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Example
Let X = [0, 1], and let h be a piecewise-smooth homeomorphism.
Then we could regard the breakpoints of h as singularities.
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Homeomorphisms with Singularities

Example 2
Let h be the following automorphism of the tree T2:

Then h ∈ Homeo(𝜕T2), and we could regard h as having a
singularity at the rightmost point.



Homeomorphisms with Singularities

Example 3
Let h be a homeomorphism of [0, 1] with infinitely many linear
pieces:

Then we could regard the accumulation points of the breakpoints as
singularities.
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no neighborhood of p on which h agrees with an element of B.



Making this Precise

Let X be a space, and fix a base group B ≤ Homeo(X).

We say h ∈ Homeo(X) has a singularity at a point p ∈ X if there is
no neighborhood of p on which h agrees with an element of B.

Examples
1. If X = [0, 1] and B = Diff1(X), then any breakpoint (or critical

point) is a singularity.

2. If X = 𝜕T2 and B is the group of piecewise-translations, then
any point with complicated local behavior is a singularity.

3. If X = [0, 1] and B = PL(X), then any accumulation point of
breakpoints is a singularity.



Finite Germ Extensions

Let X be a space, and let B ≤ G ≤ Homeo(X).

We say that G is a finite germ extension of B if:

1. Every element of G has finitely many singularities.

2. Every element of G without singularities lies in B.

3. If g ∈ G has a singularity at p, then there exists an h ∈ G that
agrees with g near p and has no other singularities.



Finite Germ Extensions

Let X be a space, and let B ≤ G ≤ Homeo(X).

We say that G is a finite germ extension of B if:

1. Every element of G has finitely many singularities.

2. Every element of G without singularities lies in B.

3. If g ∈ G has a singularity at p, then there exists an h ∈ G that
agrees with g near p and has no other singularities.

Example
Let B = PL([0, 1]), and let G be the group of all homeomorphisms
with countably many linear pieces that accumulate at a finite set of
points.
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Theorem (B–Hyde–Matucci 2023)
Suppose:

1. B is simple, locally moving, and has no global fixed points,

2. The orbits of B and G are the same, and

3. Each point stabilizer Gp is generated by Bp ∪ G′
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Main Simplicity Result

Let G ≤ Homeo(X) be a finite germ extension of B.

Theorem (B–Hyde–Matucci 2023)
Suppose:

1. B is simple, locally moving, and has no global fixed points,

2. The orbits of B and G are the same, and

3. Each point stabilizer Gp is generated by Bp ∪ G′
p ∪ G0

p.

Then G is simple.

By weakening these hypotheses, we can sometimes prove that G′

is simple and describe the isomorphism type of G/G′.
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Main Result on Finiteness Properties

Let G ≤ Homeo(X) be a finite germ extension of B, and let

sing(G) = {p ∈ X | p is a singular point of some g ∈ G}.

Theorem (B–Hyde–Matucci 2023)
Suppose that:

1. B has finitely many orbits in sing(G)n for all n ≥ 1.

2. The subgroup

{g ∈ G | g fixes M and has singularities only on M0}

has type F∞ for every pair M0 ⊆ M of finite subsets of sing(G).

Then G has type F∞.



Thompson’s Groups
and Finiteness Properties
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Thompson’s Groups

In 1965, Richard J. Thompson defined three infinite groups.

F acts on the interval.
finitely presented

T acts on the circle.
finitely presented, simple

V acts on the Cantor set.
finitely presented, simple



Thompson’s Group F

Thompson’s group F is the group of all piecewise-linear
homeomorphisms of [0, 1] for which:

▶ Each segment has slope 2n (n ∈ Z), and

▶ Each breakpoint has dyadic rational coordinates.
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Properties of F

▶ F is infinite and torsion-free, and F ′ is simple.

▶ F is dense in Homeo+
(
[0, 1]

)
.

▶ F is generated by two elements.

▶ F is finitely presented.

F = ⟨x0 , x1 | xx1
2 = x3 , xx1

3 = x4⟩

where
x2 = xx0

1 , x3 = xx0
2 , x4 = xx0

3 .



Thompson’s Groups T and V

T acts on the circle.

A

B
C

D

−→
A

B

C
D

V acts on the Cantor set.
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Type F∞

Brown and Geoghegan (1983) proved that F has type F∞.

This is a topological finiteness property of groups.

▶ A group has type F1 if it is finitely generated.

▶ A group has type F2 if it is finitely presented.

▶ A group has type F3 if it is finitely presented and there are
finitely many “relations between the relations”.
...

A group has type F∞ if it has type Fn for all n.
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Type F∞

These properties are defined topologically.

Recall that a CW complex is an arbitrary complex made of cells,
e.g. a simplicial or cubical complex.

A CW complex K is:

▶ 0-connected if it is connected.

▶ 1-connected if it is 0-connected and 𝜋1(K ) is trivial.

▶ 2-connected if it is 1-connected and 𝜋2(K ) is trivial.
...

K is contractible if it is n-connected for all n.
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Type F∞

A K(G, 1)-complex (or classifying space) for a group G is
CW complex K such that:

1. 𝜋1(K ) � G, and

2. The universal cover K̃ is contractible.

Every group G has a K (G, 1)-complex K consisting of:

▶ One vertex,

▶ One edge for each generator of G.

▶ One face for each relation in G (so K̃ is 1-connected).

▶ Enough 3-cells to make sure that K̃ is 2-connected.
...
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Type F∞

A K(G, 1)-complex (or classifying space) for a group G is
CW complex K such that:

1. 𝜋1(K ) � G, and

2. The universal cover K̃ is contractible.

Note: Such a K satisfies Hn(K ) = Hn(G) and Hn(K ) = Hn(G).

We say that G has type Fn if there exists a K (G, 1)-complex with
finitely many cells of dimension ≤ n.

type F1 = finitely generated
type F2 = finitely presented

...
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Type F∞

Brown and Geoghegan (1983) proved that F has type F∞.

Kenneth Brown Ross Geoghegan

Brown (1987) later generalized this to T and V , using a method
now known as Brown’s criterion.
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Type Fn Using Actions

If K is a K (G, 1) complex, then G acts on the universal cover K̃ by
deck transformations.

The edges of K̃ are essentially a Cayley graph for G, with 2-cells
for relations, and etc.

There is one orbit of cells in K̃ for each cell in K . The stabilizer of
each cell is trivial.

So G has type Fn if K̃ has finitely many orbits of cells of
dimension ≤ n.



Type Fn Using Actions

Proposition
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Suppose that:
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Type Fn Using Actions

Proposition
Let G be a group acting rigidly on a CW complex K̃ , and let n ≥ 1.
Suppose that:

1. K̃ is (n − 1)-connected and has finitely many orbits of cells.

2. For 0 ≤ j ≤ n, the stabilizer of each j-cell has type Fn−j .

Then G has type Fn.

Unfortunately, condition (1) is hard to satisfy. We can make a
complex more connected by adding more cells, but we don’t want
infinitely many cell orbits.



Brown’s Criterion

Brown’s idea for proving F∞ is to use a chain of complexes:

K̃1 ⊂ K̃2 ⊂ K̃3 ⊂ · · ·

We make sure that:
1. Each K̃i has finitely many orbits of cells, and
2. The union K̃ =

⋃∞
i=1 K̃i is contractible.

Since the K̃i are “converging” to a contractible space, they ought to
be highly connected when i is large. We can prove this by showing
that for each n the sequence

𝜋n(K̃1) → 𝜋n(K̃2) → 𝜋n(K̃3) → · · ·

eventually stabilizes.



Discrete Morse Theory

Bestvina and Brady (1996) introduced powerful methods for
analysing the homomorphisms 𝜋n(K̃i) → 𝜋n(K̃i+1).

Mladen Bestvina Noel Brady

They showed how to understand such homomorphisms by
considering the connectivity of the descending links.



Thompson-like groups

Using Brown’s criterion and Bestvina–Brady Morse theory, many
“Thompson-like” groups have been shown to have type F∞

braided V
Bux et al. 2016

Brin’s nV
Fluch et al. 2013

Röver’s VG
B–Matucci 2016



Main Result on Finiteness Properties

Let G ≤ Homeo(X) be a finite germ extension of B, and let

sing(G) = {p ∈ X | p is a singular point of some g ∈ G}.

Theorem (B–Hyde–Matucci 2023)
Suppose that:

1. B has finitely many orbits in sing(G)n for all n ≥ 1.

2. The subgroup

{g ∈ G | g fixes M and has singularities only on M0}

has type F∞ for every pair M0 ⊆ M of finite subsets of sing(G).

Then G has type F∞.
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The Boone–Higman Conjecture

Let G be a group with a countable generating set S, and let W be
the set of all words for the identity.

▶ G is computably presented if W is computably enumerable.

▶ G has solvable word problem if W is computable.

The Boone–Higman Conjecture (1973)
Every group with solvable word problem embeds into a finitely
presented simple group.

Theorem (B–Hyde–Matucci 2023)
Every countable abelian group embeds into a finitely presented
simple group.
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Automorphisms of F

It follows from a theorem of Rubin that

Aut(F) = the normalizer of F in Homeo([0, 1]).

In particular, Aut(F) = A ⋊ Z2 for some A ≤ Homeo+([0, 1]).

Matt Brin (1996) characterized elements of A:

1. Elements of A have countably many linear pieces, which can
accumulate near 0 and 1.

2. Slopes of elements of A are 2n, with breakpoints at dyadic
rationals.

3. If f ∈ A, then f (2x) = 2 f (x) for x close to 0, and similarly at 1.
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Automorphisms of F

So A is a finite germ extension of Thompson’s group F , with
elements having singularities at 0 and 1.

Brin found a short exact sequence:

F ↩→ A ↠ T × T

so A has type F∞.

Theorem (B–Hyde–Matucci 2022)
A has a subgroup isomorphic to Q.

This was the first explicit example of a finitely presented group that
contains Q.
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Theorem (B–Hyde–Matucci 2023)
The group Q embeds into a finitely presented simple group.

Sketch of Proof:
1. Identify 0 and 1 to get an action of A on the circle S1.

2. Let TA ≤ Homeo(S1) be the group generated by A and
Thompson’s group T .

3. Then TA is a finite germ extension of T . It follows from our
main theorems that TA is simple and has type F∞.

TA contains A and hence Q. In fact, TA contains Q∞, and hence
contains every countable, torsion-free abelian group. □
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Some Boone–Higman Embeddings

Theorem (B–Hyde–Matucci 2023)
The group Q embeds into a finitely presented simple group.

Theorem (B–Hyde–Matucci 2023)
Every countable abelian group embeds into a finitely presented
simple group.

Sketch of Proof:
1. Define an action of A on the Cantor set.

2. Make a group VA which is a finite germ extension of V .

3. Then VA is simple and has type F∞. It contains Q∞ ⊕ (Q/Z)∞
and hence every countable abelian group. □
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Grigorchuk’s group

Grigorchuk’s group G is a certain group of automorphisms of T2.

It is generated by four elements a, b, c, d, three of which have
singularities at the rightmost point of 𝜕T2.
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Röver’s group

In 1999, Röver consider the group VG of homeomorphisms of a
Cantor set generated by G and Thompson’s group V .

Theorem (Röver 1999 and 2002)
The group VG is finitely presented and simple, and is isomorphic to
the abstract commensurator of G.

Theorem (B–Matucci 2016)
Röver’s group VG has type F∞.

Note: Röver’s group is a finite germ extension of V . This gives an
easier proof that it’s simple and has type F∞.
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Motivated by connections to C∗-algebras, Nekrashevych (2004)
considered the groups VdG generated by a self-similar group G
and Vd . These are the Röver–Nekrashevych groups.

Nekrashevych gave conditions under which VdG is simple.
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Skipper and Zaremsky determined the finiteness properties for two
infinite classes of Röver–Nekrashevych groups VdG.

Theorem (Skipper–Witzel–Zaremsky 2019)
For every n ≥ 1, there exists a simple group that has type Fn but
not Fn+1.

Theorem (Nekrashevych 2018)
If G is contracting then VdG is finitely presented.

Conjecture (Nekrashevych)
If G is a contracting then VdG has type F∞.
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Röver–Nekrashevych groups

A finitely-generated self-similar group G is called a bounded
automata group if its elements have finitely many singularities.

Examples
Gupta–Sidki groups, iterated monodromy groups for polynomials
(e.g. the basilica group)

Bondarenko (2007) proved that bounded automata groups are
contracting.

Theorem (B–Hyde–Matucci 2023)
If G is a bounded automata group, then VdG has type F∞.



The End
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