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Thompson’s Groups

There are three Thompson groups:

F acts on the interval.

T acts on the circle.

V acts on the Cantor set.



Brin-Thompson Groups

The Brin-Thompson groups nV were defined by Matt Brin in 2004:

V 2V 3V

· · ·

They are “higher-dimensional” versions of Thompson’s group V .



Definitions of V and nV
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Definition of V

A dyadic rearrangement of C is a homeomorphism that maps
“linearly” between the pieces of two dyadic subdivisions.

The group of all such homeomorphisms is Thompson’s group V .
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Definition of nV

In general, nV acts on the space Cn:

1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 · · ·
0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 · · ·
0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 · · ·

Elements of nV act piecewise by prefix tuple replacements:

0 1 0
1
0 0

7→
1
0 1
0 1 1



Properties of nV

The groups nV

I Are finitely presented and simple,
(Brin 2005 and 2010)

I Are non-isomorphic for different values of n,
(Bleak, Lanoue 2010)

I Have type F∞,
(Kochloukova et al. 2013 and Fluch et al. 2013)

I Have the Haagerup property and Serre’s property FA, and
(Kato 2015)

I Have unsolvable torsion problem for n ≥ 2.
(Belk, Bleak 2017)



Main Results



Right-Angled Artin Groups

Let � be a finite graph.

The corresponding right-angled Artin group A� has

I One generator for each vertex of �, where

I Generators commute if they are connected by an edge.

For the graph above,

A� �
〈
a, b, c, d , e

�� [a, c], [b, c], [c, d], [d , e]〉.
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Theorem (Belk, Bleak, Matucci 2017)
For every right-angled Artin group A�, there exists an n ≥ 1 so that
A� embeds into nV.

This is quite different from the situation for V .

Theorem (Bleak, Salazar-Díaz 2013)
Z2 ∗ Z does not embed into Thompson’s group V.

It follows that the only right-angled Artin groups that embed into V
are direct products of free groups (Corwin, Haymaker 2016).



Stronger Version

Our embedding is “demonstrative” in the sense of (Bleak,
Salazar-Díaz 2013). Combined with their work, this gives:

Theorem (Belk, Bleak, Matucci 2017)
For every right-angled Artin group A�, there exists an n ≥ 1 so that:
1. nV o A� embeds into nV,
2. Every finite extension of A� embeds into nV, and
3. Every group that virtually embeds into A� embeds into nV.



Consequences for the Subgroup Structure

Corollary (Belk, Bleak, Matucci 2017)
All of the following groups embed into nV for sufficiently large n:

1. Finitely generated Coxeter groups.

2. Surface groups.

3. Graph braid groups.

4. Limit groups.

5. Many 3-manifold groups.

6. Many hyperbolic groups.

Essentially none of these groups are known to embed into V .
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Sketch of Proof

Our proof uses the complement �c of the graph �:

Edges in �c correspond to generators that don’t commute.

If �c has v vertices and e edges, we embed A� into (v + e)V .

Note: Kato has recently improved on our method, constructing an
embedding of A� into eV (Kato 2017).
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Let’s embed A� into 7V for the following graph �c.

So A� �
〈
a, b, c, d

�� [a, c], [a, d], [b, d]〉.
Representing Elements of A�
Most elements of A� have several different minimum-length words,
e.g.

a c d � c a d � c d a.

Is there a good way of representing elements uniquely?
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Sketch of Proof

Each power of a generator corresponds to a single block.

a2 c3 b−1 c−2 d2 b4 a−4 b c2



Sketch of Proof

An infinite block stack is a stack of blocks with no bottom.



Sketch of Proof

The group A� acts on the set of all infinite block stacks.
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Questions

1. What is the minimum n for which a given A� embeds into nV?

2. Do surface groups embed into V? Do they embed into 2V?
What about Coxeter groups, graph braid groups, etc.?

3. Do all hyperbolic groups embed into nV for sufficiently large n?

4. For n ≥ 2 does nV act properly by isometries on any CAT(0)
cubical complex?

5. For n ≥ 2, is the conjugacy problem in nV solvable?
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