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The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

This conjecture remains open after nearly 50 years.
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Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

This conjecture remains open after nearly 50 years.

Recent progress: Many groups of interest embed into finitely
presented simple groups.
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Higman’s Embedding Theorem

A countable group presentation

⟨s1 , s2 , s3 , . . . | r1 , r2 , r3 , . . .⟩

is computable if there exists an algorithm that outputs the list of
relations.

A group is computably presented if it admits such a presentation.

Examples
1. Any finitely presented group.

2. Any finitely generated subgroup of a finitely presented group.



Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Graham Higman, 1960
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Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

Follows from Higman–Neumann–Neumann 1949.
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G is
computably presented

⇔ G embeds into
a finitely presented group

Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

2. Countable abelian groups.

Since every such group embeds in
⊕

𝜔Q ⊕
⊕

𝜔Q/Z.
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Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

2. Countable abelian groups.

Problem (Higman): Find an explicit and natural example of a
finitely presented group that contains Q.
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Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

This theorem has the form

G has a certain
algorithmic property

⇔ G embeds into
a certain kind of group

Question (Higman): Are there other theorems of this type?
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Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Richard J. Thompson, 2004
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An Observation

Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Proof.
Given a presentation ⟨s1 , . . . sm | r1 , . . . rn⟩ for a simple group G
and a word w, we run two simultaneous searches:

Search #1
Search for a proof that

w = 1

using the relations r1 , . . . , rn.

Search #2
Search for a proof that

s1 = · · · = sm = 1

using w = 1 and r1 , . . . , rn.

Eventually one of the searches terminates. □
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An Observation

Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine,
California. Higman and William Boone were both in the audience.

William and
Eileen Boone, 1979
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

As a corollary, the following groups would also embed into finitely
presented simple groups:

1. Any computably presented group with solvable word problem.

2. Any countable abelian group.
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Theorem (Boone–Higman 1974)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a simple subgroup
of a finitely presented group
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Sketch of Proof. We want a simple group that contains G.



Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains G.

Simple = The normal closure of any non-identity element is the
whole group.



Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains G.

Simple = The normal closure of any non-identity element is the
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〉
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Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains G.

Simple = The normal closure of any non-identity element is the
whole group.

Trick: Given words u, v ≠G 1, consider the group

G′ =
〈
G, x , t

�� (uux)t = uxv
〉
.

G′ is an HNN extension of G ∗ ⟨x⟩, so G embeds into G′.

But now v lies in the normal closure of u.
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Sketch of Proof. Let
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〈
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i vi
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where (ui , vi) is an enumeration of all pairs of non-identity words
in G.
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Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. Let

𝜎(G) =
〈
G, x , t1 , t2 , . . .

�� (uiux
i )ti = ux

i vi
〉

where (ui , vi) is an enumeration of all pairs of non-identity words
in G.

Then G embeds into 𝜎(G), and the normal closure of any
non-identity element of G contains G.

The desired simple group is the union of the sequence

G ≤ 𝜎(G) ≤ 𝜎2(G) ≤ 𝜎3(G) ≤ · · · . □
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The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Theorem (Thompson 1980)
Let G be a finitely generated group. Then:
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⇔ G embeds into a finitely generated,
computably presented simple group
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Theorem (Sacerdote 1977)
There are analogues of Boone and Higman’s theorem for the order,
conjugacy, power, and subgroup membership problems.
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Definition of V

The Cantor set C is the infinite product space {0, 1}𝜔.

A dyadic subdivision of C is any subdivision obtained by
repeatedly cutting pieces in half.

000 001 01 100 101 11



Definition of V

Thompson’s group V is the group of all homeomorphisms that
map “linearly” between the pieces of two dyadic subdivisions.

0𝜔 100𝜔 101𝜔 11𝜔

00𝜔 01𝜔 10𝜔 11𝜔

This group V is finitely presented and simple.
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Thompson’s Groups

V acts by homeomorphisms on the Cantor set.

F and T are subgroups of V .

F is the subgroup of V that
preserves the linear order.
finitely presented

T is the subgroup of V that
preserves the circular order.
finitely presented, simple



Thompson’s Group T

For example, here is an element of Thompson’s group T .

F

AB

C

D
E

−→
F

A
B

C

D E



Thompson’s Groups

F acts on the interval.
finitely presented

T acts on the circle.
finitely presented, simple

V acts on the Cantor set.
finitely presented, simple



Subgroups of V

The following groups embed into V :

1. All finite groups, free groups, free abelian groups,
⊕

𝜔V .

2. (Higman 1974, Brown 1987) Generalised Thompson groups
Fn, Tn, and Vn.

3. (Röver 1999) The Houghton groups Hn, and free products of
finitely many finite groups.

4. (Guba–Sapir 1999) Z ≀ Z, (Z ≀ Z) ≀ Z, ((Z ≀ Z) ≀ Z) ≀ Z, . . .

5. (Bleak–Kassabov–Matucci 2011) Q/Z.

6. (Bleak–Salazar-Díaz 2013) V ≀ A and V ∗ A, where A is any
finite group or A ∈ {Z,Q/Z}.
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Grigorchuk’s Group

Grigorchuk’s group G (of intermediate growth) is a certain group
of automorphisms of the infinite rooted binary tree T2.

The boundary 𝜕T2 is the Cantor set {0, 1}𝜔. G acts by
homeomorphisms on this Cantor set.



Grigorchuk’s Group

The action of G on binary sequences in {0, 1}𝜔 can be described
by automata.

id

c(1 1 0 1 0 1 1 0 1 · · · )
= 1 · d(1 0 1 0 1 1 0 1 · · · )
= 1 1 · b(0 1 0 1 1 0 1 · · · )
= 1 1 0 · a(1 0 1 1 0 1 · · · )
= 1 1 0 0 · id(0 1 1 0 1 · · · )
= 1 1 0 0 0 1 1 0 1 · · ·
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Grigorchuk’s Group

The action of G on binary sequences in {0, 1}𝜔 can be described
by automata.

id

c(1 1 0 1 0 1 1 0 1 · · · )
= 1 · d(1 0 1 0 1 1 0 1 · · · )
= 1 1 · b(0 1 0 1 1 0 1 · · · )
= 1 1 0 · a(1 0 1 1 0 1 · · · )
= 1 1 0 0 · id(0 1 1 0 1 · · · )
= 1 1 0 0 0 1 1 0 1 · · ·

Every element of G has such an automaton.
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Grigorchuk’s Group

Theorem (Grigorchuk 1979)
The group G = ⟨a, b, c, d⟩ has intermediate growth, and every
element has finite order.

Does G embed into V?

Theorem (Röver 1999)
1. Every finitely generated torsion subgroup of V is finite. Hence

G does not embed into V.

2. The group VG generated by V and G is finitely presented and
simple!
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In general, we can consider groups of automata G that act on the
d-ary Cantor set {0, . . . , d − 1}𝜔.

Write s|w for the state obtained by starting in state s and then taking
input w.

id

G is self-similar if g|w ∈ G
for every g ∈ G and every
finite word w.

G is contracting if there
exists a finite set N ⊂ G such
that g|w ∈ N for all g ∈ G and
all sufficiently long words w.
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Automata Groups

Nekrashevych (2004) considered the group VdG generated by:

▶ The generalised Thompson group Vd , and

▶ A self-similar group G acting on {0, . . . , d − 1}𝜔.

These are the Nekrashevych groups.

He gave necessary and sufficient conditions for VdG to be simple.

Theorem (Nekrashevych 2013)
If G is self-similar and contracting then VdG is finitely presented.

So this gives Boone–Higman embeddings for some contracting
self-similar groups.
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Theorem (Brin 2004)
The group 2V is finitely presented and simple.
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Brin’s Groups

Brin defined a family of groups nV (n ≥ 1) similarly, with 1V = V .

V 2V 3V

· · ·

Theorem (Brin 2009)
The group nV is finitely presented and simple for all n ≥ 1.



Brin’s Groups

These groups have very interesting algorithmic properties.

Theorem (B–Bleak 2014)
The order problem in nV is unsolvable for n ≥ 2

Theorem (B–Bleak–Matucci 2016)
The subgroup membership problem in nV is unsolvable for n ≥ 2.

Theorem (Salo 2020)
The conjugacy problem in nV is unsolvable for n ≥ 2.
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Virtually Special Groups

RAAG’s are very interesting from an embeddings perspective.

Haglund and Wise (2008) have shown that the fundamental group
of any (compact) special cube complex embeds into a RAAG.

Such groups are called special. Many groups of interest are
virtually special.



Virtually Special Groups

The virtually special groups include:

1. (Wise 2009) All limit groups.

2. (Haglund–Wise 2010) All finitely generated Coxeter groups.

3. (Agol 2012) All cubulated hyperbolic groups.

4. (Przytycki–Wise 2012) Fundamental groups of Riemannian
3-manifolds of non-positive curvature.

5. (Groves–Manning 2020, Oregón-Reyes 2020) Certain
cubulated relatively hyperbolic groups.



Virtually Special Groups

Theorem (B–Bleak–Matucci 2016)
Let G be a finitely generated group. If G has a finite-index subgroup
that embeds into a RAAG, then G embeds into one of Brin’s
groups nV.

Corollary
Every virtually special group embeds into a finitely presented simple
group.

Note: Scott (1984) had previously shown that each GLn(Z) embeds
into a finitely presented simple group, which covers RAAG’s
themselves.



Virtually Special Groups

Let G be a group that virtually embeds into the RAAG for the
graph (V ,E).

Theorem (B–Bleak–Matucci 2016)

G embeds into nV for n =

(
|V | + 1

2

)
− |E |.

Theorem (Kato 2016)
G embeds into nV for n =

(
|V |
2

)
− |E |.

Theorem (Salo 2021)
G embeds into 2V.



Virtually Special Groups

So Brin’s finitely presented simple group 2V contains all virtually
special groups.

−→
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Countable Abelian Groups

Problem (Higman): Find an explicit and natural example of a
finitely presented group that contains Q.

In 1999, Martin Bridson and Pierre de la Harpe submitted this
question to the Kourovka notebook as a “well-known” problem.

In 2020, James Hyde, Francesco Matucci, and I noticed an
elementary solution.



Countable Abelian Groups

Recall that Thompson’s group T acts on S1.

A lift of an element g ∈ T is a homeomorphism g : R→ R that
makes the following diagram commute:

R
g
//

��

R

��

S1
g
// S1

Note: If g is a lift of g then so is g + n for any n ∈ Z.

Let T be the group of all lifts of elements of T .



Countable Abelian Groups

For example, here’s an element of T :

AB

C

−→

A

B

C

and here’s one possible lift in T :

A A

A A

B B

B B

C C

C C



Countable Abelian Groups

Theorem (B–Hyde–Matucci 2020)
The group T is finitely presented and contains Q.

T =
〈
a, b

�� a4b−3 , (ba)5b−9 , [bab, a2baba2],
[bab, a2b2a2baba2ba2]

〉
Note: We did not introduce this group T . It had previously
appeared in the work of Ghys and Sergiescu (1987).
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Theorem (B–Hyde–Matucci 2020)
The group T is finitely presented and contains Q.

Proof. Start with the element f1(t) = t + 1:

It’s easy to find a square root f2 of f1:
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Countable Abelian Groups

Theorem (B–Hyde–Matucci 2020)
The group T is finitely presented and contains Q.

Proof. Now construct a cube root f3 of f2:

Next, construct a fourth root f4 of f3:

Then ⟨f1 , f2 , f3 , f4 , . . .⟩ � Q. □
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Theorem (B–Hyde–Matucci 2022)
Every countable abelian group embeds into a finitely presented
simple group.
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Theorem (B–Hyde–Matucci 2022)
Every countable abelian group embeds into a finitely presented
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Countable Abelian Groups

Theorem (B–Hyde–Matucci 2022)
Every countable abelian group embeds into a finitely presented
simple group.

Sketch of Proof. Conjugating T by a homeomorphism R→ (0, 1)
gives an action of T on [0, 1]

Cutting along the dyadics gives an action of T on the Cantor set.

We prove that the group VT generated by V and T is finitely
presented, simple, and contains

⊕
𝜔Q ⊕

⊕
𝜔Q/Z. □
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Twisting Brin’s Groups

In 2020, Matthew Zaremsky and I considered a “twisted” version of
Brin’s group 2V .

In general, you can twist nV by any group of permutations
of {1, . . . , n}.

You can even twist 𝜔V by a finitely generated group G of
permutations of an infinite set X .

Theorem (B–Zaremsky 2020)
Any twisted 𝜔V is simple, and is finitely generated as long as the
action of G on X is transitive.

Corollary (B–Zaremsky 2020)
Any finitely generated group G embeds isometrically into a finitely
generated simple group.
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We can also get finitely presented simple groups.

Theorem (B–Zaremsky 2020)
Suppose:

1. G is finitely presented,
2. G acts highly transitively on a set X, and
3. Stabilizers of finite subsets of X are finitely presented.

Then the resulting twisted 𝜔V is a finitely presented simple group
that contains G.
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We can also get finitely presented simple groups.

Theorem (B–Zaremsky 2020)
Suppose:

1. G is finitely presented,
2. G acts highly transitively on a set X, and
3. Stabilizers of finite subsets of X are finitely presented.

Then the resulting twisted 𝜔V is a finitely presented simple group
that contains G.

Zaremsky (2022) improves condition (3) to the stabilizers being
finitely generated.



Twisting Brin’s Groups

Corollary
Every self-similar, contracting group G of automata embeds into a
finitely presented simple group.

id

Sketch of Proof.
The Nekrashevych group
VdG is finitely presented,
highly transitive on any orbit,
and has finitely generated
stabilizers, so the resulting
twisted 𝜔V is finitely
presented and simple.

We can similarly handle many other “Thompson-like” groups.
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Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky last week)
Every hyperbolic group G embeds into a finitely presented simple
group.

Ingredients in the Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.

2. Consider the group V[G] of all homeomorphisms of 𝜕hG that
piecewise agree with elements of G.

3. Prove that V[G] is finitely presented, highly transitive on some
orbit, and has finitely generated stabilizers.

4. Conclude that V[G] embeds into a twisted 𝜔V which is finitely
presented and simple.
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Hyperbolic Groups

The horofunction boundary 𝜕hG is defined as follows.

...
...

...

This is the tree of atoms. Its space of ends is 𝜕hG.
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Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.
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Hyperbolic Groups

Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.

Theorem (B–Bleak–Matucci–Zaremsky last week)
The action of G on 𝜕hG is contracting, and hence V[G] is finitely
presented.

In particular, you always arrive at a state in the nucleus after at most
2|g| + 39𝛿 + 13 steps.



Open Questions

Which of the following groups embed into finitely presented simple
groups?

1. Braid groups Bn for n ≥ 4?

2. Mapping class groups?

3. Out(Fn)?

4. Finitely generated nilpotent groups?

5. Finitely generated metabelian groups?

6. One relator groups?

Also, what is an explicit, natural example of a finitely presented
group that contains GLn(Q)?



Mapping Class Groups



Mapping Class Groups

It is an open question whether mapping class groups and braid
groups embed into finitely presented simple groups.

For one possible approach, consider the following element of
Thompson’s group T .

F

AB

C

D
E

−→
F

A
B

C

D E



Mapping Class Groups

It is an open question whether mapping class groups and braid
groups embed into finitely presented simple groups.

For one possible approach, consider the following element of
Thompson’s group T .

F

AB

C

D
E

−→
F

A
B

C

D E

This looks just like the action of a pseudo-Anosov on PMF !



Mapping Class Groups

Train tracks give PMF a piecewise-integral projective (PIP)
structure, with elements of Mod(S) acting as PIP maps.

Thurston observed that the group PIP(S1) of PIP homeomorphisms
of S1 is isomorphic to Thompson’s group T .

Open Question (Thurston): For n ≥ 2, is the group PIP(Sn)
finitely generated?

Mod(Sg,n) embeds into PIP(S6g−7+2n) for g ≥ 3. Is this a finitely
presented simple group?



The End
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