Filtering Quandles

In this chapter, we will introduce an augmented algorithm for filtering isomorphic quan-

dles. In this algorithm, we take advantage of the invariant checking introduced in the pre-

vious chapters to improve the original program isofilter. Our implementation mainly

integrates tools from LADR, Prolog, and GAP4. This chapter is also intended to be a

manual for future usage and extension.

5.1 An Augmented Algorithm to Filter Quandles

According to Birrell [1], we know that determining whether two quandles are isomorphic

is computationally intractable. There is no currently known algorithm for directly deter-

mining whether two quandles are isomorphic in polynomial time. Indeed, the isofilter

program within LADR checks the possible isomorphisms between first-order models, and

it runs very slowly for large quandles. In order to improve the speed for filtering isomorphic

quandles, we should avoid directly applying isofilter on quandles.

Compared to isofilter’s algorithm, invariants checking has a much better run time.

By Proposition 4.2.6, we know that testing a quandle of size n on an identity of size m

5. FILTERING QUANDLES 33

!"#$%&$"'()*+),&"-.(
/0%'('*+(12$"34+5(&"'0(
3&6+%+"'(72),+'5(7$5+3(0"(
'*+(&"#$%&$"'5(

!"82'.(9(5'%+$:(0;(
12$"34+5(

<4$25+'+5'+%.(((((
<*+),('0(5++(=*&)*(
&3+">>+5(+$)*(
12$"34+(5$>5?+5(

@+%:/&-.(
<0:82'+('*+(
8+%:2'$>0"(
5&-"$'2%+(;0%($44(AB5(

(CCDDD(
(((((E(((((((((F(((((((((((((((((((((,GE((((((((,(

9884H(!50?4'+%(
'0(+$)*(72),+'(

Figure 5.1.1. Filtering Quandles with Invariants

takes O(mn2) time and Algorithm 3.3.2 for computing permutation signature has run

time Θ(n). Thus, it is a good strategy to first compute these invariants for the quandles

and partition them into different buckets such that the quandles in each bucket share the

same invariants. Then we can largely reduce the number of isofilter checkings since we

just need to apply it to each bucket rather than the entire list of quandles.

This augmented algorithm to filter a stream of quandles is illustrated in Figure 5.1.1.

In this chapter, we will discuss the details of each component of the algorithm along with

the computational tools in the actual implementation.

5. FILTERING QUANDLES 34

5.2 Computational Tools

5.2.1 Interpretation format

The LADR provides very useful tools for studying first-order models. In particular, every

first-order model is declared as an interpretation and represented in a interp format. For

example, the linear quandle LQ(5, 3) will be written in a interpretation clause:

interpretation(5, [number=3, seconds=0], [

function(*(_,_), [0, 3, 1, 4, 2,

3, 1, 4, 2, 0,

1, 4, 2, 0, 3,

4, 2, 0, 3, 1,

2, 0, 3, 1, 4]),

function(/(_,_), [0, 4, 3, 2, 1,

2, 1, 0, 4, 3,

4, 3, 2, 1, 0,

1, 0, 4, 3, 2,

3, 2, 1, 0, 4])]).

A interp format file is a file containing multiple interpretation clauses separated by

spaces. Notice this quandle is represented by two multiplication tables associated to the two

binary operations. In particular, each table is represented by a clause function(O, L),

in which O specifies the operation and the list L gives the multiplication table in one

dimension. In order to work with the LADR, we need to rewrite every quandle into such a

interp format. In our actual implementation, we also need to produce the multiplication

table for the operation / from the table of ∗.

5. FILTERING QUANDLES 35

5.2.2 Isofilter

As a program inside of the LADR, isofilter reads in interp format file and removes

isomorphic duplicates. For example, the following command line

./isofilter < BA2.interps > BA2.interps2

would filter the isomorphic duplicates in BA2.interps and output only one model for

each isomorphism class to the file BA.2interps2. At the end of the output file, isofilter

would also print out information like the following.

% isofilter: input=10, kept=2, checks=8, perms=14, 0.02 seconds.

The input counts the number of input models, and kept counts the number of isomor-

phism classes among them. The number of checks counts the number of isofilter

checkings on pairs of models, and the value of perms counts the total number of permu-

tations the program has searched. It is observed that the run-time of isofilter (as shown

at the end of the info) is proportional to the value of perms.

The algorithm of isofilter has the following structure.

Algorithm 5.2.1.

2: procedure isofilter(A list of models QList)

OutList initialized to be an empty list

4: Q ← QList.next � The first model in the list

Insert Q into OutList

6: while (Q ← QList.next) �= null do

if Q is not isomorphic to any model in OutList then Append Q to OutList

8: end if M → the next element in QList

end while

10: return OutList

end procedure

5. FILTERING QUANDLES 36

However, the isomorphism checking in line 5 is a very expensive computation. For check-

ing whether model A is isomorphic to B, the program would search for possible isomor-

phisms from A to B. If A and B are non-isomorphic models of size m, isofilter would

search through all possible isomorphisms and answers that they belong to different iso-

morphism classes (in this case, the value of perms is mostly m!). Thus, the isofilter

tends to produce an answer faster when filtering two models that are actually isomorphic

because the enumeration of permutations would stop when an isomorphism is found. We

can verify this claim from some empirical results of using isofilter. For example, when

we apply isofilter to an interp file with 300 size-9 quandles that are all isomorphic

the quandle Dih(3) × Dih(3), it takes about 0.21 seconds to determine all of them are

isomorphic. Then, for an interp file containing 3 quandles of size 9 belonging to 3 different

isomorphism classes, it takes isofilter 0.22 seconds to process.

Therefore, invariants checking would largely reduce isomorphism searching among non-

isomorphic quandles because it would separate most of non-isomorphic quandles at an

early stage.

5.2.3 Clausetester

As another program of the LADR, the program clausetester tests a stream of identities

on a set of models. In our project, we modified the source code of clausetester.c to

generate a program for invariants checking.

For each input identity, clausetester will print out the interpretations that model the

identity. The output will also contain the number of identities each interpretation models.

A command line for using clausetester would look like:

clausetester quandles.interps < size2.identities > quandles.out

In this example, clausetester would test the identities in size2.identities on

the interpretations in the file quandles.interps and output the results to the file

5. FILTERING QUANDLES 37

quandles.out. We need to properly label the identities in size2.identities, and it

should look like:

(x * y) * y = y #label(1)

(x * y) / x = y #label(2)

(x / y) * y = x #label(3)

And the output file quandles.out would contain information about the identities and

the models.

(x * y) / x = y #label(2) 1 2 5

(x / y) * y = x #label(3) 2 5

%interp 1 models 8 of 15 clauses

In order to tailor the use of clausetester to our identities checking on quandles, we

modified the source code of clausetester.c, so it will output information as Prolog

predicates. The output above would be converted into the following.

identitySatisfy(1, 2). %means quandle 1 models identity 2

identitySatisfy(2, 2).

identitySatisfy(5, 2).

identitySatisfy(2, 3).

identitySatisfy(5, 3).

numSatisfy(1, 8). %means quandle 1 models 8 identities

Thus, the output is more directly expressed as relations between the quandles and

identities. Every time we call the program clausetester, we actually generate a Prolog

database of quandles and identities.

Furthermore, we also add the permutation signature computation inside of clausetester

to make the invariant checking more efficient. In addition to the identities checking output,

our version of clausetester would also produce predicates representing the permutation

5. FILTERING QUANDLES 38

signature of each quandle. Such a predicate would look like the following. Notice that the

we do not include the trivial cycle for simplicity.

permSig(1,[2,2,3]) %means quandle 1 has permutation signature (2 2 3)

Therefore, this augmented version of clausetester becomes a program for quandle in-

variants checking. The output is a Prolog database of input quandles and their relations

with the invariants.

5.2.4 Filtering Quandles with Prolog

As a general purpose logical programming language, Prolog is consistently used in our

work. Unlike procedure programming languages such as C and Java, the program logic is

expressed in terms of relations. With the database generated by clausetester, we can

easily determine whether two quandles are possibly isomorphic with the following code.

iso(A, B):- quandle(A), quandle(B), A < B,

numSatisfy(A, N), numSatisfy(B, N),

bagof(I1, identitySatisfy(A, I1), L),

bagof(I2, identitySatisfy(B, I2), L),

permSig(A, P1), permSig(B, P2),

mergesort(P1,P), mergesort(P2, P).

The predicate iso(A, B) means that quandles A and B share the same invariants including

the set of identities they satisfy and their permutation signatures. Based on the iso

relation, we can place the quandles satisfying the same invariants in a bucket and send

them to isofilter to see whether they are actually isomorphic. Here is the bucket

predicate.

bucket([A|T]) :- bagof(B, iso(A,B), T),

retract(quandle(A)), retractQuandles(T).

5. FILTERING QUANDLES 39

Note that the retract and retractQuandles remove quandles from the database once

they are in a bucket, so it avoids producing redundant buckets. We also avoid computing

the buckets with only one quandle because the goal bagof(B,iso(A,B),T) will not be

satisfied if quandle A is identified as non-isomorphic to all others. Thus, we are only

sending the non-trivial buckets to isofilter. In this step, we are writing each bucket of

quandles to a interp format file, and then call the program isofilter to process it.

All of the steps including invariant checking, partitioning quandles into buckets and

applying isofilter to each bucket can be done with just one command line shown be-

low. In particular, quandles.interp is the file for input quandles, identities is the

file containing certain normal form identities, and invariantChecker is our augmented

clausetester that does invariant checking. The program FilterQuandles is an Prolog

executable file that sorts quandles into different buckets and send them to isofilter.

./invariantChecker quandles.interp < identities |./FilterQuandles

And the output in stdout is in the following format:

There are 42 Quandles.

There are 354 Identities.

Buckets cleaned

The following buckets have sizes more than 1

[2,3]

Sent to file: Bucket1

[11,20]

Sent to file: Bucket2

[12,25]

Sent to file: Bucket3

[13,22,28,39]

Sent to file: Bucket4

[14,15,31,33]

5. FILTERING QUANDLES 40

Sent to file: Bucket5

[16,30,32]

Sent to file: Bucket6

[19,38]

Sent to file: Bucket7

[21,27]

Sent to file: Bucket8

Applying Isofilter to each bucket. Might take forever! Feel free to interrupt

isofiltering Bucket8...

isofiltering Bucket7...

isofiltering Bucket6...

isofiltering Bucket5...

isofiltering Bucket4...

isofiltering Bucket3...

isofiltering Bucket2...

isofiltering Bucket1...

****Done!****

If we run the command for a set of large quandles, isofiltering each bucket can still take a

long time even if the bucket has a small size.

6

Conclusion

In this chapter, we will analyze the performance of our algorithm and also propose some

potential improvements.

6.1 Analysis

6.1.1 Minimize the Use of Isofilter

Since our invariant checking has a much better run-time performance than isofilter

in distinguishing non-isomorphic quandles, our quandle filtering algorithm would work

more efficiently if we can reduce the use of isofilter. Consider a stream of n connected

quandles of the same size m (quandles of different sizes are certainly not isomorphic),

there are two cases in which we do not need to apply isofilter at all:

1. We can separate all of the quandles into exactly n different buckets;

2. We know in advance there are k isomorphism classes for connected quandles of size

m, and we know the invariants that can distinguish all of them.

6. CONCLUSION 42

While the first case depends on the input quandles, the second case depends on how

good the invariants are in terms of distinguishing the isomorphism classes for size-m

quandles. From the GAP4 quandle library provided by Professor James Belk, we obtain

a comprehensive list of isomorphism classes for connected quandles up to size 30. When

we test our invariant checking on the isomorphism classes of each size, it turns out that

we can distinguish most of the classes. By using normal form identities up to size 12 and

the quandles’ permutation signature, we are able to distinguish 294 among all of the 359

isomorphism classes. The other 65 isomorphism classes are placed in 19 different buckets.

While most of the buckets contain 2 or 3 quandles, we encounter an unusually large bucket

for size-27 quandles, which contains 19 quandles. It is possible that many of the quandles

in this bucket might actually model the same identities since they are subquandles of a

conjugacy quandle.

If we can distinguish all of the isomorphism classes for size m just by invariant checking,

we would have a dramatic speed improvement on the quandle filtering process. For exam-

ple, it takes isofilter more than 18 hours to distinguish all of the 11 isomorphism classes

for connected quandles of size 13. However, if we apply our augmented algorithm to the

same set of quandles, it would only take less than a second. Since we can distinguish all

of the isomorphism classes for size 13 with five identities and their permutation signature,

isofilter is not used at all. So far we know that our invariants can distinguish all of the

isomorphism classes for connected quandles up to size 30 except for sizes 12, 15, 21, 24,

27, 28, and 30.

Even if we cannot fully distinguish all of the isomorphism classes for size-m quandles,

we can still have a much better run-time. For example, among the 10 isomorphism classes

for size-12 connected quandles, two of them are not distinguishable by our invariants.

Then we would need to apply isofilter to the bucket containing these two quandles.

6. CONCLUSION 43

The filtering process in total would take around 55 seconds, whereas directly applying

isofilter to the same set of quandles would take more than an hour to finish.

Notice that in the two examples above, we are only testing our program on a set of

quandles that are pairwise non-isomorphic. Although in practice we would be dealing

with a set of random quandles as input, we know that most of the computation would

be spent on applying isofilter on non-isomorphic quandles as shown in Section 5.2.2.

In the end, the performance is mostly determined by the number of isomorphism classes

contained in each bucket.

6.1.2 Selecting Identities

Although we can keep computing new identities of larger sizes to strengthen the invariant

checking, but the number of normal identities grows exponentially in number of operations

by Theorem 4.2.5. Computing the entire list of normal form identities becomes expensive

for large sizes. For example, there are more than a million normal form identities of size

12, so it takes a long time to compute a comprehensive list of such size or larger.

It is also not practical to test on all of the normal form identities we generate. Thus,

we would like to reduce the number of redundant identities. The following theorem would

tell us the lower bound for the identities we need.

Theorem 6.1.1. If we can fully distinguish n pairwise quandle isomorphism classes just

using m identities, then we must have m ≥ lg n.

Proof. Let Q be a quandle. Then we can convert Q to a m-tuple binary vector

(v1 v2 . . . vm) such that each vi = 1 if Q models the i-th identity, and vi = 0 other-

wise. For m identities, we can form 2m different vectors. If two quandles have two different

binary vectors, then we can distinguish them. In order to distinguish all of the n quan-

dle isomorphism classes just using the identities, we must have n ≤ 2m by pigeonhole

principle. Thus, we have m ≥ lg n.

6. CONCLUSION 44

Since lg 359 ≈ 8.48, ideally we would be able to filter all of the connected quandles up

to size 30 just using 9 identities. However, searching for such identities for all isomorphism

classes is not practical because some quandles might model exactly the same identities.

Recall the transposition quandles Tn we introduce in Example 2.2.2. It turns out that we

cannot distinguish T4 × T4 and T9 using 2-variable identities. We can show this by first

proving the following theorem.

Theorem 6.1.2. Let integer n ≥ 4 and I(Q) denote all of the identities over 2 variables

that a quandle Q models. Then I(Tn) = I(T3) ∩ I(U2).

Proof. Let x, y ∈ Tn such that x �= y. Since x, y are also transpositions in Sn, we can

write x = (a b) and y = (c d) in which a, b, c, d ∈ {1, 2, . . . n}. If (a b) and (c d) are disjoint,

we then have

x ∗ y = y−1xy = (c d)(a b)(c d) = (a b) = x

y ∗ x = x−1yx = (a b)(c d)(a b) = (c d) = y

We then know that the subquandle generated by x, y is U2.

If (a b) and (c d) are not disjoint, we then can assume that b = c. We then have

x ∗ y = y−1xy = (c d)(a b)(c d) = (a d)

y ∗ x = x−1yx = (a b)(c d)(a b) = (a d)

Thus, we know that the subquandle generated by x, y is T3.

Therefore, the subquandles generated by two elements in Tn are either T3 or U2. Then

an identity that T3 models must also be satisfied by both U2 and T3. Thus, we must have

I(Tn) ⊃ I(T3) ∩ (U2).

Let t1 = t2 be an identity of 2 variables that Tn models. This means that for every pair

of x, y ∈ Tn, we would have t1(x, y) = t2(x, y). Since x, y can possibly generate T3 or U2,

this identity would be in the set I(T3) ∩ I(U2). This means I(Tn) ⊂ I(T3) ∩ I(U2).

Hence, we show that I(Tn) = I(T3) ∩ I(U2).

Proposition 6.1.3. Let Q,R be two quandles. Then I(Q×R) = I(Q) ∩ I(R).

6. CONCLUSION 45

Proof. First, every identity modelled by the quandle Q×R must also be satisfied by both

components Q and R. Thus, I(Q×R) ⊂ I(Q) ∩ I(R).

Let t1 = t2 be an identity in I(Q)∩ I(R). Then for every substitution (q1, r1), (q2, r2) ∈

Q×R, we would have

t1((q1, r1), (q2, r2)) = (t1(q1, q2), t1(r1, r2))

= (t2(q1, q2), t2(r1, r2)) = t2((q1, r1), (q2, r2))

Therefore, we know that Q × R also models this identity, so I(Q × R) ⊃ I(Q) ∩ I(R).

Hence, we have I(Q×R) = I(Q) ∩ I(R).

The orders of T4 × T4 and T9 are the same because |T4 × T4| =
�
4× 3

2

�2

= 36 =

9× 8

2
= |T9|. By Theorem 6.1.2 and Proposition 6.1.3, we know that I(T4×T4) = I(T9) =

I(T3) ∩ I(U2). Thus, we would not be able to distinguish these two quandles of the same

size just by using 2-variable identities.

However, our invariant checking would still be able to distinguish these two quandles

because they have different permutation signatures. The permutation signature of T4×T4

contains sixteen 2’s, whereas the one of T9 only contains seven 2’s.

We also know that some identities can reflect the permutation signatures.

Proposition 6.1.4. Let Q be a connected quandle that models the identity, and

(p1 p2 . . . pk) be the permutation signature of Q. Then Q models the identity

((x ∗ y) ∗ y · · · y) ∗ y� �� �
n

= x if and only if pi|n for 1 ≤ i ≤ k.

Proof. Let p, q ∈ Q and consider the inner automorphism rq. Since rq is a permutation

on the elements of Q, we can decompose it into disjoint cycles. Let the length of the cycle

containing p be l.

Suppose Q models the identity, then we have ((p ∗ q) ∗ q · · · q) ∗ q� �� �
n

= x. It follows that

applying rq on p for n times would give back p. This means n is divisible by l. Also, we

know that each pi in the permutation signature of Q is the length of some cycle in rq, so

each pi also divides n.

6. CONCLUSION 46

Suppose that pi|n for 1 ≤ i ≤ k. Then for each i, we can write n = pimi for some

natural number mi. Let x, y ∈ Q. Then we can say x belongs to a cycle in ry that has

length pj . It follows that rny (x) = r
pj mj
y (x) = x. Thus, the identity ((x∗y) ∗ y · · · y) ∗ y� �� �

n

= x

is true for all x, y ∈ Q.

If we know the permutation signature of Q, we would know Q models an identity of

the form ((x ∗ y) ∗ y · · · y) ∗ y� �� �
n

= x if and only if n is a multiple of lcm(p1 . . . pk). Thus, we

can avoid doing the actual computation to test the identities if we know the permutation

signature of Q.

6.2 Improvement

Although our invariant checking has made a great improvement on isofilter, there are

still a lot of improvements we can make. Applying isofilter to large quandles takes too

long to be practical. Separating large quandles into buckets does not make computation

much more feasible since the isofilter checking between any large non-isomorphic quan-

dles still takes extremely long. Part of the goal for our future research is to filter quandles

without using isofilter and to improve the performance of invariant checking.

The first possible improvement on identities checking is a dynamic database of identities.

Identities checking can then be separated into two parts: a static set of identities that can

distinguish most of the isomorphism classes would be stored in database; some other

identities of large sizes will be randomly generated during run-time. In addition to the list

of effective identities we already have, random large identities would certainly strengthen

the invariants checking.

Our random identities generator should be part of a knowledge base of quandle invari-

ants. Given a stream of input quandles, we would first test the identities in the static list

on the quandles and separate them into buckets. If there are buckets containing more than

6. CONCLUSION 47

one quandle, we will generate certain number of random identities to test on quandles in

these buckets. If a random identity is able to reduce the size of some buckets, it should

be inserted to our static identity list. As our database of identities grow, our invariant

checking will become stronger over time. Furthermore, our knowledge base should contain

a list of identified isomorphism classes of quandles. Each isomorphism class should be

labeled by the set of identities it models. Such a knowledge base of isomorphism classes

and invariants would surely provide a useful tool for knot theorists.

Although it is hard to achieve the lower bound mentioned in Theorem 6.1.1, we should

still minimize the number of identities in the static identity list. We should not include any

two identities at the same time if they are modeled by the same set of quandles. This idea

is basically filtering identities using quandles, and can be implemented with the Prolog

database we generate from invariant checking. The following Prolog predicate would allow

us to acquire such pairs of identities.

isoIdentities(A, B):-identity(A),

identity(B),

A<B,

bagof(X,identitySatisfy(X,A),L),

bagof(Y,identitySatisfy(Y,B),L).

The program prover9 within the LADR allows us to check whether two identities are

equivalent. For example, we want to see whether identity (x/y)/x = y would imply

((((((x/y)/y) ∗x) ∗ y)/x)/x)/x = y because they are modeled by the same set of quandles

up size 30. Then we can write the following into an input file named formulas.in

formulas(sos).

x*x=x.

(x*y)/y=x.

(x/y)*y=x.

6. CONCLUSION 48

(x*y)*z = (x*z)*(y*z). %quandle axioms

(x/y)/y=x. %Identity 1

end_of_list.

formulas(goals).

((((((x/y)/y)*x)*y)/x)/x)/x=y %Identity 2

end_of_list.

Then we run the following command line on this file.

prover9 -f formulas.in

If identity 1 can indeed derive identity 2 along with the quandle axioms, prover9 would

construct a proof. Thus, if we can verify two identities are equivalent using prover9, we

would remove one of them from the database.

7

Appendix A

In this appendix, we include the list of the buckets that contain more than 1 isomorphism

classes. The quandles are numbered by Belk’s GAP4 quandle database.

• Size 12:

– 3, 9

• Size 15

– 1, 5

• Size 21

– 1, 8

• Size 24

– 2, 3

– 13, 28

– 14, 15, 31, 33

7. APPENDIX A 50

– 16, 30, 32

– 19, 38

– 21, 27

– 22, 39

• Size 27

– 8, 32, 33, 36, 38

– 27, 28, 31, 34, 35, 37, 39, 42, 43, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60

– 44, 47, 62

– 45, 46, 61

– 54, 55, 56

• Size 28

– 1, 12

– 2, 11

• Size 30

– 1, 9, 21

– 3, 12

8

Appendix B

The following C code is responsible for computing the permutation signature from a quan-

dle interpretation.

/*This method finds the cycle leader*/

int findNextLeader(int *checked, int start, int size){

int index = start +1;

while(index < size && checked[index] == CHECKED) index ++;

if(index >= size) return CHECKED;

else return index;

}

/*This method retrieves the cycle structure from a table*/

void get_permutation(int *table, int size, int icount){

int column[size]; /*this will be a column in a quandle table*/

int checked[size]; /*this will keep track which element can be perm leader*/

int i;

checked[0] = CHECKED; /*The first cycle should be trivial for 0*/

8. APPENDIX B 52

for(i = 1; i< size; i++) checked[i] = NEW;

for(i = 0; i < size; i++) column[i] = table[i * size];

int start = 0;

int index;

printf("permSig(%d , [", icount);

int comma = 0;

while((index = findNextLeader(checked, start, size)) !=

CHECKED){ /*index is the leader of a cycle*/

int next = column[index];

checked[next] = CHECKED;

int count = 1;

while(next != index){

next = column[next];

checked[next] = CHECKED;

count ++;

}

if(comma == 0) printf("%d", count); //Trim the last coma

else printf(", %d", count);

start = index;

comma++;

}

printf("]).\n");

}

9

Appendix C

The following Prolog code is the supplement code for Section 4.3. It removes some of the

equivalent identities from the list.

variable(x).

variable(y).

switch(x,y).

switch(y,x).

%Note: We reverse the variables here

reverse_One(star(E, X), Z, divide(Z, Y)) :- switch(X, Y), variable(E),!.

reverse_One(star(E, X), Z, R):- switch(X,Y), reverse_One(E, divide(Z, Y), R).

reverse_One(divide(E, X), Z, star(Z, Y)) :- switch(X,Y), variable(E),!.

reverse_One(divide(E, X), Z, R) :- switch(X,Y), reverse_One(E, star(Z,Y), R).

%Note: We don’t reverse the variables here

reverse_Two(star(E, X), Z, divide(Z, X)) :- variable(E),!.

reverse_Two(star(E, X), Z, R):- reverse_Two(E, divide(Z, X), R).

reverse_Two(divide(E, X), Z, star(Z, X)) :- variable(E),!.

9. APPENDIX C 54

reverse_Two(divide(E, X), Z, R) :- reverse_Two(E, star(Z,X), R).

%Note: Reverse Variable twice, so get back to X

reverse(star(E,x), R) :- reverse_One(star(E, x), x , R).

reverse(divide(E,x), R) :- reverse_One(divide(E, x), x, R).

reverse(star(E,y), R) :- reverse_Two(star(E, y), x, R).

reverse(divide(E,y), R) :- reverse_Two(divide(E,y), x, R).

reverseMember(T1, [T2|_]) :- reverse(T1,T2),!.

reverseMember(Term, [_|T]) :- reverseMember(Term, T).

removeReverse([], []).

removeReverse([H|T], New) :- reverseMember(H, T),

removeReverse(T, New).

removeReverse([H|T], [H|New]) :- not(reverseMember(H, T)),

removeReverse(T, New).

termlist(L, N) :- bagof(X, generate_exp(X, N), L1),

removeReverse(L1,L).

print_equation(T) :- generate_eq(T, V),

print_term_init(T), print(=), print(V).

print_list([], _).

print_list([H|T], N):- print_equation(H), print(’ ’), print(#),

print(label(N)), print(.),

print(’\n’), M is N+1, print_list(T,M).

Bibliography

[1] Eleanor Birrell, The Knot Quandle (2009).

[2] Aleksandar Chakarov, Computing the Typeset of Quandles (2010).

[3] David Dummit and Richard Foote, Abstract Algebra, Vol. 3rd Edition, Wiley, 2003.

[4] John Humphreys, A Course in Group Theory, Oxford University Press, 1996.

[5] David Joyce, A Classifying Invariant of Knots, The Knot Quandle (1980).

[6] Sam Nelson, A Polynomial Invariant of Finite Quandles (2007).

[7] Hannah Quay-De La Vallee, Introduction to Quay Theory (2009).

