Embedding Right-Angled Artin Groups into Brin-Thompson Groups

Jim Belk, Bard College

joint with Collin Bleak and Francesco Matucci

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Thompson's Groups

There are three *Thompson groups*:

Brin-Thompson Groups

The **Brin-Thompson groups** nV were defined by Matt Brin in 2004:

They are "higher-dimensional" versions of Thompson's group V.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definitions of V and nV

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

The *Cantor set C* is the infinite product space $\{0, 1\}^{\infty}$.

ふちゃくゆ ふかく おく む

The *Cantor set C* is the infinite product space $\{0, 1\}^{\infty}$.

The *Cantor set C* is the infinite product space $\{0, 1\}^{\infty}$.

The *Cantor set C* is the infinite product space $\{0, 1\}^{\infty}$.

A *dyadic subdivision* of *C* is any subdivision obtained by repeatedly cutting pieces in half.

The *Cantor set C* is the infinite product space $\{0, 1\}^{\infty}$.

The **Cantor set** C is the infinite product space $\{0, 1\}^{\infty}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The **Cantor set** C is the infinite product space $\{0, 1\}^{\infty}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The **Cantor set** C is the infinite product space $\{0, 1\}^{\infty}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

A *dyadic rearrangement* of *C* is a homeomorphism that maps "linearly" between the pieces of two dyadic subdivisions.

The group of all such homeomorphisms is *Thompson's group V*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ▼ ● ◆ ○ ◆ ○ ◆

Each piece maps by a *prefix replacement*.

 $0\omega \mapsto 10\omega$ $100\omega \mapsto 00\omega$

 $101\omega \mapsto 11\omega$ $11\omega \mapsto 01\omega$

Each piece maps by a *prefix replacement*.

$$0\omega \mapsto 10\omega \qquad 100\omega \mapsto 00\omega$$
$$01\omega \mapsto 11\omega \qquad 11\omega \mapsto 01\omega$$

Each piece maps by a *prefix replacement*.

$$0\omega \mapsto 10\omega$$
 $100\omega \mapsto 00\omega$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $101\omega \mapsto 11\omega$ $11\omega \mapsto 01\omega$

Each piece maps by a *prefix replacement*.

 $0\omega \mapsto 10\omega$ $100\omega \mapsto 00\omega$

 $101\omega \mapsto 11\omega$

 $11\omega \mapsto 01\omega$

Each piece maps by a *prefix replacement*.

 $0\omega \mapsto 10\omega$ $100\omega \mapsto 00\omega$

 $101\omega \mapsto 11\omega$

Each piece maps by a *prefix replacement*.

 $0\omega \mapsto 10\omega$ $100\omega \mapsto 00\omega$

 $101\omega \mapsto 11\omega$ $11\omega \mapsto 01\omega$

Brin's group 2V acts on the **Cantor Square** $C \times C$.

Brin's group 2V acts on the **Cantor Square** $C \times C$.

$(0\psi,\omega)$			$(1\psi,\omega)$
			l

Brin's group 2V acts on the **Cantor Square** $C \times C$.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Brin's group 2V acts on the **Cantor Square** $C \times C$.

Homeomorphisms act piecewise by prefix pair replacements:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

In general, nV acts on the space C^n :

0 1 0 0 1 1 1 0 1 0 0 1 0 0 ··· 1 1 0 1 0 0 1 1 0 1 1 0 0 0 ··· 0 0 1 0 1 1 1 0 1 0 1 1 0 1 ···

Elements of nV act piecewise by prefix tuple replacements:

010		1
1	\mapsto	01
0 0		011

In general, nV acts on the space C^n :

0 1 0 0 1 1 1 0 1 0 0 1 0 0 ... **1** 1 0 1 0 0 1 1 0 1 1 0 0 0 ... **0** 0 1 0 1 1 1 0 1 0 1 1 0 1 ...

Elements of nV act piecewise by prefix tuple replacements:

010		1
1	\mapsto	01
0 0		011

In general, nV acts on the space C^n :

 1
 0 1 1 1 0 1 0 0 1 0 0 ...

 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 ...

 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 ...

Elements of *nV* act piecewise by prefix tuple replacements:

010		1
1	\mapsto	01
0 0		011

In general, nV acts on the space C^n :

1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 ... **0** 1 1 0 1 0 0 1 1 0 1 1 0 0 0 ... **0** 1 1 0 1 0 1 1 0 1 0 1 1 0 1 ...

Elements of *nV* act piecewise by prefix tuple replacements:

010		1
1	\mapsto	01
0 0		011

In general, nV acts on the space C^n :

Elements of *nV* act piecewise by prefix tuple replacements:

010		1
1	\mapsto	01
0 0		011

Properties of *nV*

The groups nV

- Are finitely presented and simple, (Brin 2005 and 2010)
- Are non-isomorphic for different values of n, (Bleak, Lanoue 2010)
- ► Have type F_∞, (Kochloukova et al. 2013 and Fluch et al. 2013)
- Have the Haagerup property and Serre's property FA, and (Kato 2015)

► Have unsolvable torsion problem for n ≥ 2. (Belk, Bleak 2017)

Main Results

Right-Angled Artin Groups

Let Γ be a finite graph.

The corresponding *right-angled Artin group* A_{Γ} has

- One generator for each vertex of Γ, where
- Generators commute if they are connected by an edge.

For the graph above,

$$A_{\Gamma} = \langle a, b, c, d, e \mid [a, c], [b, c], [c, d], [d, e] \rangle.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Main Theorem

Theorem (Belk, Bleak, Matucci 2017)

For every right-angled Artin group A_{Γ} , there exists an $n \ge 1$ so that A_{Γ} embeds into nV.

Main Theorem

Theorem (Belk, Bleak, Matucci 2017)

For every right-angled Artin group A_{Γ} , there exists an $n \ge 1$ so that A_{Γ} embeds into nV.

This is quite different from the situation for V.

Theorem (Bleak, Salazar-Díaz 2013)

 $\mathbb{Z}^2 * \mathbb{Z}$ does not embed into Thompson's group V.

It follows that the only right-angled Artin groups that embed into V are direct products of free groups (Corwin, Haymaker 2016).

ション 小田 マイビット ビックタン

Stronger Version

Our embedding is "demonstrative" in the sense of (Bleak, Salazar-Díaz 2013). Combined with their work, this gives:

Theorem (Belk, Bleak, Matucci 2017)

For every right-angled Artin group A_{Γ} , there exists an $n \ge 1$ so that:

- 1. $nV \wr A_{\Gamma}$ embeds into nV,
- 2. Every finite extension of A_{Γ} embeds into nV, and
- 3. Every group that virtually embeds into A_{Γ} embeds into nV.

Consequences for the Subgroup Structure

Corollary (Belk, Bleak, Matucci 2017)

All of the following groups embed into nV for sufficiently large n:

- 1. Finitely generated Coxeter groups.
- 2. Surface groups.
- 3. Graph braid groups.
- 4. Limit groups.
- 5. Many 3-manifold groups.
- 6. Many hyperbolic groups.

Essentially none of these groups are known to embed into V.

Our proof uses the *complement* Γ^c of the graph Γ :

Our proof uses the *complement* Γ^c of the graph Γ :

Our proof uses the *complement* Γ^c of the graph Γ :

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

Our proof uses the *complement* Γ^c of the graph Γ :

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Edges in Γ^c correspond to generators that *don't* commute.

Our proof uses the *complement* Γ^c of the graph Γ :

Edges in Γ^c correspond to generators that *don't* commute.

If Γ^c has v vertices and e edges, we embed A_{Γ} into (v + e)V.

Note: Kato has recently improved on our method, constructing an embedding of A_{Γ} into eV (Kato 2017).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Let's embed A_{Γ} into 7V for the following graph Γ^c .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

So $A_{\Gamma} = \langle a, b, c, d \mid [a, c], [a, d], [b, d] \rangle$.

Let's embed A_{Γ} into 7V for the following graph Γ^c .

So $A_{\Gamma} = \langle a, b, c, d \mid [a, c], [a, d], [b, d] \rangle$.

Representing Elements of A_{Γ}

Most elements of A_{Γ} have several different minimum-length words, e.g.

$$acd = cad = cda.$$

ション 小田 マイビット ビックタン

Is there a good way of representing elements uniquely?

We can represent each element of A_{Γ} using a *stack of blocks*.

acbcdbabc

We can represent each element of A_{Γ} using a *stack of blocks*.

a c b c d b a b c

We can represent each element of A_{Γ} using a *stack of blocks*.

▲□▶▲御▶★臣▶★臣▶ 臣 の�?

We can represent each element of A_{Γ} using a *stack of blocks*.

acbcdbabc

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We can represent each element of A_{Γ} using a *stack of blocks*.

a c b c d b a b c

We can represent each element of A_{Γ} using a *stack of blocks*.

a c b c d b a b c

We can represent each element of A_{Γ} using a *stack of blocks*.

a c b c d b a b c

We can represent each element of A_{Γ} using a *stack of blocks*.

acbcdbabc

Each power of a generator corresponds to a single block.

$$a^2 c^3 b^{-1} c^{-2} d^2 b^4 a^{-4} b c^2$$

An *infinite block stack* is a stack of blocks with no bottom.

The group A_{Γ} acts on the set of all infinite block stacks.

Main Idea: Encode an infinite block stack using binary sequences.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Idea: Encode an infinite block stack using binary sequences.

1	1	0	1	0	0	0
1	0	1	0	0	1	0
1	1	0	0	1	0	1
1	1	0	1	1	0	1
0	0	0	0	1	0	0
0	1	0	1	0	0	1
0	0	1	0	0	1	1
1	0	1	1	0	0	1
	÷		÷		÷	

Main Idea: Encode an infinite block stack using binary sequences.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Idea: Encode an infinite block stack using binary sequences.

			С	2	С	
	b	1	b			
-4	а					
	b	4	b		d	2
			С	-2	С	
	b	-1	b			
2	а		С	3	С	
	b	3	b		d	-1
3	а		С	5	С	
	:		:		:	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Idea: Encode an infinite block stack using binary sequences.

			С	2	С	
	b	1	b			
-4	а					
	b	4	b		d	2
			С	-2	С	
	b	-1	b			
2	а		С	3	С	
	b	3	b		d	-1
3	а		С	5	С	
	÷		÷		:	

Main Idea: Encode an infinite block stack using binary sequences.

1	1	0	1	0	0	0
1	0	1	0	0	1	0
1	1	0	0	1	0	1
1	1	0	1	1	0	1
0	0	0	0	1	0	0
0	1	0	1	0	0	1
0	0	1	0	0	1	1
1	0	1	1	0	0	1
	÷		÷		÷	

Questions

- 1. What is the minimum *n* for which a given A_{Γ} embeds into *nV*?
- Do surface groups embed into V? Do they embed into 2V?
 What about Coxeter groups, graph braid groups, etc.?
- 3. Do all hyperbolic groups embed into *nV* for sufficiently large *n*?
- For n ≥ 2 does nV act properly by isometries on any CAT(0) cubical complex?
- 5. For $n \ge 2$, is the conjugacy problem in nV solvable?