Finite Germ Extensions

Jim Belk, University of Glasgow

Groups and Topology, Lancaster University, 28 April 2023

Collaborators

James Hyde University of Copenhagen

Francesco Matucci University of Milan–Bicocca

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *X* be a topological space, and let $h \in \text{Homeo}(X)$.

A *singularity* of *h* is a point at which *h* has "unusual behavior".

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let *X* be a topological space, and let $h \in \text{Homeo}(X)$.

A *singularity* of *h* is a point at which *h* has "unusual behavior".

Example

Let X = [0, 1], and let *h* be a piecewise-smooth homeomorphism. Then we could regard the breakpoints of *h* as singularities.

ション 小田 マイビット ビックタン

Example 2

Let *h* be the following automorphism of the tree T_2 :

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example 2

Let *h* be the following automorphism of the tree T_2 :

Then $h \in \text{Homeo}(\partial T_2)$, and we could regard h as having a singularity at the rightmost point.

Example 3

Let h be a homeomorphism of [0, 1] with infinitely many linear pieces:

Then we could regard the accumulation points of the breakpoints as singularities.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Making this Precise

Let *X* be a space, and fix a **base group** $B \leq \text{Homeo}(X)$.

We say $h \in \text{Homeo}(X)$ has a *singularity* at a point $p \in X$ if there is no neighborhood of p on which h agrees with an element of B.

Making this Precise

Let *X* be a space, and fix a **base group** $B \leq \text{Homeo}(X)$.

We say $h \in \text{Homeo}(X)$ has a *singularity* at a point $p \in X$ if there is no neighborhood of p on which h agrees with an element of B.

Examples

- 1. If *X* = [0, 1] and *B* = Diff¹(*X*), then any breakpoint (or critical point) is a singularity.
- 2. If $X = \partial T_2$ and *B* is the group of piecewise-translations, then any point with complicated local behavior is a singularity.
- If X = [0, 1] and B = PL(X), then any accumulation point of breakpoints is a singularity.

Finite Germ Extensions

Let *X* be a space, and let $B \leq G \leq \text{Homeo}(X)$.

We say that G is a *finite germ extension* of B if:

- 1. Every element of *G* has finitely many singularities.
- 2. Every element of *G* without singularities lies in *B*.
- 3. If $g \in G$ has a singularity at p, then there exists an $h \in G$ that agrees with g near p and has no other singularities.

Finite Germ Extensions

Let *X* be a space, and let $B \le G \le \text{Homeo}(X)$.

We say that G is a *finite germ extension* of B if:

- 1. Every element of *G* has finitely many singularities.
- 2. Every element of *G* without singularities lies in *B*.
- 3. If $g \in G$ has a singularity at p, then there exists an $h \in G$ that agrees with g near p and has no other singularities.

Example

Let B = PL([0, 1]), and let G be the group of all homeomorphisms with countably many linear pieces that accumulate at a finite set of points.

Main Simplicity Result

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of *B*.

Main Simplicity Result

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of *B*.

Theorem (B–Hyde–Matucci 2023) Suppose:

1. B is simple, locally moving, and has no global fixed points,

- 2. The orbits of B and G are the same, and
- 3. Each point stabilizer G_p is generated by $B_p \cup G'_p \cup G^0_p$.

Then G is simple.

Main Simplicity Result

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of *B*.

Theorem (B–Hyde–Matucci 2023) *Suppose:*

- 1. B is simple, locally moving, and has no global fixed points,
- 2. The orbits of B and G are the same, and
- 3. Each point stabilizer G_p is generated by $B_p \cup G'_p \cup G^0_p$.

Then G is simple.

By weakening these hypotheses, we can sometimes prove that G' is simple and describe the isomorphism type of G/G'.

Main Result on Finiteness Properties

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Result on Finiteness Properties

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of B, and let

 $sing(G) = \{p \in X \mid p \text{ is a singular point of some } g \in G\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Main Result on Finiteness Properties

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of B, and let

 $sing(G) = \{p \in X \mid p \text{ is a singular point of some } g \in G\}.$

Theorem (B–Hyde–Matucci 2023)

Suppose that:

1. B has finitely many orbits in $sing(G)^n$ for all $n \ge 1$.

2. The subgroup

 $\{g \in G \mid g \text{ fixes } M \text{ and has singularities only on } M_0\}$

has type F_{∞} for every pair $M_0 \subseteq M$ of finite subsets of sing(*G*).

Then G has type F_{∞} .

Thompson's Groups and Finiteness Properties

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

In 1965, Richard J. Thompson defined three infinite groups.

Richard J. Thompson, 2004

・ロト ・ 四ト ・ ヨト ・ ヨト

ъ

In 1965, Richard J. Thompson defined three infinite groups.

In 1965, Richard J. Thompson defined three infinite groups.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

In 1965, Richard J. Thompson defined three infinite groups.

F acts on the interval. **finitely presented**

T acts on the circle. **finitely presented, simple**

V acts on the Cantor set. **finitely presented, simple**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Thompson's group F is the group of all piecewise-linear homeomorphisms of [0, 1] for which:

- Each segment has slope 2^n ($n \in \mathbb{Z}$), and
- Each breakpoint has dyadic rational coordinates.

F is infinite and torsion-free, and F' is simple.

F is infinite and torsion-free, and F' is simple.

F is dense in Homeo₊([0, 1]).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

F is infinite and torsion-free, and F' is simple.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

F is dense in Homeo₊([0, 1]).

- F is infinite and torsion-free, and F' is simple.
- *F* is dense in Homeo₊([0, 1]).
- ► *F* is generated by two elements.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

F is infinite and torsion-free, and F' is simple.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- F is dense in Homeo₊([0, 1]).
- ► *F* is generated by two elements.

F is infinite and torsion-free, and F' is simple.

- F is generated by two elements.
- ► *F* is finitely presented.

$$F = \langle x_0, x_1 \mid x_2^{x_1} = x_3, \, x_3^{x_1} = x_4 \rangle$$

where

$$x_2 = x_1^{x_0}, \qquad x_3 = x_2^{x_0}, \qquad x_4 = x_3^{x_0}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thompson's Groups *T* and *V*

T acts on the circle.

V acts on the Cantor set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Brown and Geoghegan (1983) proved that F has *type* \mathbf{F}_{∞} .

Ken Brown

Ross Geoghegan

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let G be a group.

A K(G,1)-complex is a connected CW complex K such that:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. $\pi_1(K) \cong G$, and
- 2. The universal cover \widetilde{K} is contractible.

Let G be a group.

A K(G, 1)-complex is a connected CW complex K such that:

- 1. $\pi_1(K) \cong G$, and
- 2. The universal cover \widetilde{K} is contractible.

We say that *G* has *type* F_n if there exists a K(G, 1)-complex whose *n*-skeleton has finitely many cells.

Let G be a group.

A K(G, 1)-complex is a connected CW complex K such that:

- 1. $\pi_1(K) \cong G$, and
- 2. The universal cover \widetilde{K} is contractible.

We say that *G* has *type* F_n if there exists a K(G, 1)-complex whose *n*-skeleton has finitely many cells.

type F_1 = finitely generated type F_2 = finitely presented

:

Let G be a group.

A K(G, 1)-complex is a connected CW complex K such that:

- 1. $\pi_1(K) \cong G$, and
- 2. The universal cover \widetilde{K} is contractible.

We say that *G* has *type* F_n if there exists a K(G, 1)-complex whose *n*-skeleton has finitely many cells.

type F_1 = finitely generated type F_2 = finitely presented :

We say that *G* has *type* \mathbf{F}_{∞} if it has type \mathbf{F}_n for all *n*.

Brown and Geoghegan (1983) proved that *F* has *type* F_{∞} .

Kenneth Brown

Ross Geoghegan

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Brown and Geoghegan (1983) proved that *F* has *type* F_{∞} .

Kenneth Brown

Ross Geoghegan

Brown (1987) later generalized this to T and V, using a method now known as **Brown's criterion**.

Type F_n Using Actions

Proposition

Let G be a group acting rigidly on a CW complex K, and let $n \ge 1$. Suppose that:

- 1. K is (n-1)-connected, and G acts cocompactly on K.
- 2. For $0 \le j \le n$, the stabilizer of each *j*-cell has type F_{n-j} .

Then G has type F_n .

Type F_n Using Actions

Proposition

Let G be a group acting rigidly on a CW complex K, and let $n \ge 1$. Suppose that:

- 1. K is (n-1)-connected, and G acts cocompactly on K.
- 2. For $0 \le j \le n$, the stabilizer of each j-cell has type F_{n-j} .

Then G has type F_n .

The trouble is condition (1). We can make a complex more connected by adding more cells, but this can ruin cocompactness.

Type F_n Using Actions

Proposition

Let G be a group acting rigidly on a CW complex K, and let $n \ge 1$. Suppose that:

- 1. K is (n-1)-connected, and G acts cocompactly on K.
- 2. For $0 \le j \le n$, the stabilizer of each j-cell has type F_{n-j} .

Then G has type F_n .

The trouble is condition (1). We can make a complex more connected by adding more cells, but this can ruin cocompactness.

For example, in many cases there is a nice contractible K which is infinite-dimensional, but then G can't act cocompactly.

Brown's Criterion

Brown's idea is to use a *chain* of complexes:

 $K_1 \subset K_2 \subset K_3 \subset \cdots$

We make sure that:

- 1. G acts cocompactly on each K_i , and
- 2. The union $K = \bigcup_{i=1}^{\infty} K_i$ is contractible.

Since the K_i are "converging" to a contractible space, they ought to be highly connected when *i* is large. We can prove this by showing that for each *n* the sequence

$$\pi_n(K_1) \to \pi_n(K_2) \to \pi_n(K_3) \to \cdots$$

eventually stabilizes.

Discrete Morse Theory

Bestvina and Brady (1996) introduced powerful methods for analysing the homomorphisms $\pi_n(K_i) \rightarrow \pi_n(K_{i+1})$.

Mladen Bestvina

Noel Brady

They showed how to understand such homomorphisms by considering the connectivity of the *descending links*.

Thompson-like groups

Using Brown's criterion and Bestvina–Brady Morse theory, many "Thompson-like" groups have been shown to have type F_∞

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

Main Result on Finiteness Properties

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of B, and let

 $sing(G) = \{p \in X \mid p \text{ is a singular point of some } g \in G\}.$

Theorem (B–Hyde–Matucci 2023)

Suppose that:

1. B has finitely many orbits in $sing(G)^n$ for all $n \ge 1$.

2. The subgroup

 $\{g \in G \mid g \text{ fixes } M \text{ and has singularities only on } M_0\}$

has type F_{∞} for every pair $M_0 \subseteq M$ of finite subsets of sing(*G*).

Then G has type F_{∞} .

Application to the Boone–Higman Conjecture

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Let G be a group with a countable generating set S, and let W be the set of all words for the identity.

► *G* is *computably presented* if *W* is computably enumerable.

• *G* has *solvable word problem* if *W* is computable.

Let G be a group with a countable generating set S, and let W be the set of all words for the identity.

- ► *G* is *computably presented* if *W* is computably enumerable.
- *G* has *solvable word problem* if *W* is computable.

Higman's Embedding Theorem (1961)

Every computably presented group embeds into a finitely presented group.

Let G be a group with a countable generating set S, and let W be the set of all words for the identity.

► *G* is *computably presented* if *W* is computably enumerable.

• *G* has *solvable word problem* if *W* is computable.

Let G be a group with a countable generating set S, and let W be the set of all words for the identity.

- *G* is *computably presented* if *W* is computably enumerable.
- *G* has *solvable word problem* if *W* is computable.

The Boone–Higman Conjecture (1973)

Every group with solvable word problem embeds into a finitely presented simple group.

Let G be a group with a countable generating set S, and let W be the set of all words for the identity.

- *G* is *computably presented* if *W* is computably enumerable.
- *G* has *solvable word problem* if *W* is computable.

The Boone–Higman Conjecture (1973)

Every group with solvable word problem embeds into a finitely presented simple group.

Theorem (B–Hyde–Matucci 2023)

Every countable abelian group embeds into a finitely presented simple group.

<ロ>

It follows from a theorem of Rubin that

Aut(F) = the normalizer of F in Homeo([0, 1]).

In particular, $\operatorname{Aut}(F) = \mathcal{A} \rtimes \mathbb{Z}_2$ for some $\mathcal{A} \leq \operatorname{Homeo}_+([0, 1])$.

It follows from a theorem of Rubin that

Aut(F) = the normalizer of F in Homeo([0, 1]).

In particular, $Aut(F) = \mathcal{A} \rtimes \mathbb{Z}_2$ for some $\mathcal{A} \leq Homeo_+([0, 1])$.

Matt Brin (1996) characterized elements of A:

It follows from a theorem of Rubin that

Aut(F) = the normalizer of F in Homeo([0, 1]).

In particular, $Aut(F) = \mathcal{A} \rtimes \mathbb{Z}_2$ for some $\mathcal{A} \leq Homeo_+([0, 1])$.

Matt Brin (1996) characterized elements of A:

1. Elements of A have countably many linear pieces, which can accumulate near 0 and 1.

It follows from a theorem of Rubin that

Aut(F) = the normalizer of F in Homeo([0, 1]).

In particular, $Aut(F) = A \rtimes \mathbb{Z}_2$ for some $A \leq Homeo_+([0, 1])$.

Matt Brin (1996) characterized elements of A:

- 1. Elements of \mathcal{A} have countably many linear pieces, which can accumulate near 0 and 1.
- 2. Slopes of elements of A are 2^n , with breakpoints at dyadic rationals.

It follows from a theorem of Rubin that

Aut(F) = the normalizer of F in Homeo([0, 1]).

In particular, $Aut(F) = A \rtimes \mathbb{Z}_2$ for some $A \leq Homeo_+([0, 1])$.

Matt Brin (1996) characterized elements of A:

- 1. Elements of \mathcal{A} have countably many linear pieces, which can accumulate near 0 and 1.
- 2. Slopes of elements of A are 2^n , with breakpoints at dyadic rationals.
- 3. If $f \in A$, then f(2x) = 2 f(x) for x close to 0, and similarly at 1.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

So A is a finite germ extension of Thompson's group F, with elements having singularities at 0 and 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

So A is a finite germ extension of Thompson's group F, with elements having singularities at 0 and 1.

Brin found a short exact sequence:

$$F \, \hookrightarrow \, \mathcal{A} \, \twoheadrightarrow \, T \times T$$

so \mathcal{A} has type F_{∞} .

So A is a finite germ extension of Thompson's group *F*, with elements having singularities at 0 and 1.

Brin found a short exact sequence:

$$F \, \hookrightarrow \, \mathcal{A} \, \twoheadrightarrow \, T \times T$$

so \mathcal{A} has type F_{∞} .

Theorem (B–Hyde–Matucci 2022) A has a subgroup isomorphic to \mathbb{Q} .

This was the first explicit example of a finitely presented group that contains \mathbb{Q} .

Theorem (B–Hyde–Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (B-Hyde-Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

1. Identify 0 and 1 to get an action of A on the circle S^1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem (B-Hyde-Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

1. Identify 0 and 1 to get an action of A on the circle S^1 .

Theorem (B-Hyde-Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

- 1. Identify 0 and 1 to get an action of A on the circle S^1 .
- 2. Let $TA \leq \text{Homeo}(S^1)$ be the group generated by A and Thompson's group T.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem (B-Hyde-Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

- 1. Identify 0 and 1 to get an action of A on the circle S^1 .
- 2. Let $TA \leq \text{Homeo}(S^1)$ be the group generated by A and Thompson's group T.

Theorem (B–Hyde–Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

- 1. Identify 0 and 1 to get an action of A on the circle S^1 .
- 2. Let $TA \leq \text{Homeo}(S^1)$ be the group generated by A and Thompson's group T.
- 3. Then TA is a finite germ extension of T. It follows from our main theorems that TA is simple and has type F_{∞} .

Theorem (B–Hyde–Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

- 1. Identify 0 and 1 to get an action of A on the circle S^1 .
- 2. Let $TA \leq \text{Homeo}(S^1)$ be the group generated by A and Thompson's group T.
- 3. Then TA is a finite germ extension of T. It follows from our main theorems that TA is simple and has type F_{∞} .

 $T\mathcal{A}$ contains \mathcal{A} and hence \mathbb{Q} .

Theorem (B–Hyde–Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Sketch of Proof:

- 1. Identify 0 and 1 to get an action of A on the circle S^1 .
- 2. Let $TA \leq \text{Homeo}(S^1)$ be the group generated by A and Thompson's group T.
- 3. Then TA is a finite germ extension of T. It follows from our main theorems that TA is simple and has type F_{∞} .

TA contains A and hence \mathbb{Q} . In fact, TA contains \mathbb{Q}^{∞} , and hence contains every countable, torsion-free abelian group.

Theorem (B–Hyde–Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (B-Hyde-Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Theorem (B–Hyde–Matucci 2023)

Every countable abelian group embeds into a finitely presented simple group.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (B–Hyde–Matucci 2023)

The group \mathbb{Q} embeds into a finitely presented simple group.

Theorem (B–Hyde–Matucci 2023)

Every countable abelian group embeds into a finitely presented simple group.

Sketch of Proof:

- 1. Define an action of \mathcal{A} on the Cantor set.
- 2. Make a group VA which is a finite germ extension of V.
- Then VA is simple and has type F_∞. It contains Q[∞] ⊕ (Q/Z)[∞] and hence every countable abelian group.
Application to Röver–Nekrashevych groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Grigorchuk's group

Grigorchuk's group G is a certain group of automorphisms of T_2 .

It is generated by four elements *a*, *b*, *c*, *d*, three of which have singularities at the rightmost point of ∂T_2 .

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

In 1999, Röver consider the group $V\mathcal{G}$ of homeomorphisms of a Cantor set generated by \mathcal{G} and Thompson's group V.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In 1999, Röver consider the group $V\mathcal{G}$ of homeomorphisms of a Cantor set generated by \mathcal{G} and Thompson's group V.

Theorem (Röver 1999 and 2002)

The group VG is finitely presented and simple, and is isomorphic to the abstract commensurator of G.

In 1999, Röver consider the group $V\mathcal{G}$ of homeomorphisms of a Cantor set generated by \mathcal{G} and Thompson's group V.

Theorem (Röver 1999 and 2002)

The group VG is finitely presented and simple, and is isomorphic to the abstract commensurator of G.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (B–Matucci 2016) Röver's group V \mathcal{G} has type F_{∞} .

In 1999, Röver consider the group $V\mathcal{G}$ of homeomorphisms of a Cantor set generated by \mathcal{G} and Thompson's group V.

Theorem (Röver 1999 and 2002)

The group VG is finitely presented and simple, and is isomorphic to the abstract commensurator of G.

Theorem (B–Matucci 2016) Röver's group V \mathcal{G} has type F_{∞} .

Note: Röver's group is a finite germ extension of *V*. This gives an easier proof that it's simple and has type F_{∞} .

Grigorchuk's group generalizes to the class of *self-similar groups* $G \leq Aut(T_d)$.

イロト イポト イヨト イヨト

Grigorchuk's group generalizes to the class of *self-similar groups* $G \leq Aut(T_d)$.

Grigorchuk's group generalizes to the class of *self-similar groups* $G \leq Aut(T_d)$.

Examples

Gupta–Sidki groups, Hanoi towers groups, iterated monodromy groups (e.g. the basilica group)

Grigorchuk's group generalizes to the class of *self-similar groups* $G \leq Aut(T_d)$.

Examples

Gupta–Sidki groups, Hanoi towers groups, iterated monodromy groups (e.g. the basilica group)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Grigorchuk's group generalizes to the class of *self-similar groups* $G \leq Aut(T_d)$.

Examples

Gupta–Sidki groups, Hanoi towers groups, iterated monodromy groups (e.g. the basilica group)

Motivated by connections to C^* -algebras, Nekrashevych (2004) considered the groups V_dG generated by a self-similar group G and V_d . These are the *Röver–Nekrashevych groups*.

Grigorchuk's group generalizes to the class of *self-similar groups* $G \leq Aut(T_d)$.

Examples

Gupta–Sidki groups, Hanoi towers groups, iterated monodromy groups (e.g. the basilica group)

Motivated by connections to C^* -algebras, Nekrashevych (2004) considered the groups V_dG generated by a self-similar group G and V_d . These are the *Röver–Nekrashevych groups*.

Nekrashevych gave conditions under which V_dG is simple.

Skipper and Zaremsky determined the finiteness properties for two infinite classes of Röver–Nekrashevych groups V_dG .

Theorem (Skipper–Witzel–Zaremsky 2019)

For every $n \ge 1$, there exists a simple group that has type F_n but not F_{n+1} .

Skipper and Zaremsky determined the finiteness properties for two infinite classes of Röver–Nekrashevych groups V_dG .

Theorem (Skipper–Witzel–Zaremsky 2019)

For every $n \ge 1$, there exists a simple group that has type F_n but not F_{n+1} .

Theorem (Nekrashevych 2018)

If G is contracting then V_dG is finitely presented.

Skipper and Zaremsky determined the finiteness properties for two infinite classes of Röver–Nekrashevych groups V_dG .

Theorem (Skipper–Witzel–Zaremsky 2019)

For every $n \ge 1$, there exists a simple group that has type F_n but not F_{n+1} .

Theorem (Nekrashevych 2018)

If G is contracting then V_dG is finitely presented.

Conjecture (Nekrashevych)

If G is a contracting then V_dG has type F_{∞} .

A finitely-generated self-similar group *G* is called a **bounded automata group** if its elements have finitely many singularities.

A finitely-generated self-similar group *G* is called a **bounded automata group** if its elements have finitely many singularities.

Examples

Gupta–Sidki groups, iterated monodromy groups for polynomials (e.g. the basilica group)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

A finitely-generated self-similar group *G* is called a **bounded automata group** if its elements have finitely many singularities.

Examples

Gupta–Sidki groups, iterated monodromy groups for polynomials (e.g. the basilica group)

A finitely-generated self-similar group *G* is called a **bounded automata group** if its elements have finitely many singularities.

Examples

Gupta–Sidki groups, iterated monodromy groups for polynomials (e.g. the basilica group)

Bondarenko (2007) proved that bounded automata groups are contracting.

A finitely-generated self-similar group *G* is called a **bounded automata group** if its elements have finitely many singularities.

Examples

Gupta–Sidki groups, iterated monodromy groups for polynomials (e.g. the basilica group)

Bondarenko (2007) proved that bounded automata groups are contracting.

Theorem (B–Hyde–Matucci 2023)

If G is a bounded automata group, then V_dG has type F_{∞} .

The Complex

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of B, and let

 $sing(G) = \{p \in X \mid p \text{ is a singular point of some } g \in G\}.$

Theorem (B–Hyde–Matucci 2023)

Suppose that:

1. B has finitely many orbits in $sing(G)^n$ for all $n \ge 1$.

2. The subgroup

 $\{g \in G \mid g \text{ fixes } M \text{ and has singularities only on } M_0\}$

has type F_{∞} for every pair $M_0 \subseteq M$ of finite subsets of sing(*G*).

The Complex

To prove this theorem, we need a contractible complex K to which we can apply Brown's criterion and Bestvina–Brady discrete Morse theory.

Types of Singularities

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of B

Suppose $g, h \in G$ both have a singularity at a point $p \in X$.

These singularities have *the same type* if *h* agrees with some element of *Bg* in a neighborhood of *p*.

Types of Singularities

Let $G \leq \text{Homeo}(X)$ be a finite germ extension of B

Suppose $g, h \in G$ both have a singularity at a point $p \in X$.

These singularities have *the same type* if *h* agrees with some element of *Bg* in a neighborhood of *p*.

The *portrait* of an element $g \in G$ specifies the locations and types of the singularities.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Action on Portraits

There is a natural (right) action of *G* on the set of portraits.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Action on Portraits

There is a natural (right) action of *G* on the set of portraits.

G also acts on the set of *partial portraits*, which have finitely many "hidden points".

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The Complex

For each $p \in sing(G)$, let T(p) be the following tree.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The Complex

For each $p \in sing(G)$, let T(p) be the following tree.

Then the infinite product $K = \prod_{p \in sing(G)} T(p)$ is a contractible cubical complex whose vertices are the partial portraits.

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 = のへで

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

Note that:

 \blacktriangleright K_0 is a disjoint union of vertices (one for each portrait).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

Note that:

 \blacktriangleright K_0 is a disjoint union of vertices (one for each portrait).

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

Note that:

- \blacktriangleright K_0 is a disjoint union of vertices (one for each portrait).
- ► K₁ is connected.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

-

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

Note that:

 \blacktriangleright K_0 is a disjoint union of vertices (one for each portrait).

► K₁ is connected.

Consider the subcomplexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$

where the vertices of K_n are all partial portraits with $\leq n$ hidden points.

Note that:

- ► *K*⁰ is a disjoint union of vertices (one for each portrait).
- \blacktriangleright K_1 is connected.

We use Bestvina–Brady Morse theory to prove that each K_n is (n-1)-connected.

Theorem (B-Hyde-Matucci 2023)

Suppose that:

1. B has finitely many orbits in $sing(G)^n$ for all $n \ge 1$.

2. The subgroup

 $\{g \in G \mid g \text{ fixes } M \text{ and has singularities only on } M_0\}$

has type F_{∞} for every pair $M_0 \subseteq M$ of finite subsets of sing(*G*).

Theorem (B-Hyde-Matucci 2023)

Suppose that:

- 1. *B* has finitely many orbits in $sing(G)^n$ for all $n \ge 1$. Guarantees cocompactness for each K_n .
- 2. The subgroup

 $\{g \in G \mid g \text{ fixes } M \text{ and has singularities only on } M_0\}$

has type F_{∞} for every pair $M_0 \subseteq M$ of finite subsets of sing(*G*).

Theorem (B–Hyde–Matucci 2023) Suppose that:

- 1. *B* has finitely many orbits in $sing(G)^n$ for all $n \ge 1$. Guarantees cocompactness for each K_n .
- 2. The subgroup \leftarrow These subgroups are the cell stabilizers.

 $\{g \in G \mid g \text{ fixes } M \text{ and has singularities only on } M_0\}$

has type F_{∞} for every pair $M_0 \subseteq M$ of finite subsets of sing(*G*).

The End

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @