# Finitely Presented Groups that Contain $\mathbb{Q}$



## Jim Belk

#### University of St Andrews

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

#### Collaborators





James Hyde Cornell University Francesco Matucci University of Milano–Bicocca

# Higman's Embedding Theorem

Consider a countable group presentation

```
\langle s_1, s_2, s_3, \ldots | r_1, r_2, r_3, \ldots \rangle.
```

Such a presentation is *computable* if there exists an algorithm that outputs the list of relations  $r_1, r_2, r_3, ...$  as words in the generators.

A group *G* is *computably presented* if there exists a computable presentation for *G*.

#### Examples

- 1. Any finitely presented group is computably presented.
- 2. Any finitely generated subgroup of a finitely presented group is computably presented.

#### Higman's Embedding Theorem (1961)

Every computably presented group can be embedded into a finitely presented group.



Graham Higman, 1960

ション 小田 マイビット ビックタン

## **Example: The Rational Numbers**

Let  $\mathbb{Q}$  be the group of rational numbers under addition.

Then  $\mathbb{Q}$  is computably presented:

$$\mathbb{Q} \cong \langle s_1, s_2, s_3, \dots \mid (s_n)^n = s_{n-1} \text{ for all } n \geq 2 \rangle.$$

#### Corollary

The group  $\mathbb{Q}$  can be embedded into a finitely presented group.

Higman's proof is only partially constructive, but can be carried out explicitly for  $\mathbb{Q}$  (Mikaelian 2020). The resulting presentation is very large.

## Other Abelian Groups

The situation for other countable abelian groups is similar. It is known that any countable abelian group embeds into

$$\bigoplus_{k=1}^{\infty} \mathbb{Q} \quad \oplus \quad \bigoplus_{k=1}^{\infty} \mathbb{Q}/\mathbb{Z}.$$

But this group is computably presented, so by Higman's theorem it embeds into some finitely presented group.

#### Corollary

There exists a finitely presented group G that contains all countable abelian groups.

#### The Problem

In 1999, Bridson and de la Harpe submitted the following "well-known problem" to the Kourovka Notebook.

Problem (Kourovka Notebook 14.10)

(a) Find an explicit and "natural" finitely presented group G and an embedding of the additive group of the rationals Q in G.

There is an analogous question for a group  $G_n$  and an embedding of  $GL_n(\mathbb{Q})$  in  $G_n$ .

(b) Find an explicit embedding of  $\mathbb{Q}$  in a finitely generated group.

## Mikaelian's Examples

In 2005, Mikaelian gave two examples of finitely generated groups that contain  $\mathbb{Q}$ , solving part (b) of the problem.



Vahagn Mikaelian

#### Mikaelian's Examples

In 2005, Mikaelian gave two examples of finitely generated groups that contain  $\mathbb{Q}$ , solving part (b) of the problem.

#### Theorem (Mikaelian 2005)

The wreath product  $(\mathbb{Q} \wr \mathbb{Z}) \wr \mathbb{Z}$  has a two-generated subgroup which contains  $\mathbb{Q}$ .

#### Theorem (Mikaelian 2005)

The free product  $\mathbb{Q} * F_2$  has an HNN extension which can be generated by two elements.

Neither of Mikaelian's examples are finitely presented.

#### Main Results

We give five explicit examples of finitely presented groups that contain  $\mathbb{Q}.$ 

All of them are related to the *Thompson groups F*, *T*, and *V*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

#### Main Results

We give five explicit examples of finitely presented groups that contain  $\mathbb{Q}$ .

All of them are related to the *Thompson groups F*, *T*, and *V*.

#### Theorem (BHM 2020)

The following well-known finitely presented groups contain  $\mathbb{Q}$ :

- 1. The lift  $\overline{T}$  of Thompson's group T to the real line.
- 2. The braided Thompson group BV.
- 3. The automorphism group Aut(F) of Thompson's group F.

## Main Results: Two More Examples

We also give two **simple** examples TA and VA.

These act on the circle and the Cantor set, respectively.

#### Theorem (BHM 2020)

The groups TA and VA are two-generated, finitely presented simple groups. Moreover:

- 1. TA contains  $\mathbb{Q}$ , and
- 2. VA contains every countable abelian group.

## Main Results: Two More Examples

We also give two **simple** examples TA and VA.

These act on the circle and the Cantor set, respectively.

#### Theorem (BHM 2020)

The groups TA and VA are two-generated, finitely presented simple groups. Moreover:

- 1. TA contains  $\mathbb{Q}$ , and
- 2. VA contains every countable abelian group.

We actually prove something stronger than finite presentability:

Theorem (BHM 2020)

Both TA and VA have type  $F_{\infty}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

In the 1960's, Richard J. Thompson defined three infinite groups.



Richard Thompson, 2004

(日)

In the 1960's, Richard J. Thompson defined three infinite groups.



▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

**Thompson's group** F is the group of all piecewise-linear homeomorphisms of [0, 1] for which:

- Each segment has slope  $2^n$  ( $n \in \mathbb{Z}$ ), and
- Each breakpoint has dyadic rational coordinates.





► *F* is infinite and torsion-free.

- ► *F* is infinite and torsion-free.
- F is dense in Homeo<sub>+</sub>([0, 1]).





◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- ► *F* is infinite and torsion-free.
- F is dense in Homeo<sub>+</sub>([0, 1]).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- ► *F* is infinite and torsion-free.
- *F* is dense in Homeo<sub>+</sub>([0, 1]).
- F is generated by two elements.





- ► *F* is infinite and torsion-free.
- F is dense in Homeo<sub>+</sub>([0, 1]).
- ► *F* is generated by two elements.

- ► *F* is infinite and torsion-free.
- *F* is dense in Homeo<sub>+</sub>([0, 1]).
- F is generated by two elements.
- ► *F* is finitely presented.

$$F = \langle x_0, x_1 \mid x_2^{x_1} = x_3, x_3^{x_1} = x_4 \rangle$$

where

$$x_2 = x_1^{x_0}, \qquad x_3 = x_2^{x_0}, \qquad x_4 = x_3^{x_0}.$$

In 1983, Brown and Geoghegan generalized this result by proving that *F* has *type*  $\mathbf{F}_{\infty}$ .



Kenneth Brown



Ross Geoghegan

Let G be a group.

#### A K(G, 1)-complex is a connected CW complex X such that:

- 1.  $\pi_1(X) \cong G$ , and
- 2. The universal cover  $\widetilde{X}$  is contractible.

Let G be a group.

A K(G, 1)-complex is a connected CW complex X such that:

- 1.  $\pi_1(X) \cong G$ , and
- 2. The universal cover  $\widetilde{X}$  is contractible.

We say that *G* has *type*  $F_n$  if there exists a K(G, 1)-complex whose *n*-skeleton has finitely many cells.

Let G be a group.

A K(G, 1)-complex is a connected CW complex X such that:

- 1.  $\pi_1(X) \cong G$ , and
- 2. The universal cover  $\widetilde{X}$  is contractible.

We say that *G* has *type*  $F_n$  if there exists a K(G, 1)-complex whose *n*-skeleton has finitely many cells.

type  $F_1$  = finitely generated type  $F_2$  = finitely presented

:

Let G be a group.

A K(G, 1)-complex is a connected CW complex X such that:

- 1.  $\pi_1(X) \cong G$ , and
- 2. The universal cover  $\widetilde{X}$  is contractible.

We say that *G* has *type*  $F_n$  if there exists a K(G, 1)-complex whose *n*-skeleton has finitely many cells.

type  $F_1$  = finitely generated type  $F_2$  = finitely presented :

We say that *G* has *type*  $\mathbf{F}_{\infty}$  if it has type  $\mathbf{F}_n$  for all *n*.

Brown and Geoghegan proved that Thompson's group F has a K(F, 1)-complex with exactly two cells in each dimension.



Kenneth Brown



Ross Geoghegan

Thus *F* has type  $F_{\infty}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Let  $S^1$  be the circle obtained from [0, 1] by identifying 0 and 1.



Let  $S^1$  be the circle obtained from [0, 1] by identifying 0 and 1.

**Thompson's group** T is the group of all piecewise-linear homeomorphisms f of  $S^1$  for which:

- Each segment has slope  $2^n$  ( $n \in \mathbb{Z}$ ),
- Each breakpoint has dyadic rational coordinates, and
- ► f(0) is dyadic.



・ロト ・ 日 ト ・ 日 ト ・ 日



・ロト・日本・日本・日本・日本・日本

► T contains F.


► T contains F.



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

► T contains F.



- ► T contains F.
- ► *T* is simple and finitely presented.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

► T contains F.

► *T* is simple and finitely presented.

Lochak–Schneps presentation (1997):

 $\langle a, b \mid a^4, b^3, [bab, a^2baba^2], [bab, a^2b^2a^2baba^2ba^2], (ba)^5 \rangle$ 

- ► T contains F.
- ► *T* is simple and finitely presented.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

- ► T contains F.
- ► *T* is simple and finitely presented.
- ▶ Indeed, *T* has type  $F_{\infty}$  (Brown 1987).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► T contains F.
- ► *T* is simple and finitely presented.
- ▶ Indeed, *T* has type  $F_{\infty}$  (Brown 1987).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

T has elements of finite order.

- ► T contains F.
- ► *T* is simple and finitely presented.
- ▶ Indeed, *T* has type  $F_{\infty}$  (Brown 1987).
- ► *T* has elements of finite order.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

- ► T contains F.
- ► *T* is simple and finitely presented.
- ▶ Indeed, *T* has type  $F_{\infty}$  (Brown 1987).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

T has elements of finite order.

- ► T contains F.
- ► *T* is simple and finitely presented.
- ▶ Indeed, *T* has type  $F_{\infty}$  (Brown 1987).
- ► *T* has elements of finite order.
- ▶ Indeed, *T* contains  $\mathbb{Q}/\mathbb{Z}$  (Bleak, Kassabov, Matucci 2011).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A *lift* of an element  $g \in T$  is a homeomorphism  $\overline{g} \colon \mathbb{R} \to \mathbb{R}$  that makes the following diagram commute:



**Note:** If  $\overline{g}$  is a lift of g then so is  $\overline{g} + n$  for any  $n \in \mathbb{Z}$ .

Let  $\overline{T}$  be the group of all lifts of elements of T.

For example, here's an element of *T*:



and here's one possible lift in  $\overline{T}$ :



▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで



A PL homeomorphism  $f : \mathbb{R} \to \mathbb{R}$  lies in  $\overline{T}$  if and only if:

- Each segment of *f* has slope  $2^n$  ( $n \in \mathbb{Z}$ ),
- Each breakpoint of f has dyadic rational coordinates,

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

- f(0) is dyadic, and
- f(t+1) = f(t) + 1 for all  $t \in \mathbb{R}$ .

#### • $\overline{T}$ is torsion free.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- $\overline{T}$  is torsion free.
- The stabilizer of 0 in  $\overline{T}$  is isomorphic to *F*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- $\overline{T}$  is torsion free.
- The stabilizer of 0 in  $\overline{T}$  is isomorphic to *F*.
- $\overline{T}$  is generated by  $x_0, x_1$ , and  $s_2(t) = t + \frac{1}{2}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\overline{T}$  is torsion free.
- The stabilizer of 0 in  $\overline{T}$  is isomorphic to *F*.
- $\overline{T}$  is generated by  $x_0, x_1$ , and  $s_2(t) = t + \frac{1}{2}$ .
- The center of  $\overline{T}$  is infinite cyclic, generated by the translation

$$s_1(t) = t + 1.$$

Indeed, we have a short exact sequence

$$1 \longrightarrow \mathbb{Z} \longrightarrow \overline{T} \longrightarrow T \longrightarrow 1$$

- $\overline{T}$  is torsion free.
- The stabilizer of 0 in  $\overline{T}$  is isomorphic to *F*.
- $\overline{T}$  is generated by  $x_0, x_1$ , and  $s_2(t) = t + \frac{1}{2}$ .
- The center of  $\overline{T}$  is infinite cyclic, generated by the translation

$$s_1(t) = t + 1.$$

Indeed, we have a short exact sequence

$$1 \longrightarrow \mathbb{Z} \longrightarrow \overline{T} \longrightarrow T \longrightarrow 1.$$

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

•  $\overline{T}$  is finitely presented. Indeed, it has type  $F_{\infty}$ .

### Presentation for $\overline{T}$

#### Theorem (BHM 2020)

The group  $\overline{T}$  has a presentation with two generators and four relators:

$$\langle a, b \mid a^4 b^{-3}, (ba)^5 b^{-9}, [bab, a^2 baba^2], [bab, a^2 b^2 a^2 baba^2 ba^2] \rangle$$

**Note:** This is obtained by "lifting" the Lochak–Schneps presentation for T and simplifying. Adding  $a^4 = 1$  gives a presentation for T.

The group  $\overline{T}$  was first considered by Ghys and Sergiescu in 1987, as part of their work on the cohomology of *T*.



Étienne Ghys



Vlad Sergiescu

They proved that  $\overline{T}$  is perfect and is a central extension of T (but not the universal central extension).

#### Theorem (BHM 2020)

The group  $\overline{T}$  has uncountably many subgroups isomorphic to  $\mathbb{Q}$ .

**Note:** Every such subgroup contains the center of  $\overline{T}$ .

Our strategy will be to find subgroups that realize the presentation

$$\langle s_1, s_2, s_3, \ldots \mid s_n^n = s_{n-1} \text{ for all } n \geq 2 \rangle.$$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Does  $s_2$  have a cube root?

Yes. We just need to cut each half-interval into three pieces of sizes 1/8, 1/8, and 1/4:



Yes. We just need to cut each half-interval into three pieces of sizes 1/8, 1/8, and 1/4:



▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Yes. We just need to cut each half-interval into three pieces of sizes 1/8, 1/8, and 1/4:



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Each piece maps linearly to the next under  $s_3$ .

Yes. We just need to cut each half-interval into three pieces of sizes 1/8, 1/8, and 1/4:



Each piece maps linearly to the next under  $s_3$ .

To get a fourth root of  $s_3$ , we cut each interval into four pieces.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

# $\overline{T}$ Contains Q

Yes. We just need to cut each half-interval into three pieces of sizes 1/8, 1/8, and 1/4:



Each piece maps linearly to the next under  $s_3$ .

To get a fourth root of  $s_3$ , we cut each interval into four pieces.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Yes. We just need to cut each half-interval into three pieces of sizes 1/8, 1/8, and 1/4:



Each piece maps linearly to the next under  $s_3$ .

To get a fourth root of  $s_3$ , we cut each interval into four pieces.



ション 小田 マイビット ビックタン

Again, each piece maps linearly to the next under  $s_4$ .

# $\overline{T}$ Contains Q

In general, for each  $n \in \mathbb{N}$  we need a *cut pattern* that cuts [0, 1] into *n* intervals whose widths are powers of 1/2.



By iteratively cutting subintervals using the cut patterns, we can construct the desired sequence  $\{s_n\}$  in  $\overline{T}$ .

・ロト・日本・日本・日本・日本・日本

The *braided Thompson group BV* was introduced independently by Brin and Dehornoy in 2004.



Matthew Brin



Patrick Dehornoy

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

The *braided Thompson group BV* was introduced independently by Brin and Dehornoy in 2004.

Elements of BV are "braided tree pair diagrams".



The *braided Thompson group BV* was introduced independently by Brin and Dehornoy in 2004.

Elements of BV are "braided tree pair diagrams".

The following three elements generate a copy of  $\overline{T}$  in BV.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Thus *BV* contains  $\mathbb{Q}$ .

# Automorphisms of F

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○
# Automorphisms of F

The structure of Aut(F) was pinned down by Brin in 1996. His methods are based on a theorem of Rubin.



Matthew Brin



Matatyahu Rubin

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ─ 圖

# Rubin's Theorem

Given a space X and a subgroup  $G \leq \text{Homeo}(X)$ , consider the normalizer

$$N(G) = \{n \in \operatorname{Homeo}(X) \mid n^{-1}Gn = G\}.$$

Each element  $n \in N(G)$  induces an automorphism of G defined by

$$g \mapsto n^{-1}gn$$
.

#### Theorem (Rubin 1996)

Suppose X is locally compact, Hausdorff, and has no isolated points. If G is "locally moving", then

 $\operatorname{Aut}(G) \cong N(G).$ 

# Structure of Aut(*F*)

Brin proved that the action of F on (0, 1) is locally moving. Thus:

Corollary

Aut(*F*) is the normalizer of *F* in Homeo([0, 1]).



# Structure of Aut(*F*)

Brin proved that the action of F on (0, 1) is locally moving. Thus:

Corollary Aut(*F*) is the normalizer of *F* in Homeo([0, 1]).

It follows easily that

$$\operatorname{Aut}(F) = \mathcal{A} \rtimes \mathbb{Z}_2$$

where A is the orientation-preserving subgroup of Aut(F).

# Elements of $\mathcal{A}$

Brin showed that elements of A are piecewise-linear on (0, 1), but breakpoints can accumulate near 0 and 1.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

### Elements of $\mathcal{A}$

Brin showed that elements of A are piecewise-linear on (0, 1), but breakpoints can accumulate near 0 and 1.

#### Theorem (Brin 1996)

A homeomorphism  $f : [0, 1] \rightarrow [0, 1]$  lies in A if and only if it satisfies the following conditions:

- 1. f is piecewise-linear, except perhaps at 0 and 1.
- 2. Each linear segment of f has slope  $2^n$  ( $n \in \mathbb{Z}$ ).
- 3. Each breakpoint of f has dyadic rational coordinates.
- 4. f(2t) = 2 f(t) for all t in a neighborhood of 0.
- 5. f(2t-1) = 2f(t) 1 for all t in a neighborhood of 1.

## Elements of $\mathcal{A}$

The condition that f(2t) = 2 f(t) for t near 0 means that the graph of t is self-similar near (0, 0).



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

# Structure of $\mathcal{A}$

Brin constructed two homomorphisms

$$\varphi_0: \mathcal{A} \to T, \qquad \varphi_1: \mathcal{A} \to T$$

that describe the "bad part" of an element of  $\mathcal{A}$  near 0 and 1.

#### Theorem (Brin 1996)

The group A fits into a short exact sequence

$$1 \longrightarrow F \longrightarrow \mathcal{A} \longrightarrow T \times T \longrightarrow 1$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

It follows that  $\mathcal{A}$  is finitely presented, and indeed has type  $F_{\infty}$ .

It is not difficult to embed  $\overline{T}$  into  $\mathcal{A}$ .



It is not difficult to embed  $\overline{T}$  into  $\mathcal{A}$ .



It is not difficult to embed  $\overline{T}$  into  $\mathcal{A}$ .



▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

It is not difficult to embed  $\overline{T}$  into  $\mathcal{A}$ . It follows that  $\mathcal{A}$  contains  $\mathbb{Q}$ .



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

Identifying 0 and 1 gives an action of A on the circle.



Elements of A are piecewise-linear on the complement of the point 0 = 1.

Let TA be the group of circle homeomorphisms generated by T and A.

Let TA be the group of circle homeomorphisms generated by T and A.

Conjugating an element  $a \in A$  by an element  $t \in T$  moves the accumulation point.



Let TA be the group of circle homeomorphisms generated by T and A.

Let TA be the group of circle homeomorphisms generated by T and A.

General elements of TA are piecewise-linear except at finitely many dyadic accumulation points.



Let TA be the group of circle homeomorphisms generated by T and A.

General elements of TA are piecewise-linear except at finitely many dyadic accumulation points.

Let TA be the group of circle homeomorphisms generated by T and A.

General elements of TA are piecewise-linear except at finitely many dyadic accumulation points.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (BHM 2020)

TA is simple and finitely presented. Indeed, it has type  $F_\infty.$ 

Let TA be the group of circle homeomorphisms generated by T and A.

General elements of TA are piecewise-linear except at finitely many dyadic accumulation points.

#### Theorem (BHM 2020)

TA is simple and finitely presented. Indeed, it has type  $F_{\infty}$ .

**Note:** TA contains  $\bigoplus_{n \in \mathbb{N}} A$  and hence  $\bigoplus_{n \in \mathbb{N}} \mathbb{Q}$ .

Thus TA contains every countable, torsion-free abelian group.

Let *N* be a nontrivial normal subgroup of TA.

Let *N* be a nontrivial normal subgroup of TA.

Step 1: *N* contains a nontrivial element of *T*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let *N* be a nontrivial normal subgroup of TA.

**Step 1:** *N* contains a nontrivial element of *T*.



Let *N* be a nontrivial normal subgroup of TA.

**Step 1:** *N* contains a nontrivial element of *T*.



Let *N* be a nontrivial normal subgroup of TA.

**Step 1:** *N* contains a nontrivial element of *T*.



Let *N* be a nontrivial normal subgroup of TA.

**Step 1:** *N* contains a nontrivial element of *T*.



Then  $ntn^{-1}t^{-1} \in N \cap T$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .

Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .



▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .



▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .



Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .



Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .

**Step 4:** But [A, A] = A, so *N* contains *A*.

Let *N* be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T.

**Step 2:** Since *T* is simple, it follows that *N* contains *T*.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

**Step 3:** *N* contains  $[\mathcal{A}, \mathcal{A}]$ .

**Step 4:** But [A, A] = A, so *N* contains *A*.

Thus N = TA, so TA is simple.

# Proof that $T\mathcal{A}$ has type $F_{\infty}$

We use *Brown's criterion* (Brown 1987).

**Step 1:** Construct a contractible simplicial complex *K* on which TA acts by isometries, with simplex stabilizers having type  $F_{\infty}$ .
We use *Brown's criterion* (Brown 1987).

**Step 1:** Construct a contractible simplicial complex *K* on which TA acts by isometries, with simplex stabilizers having type  $F_{\infty}$ .



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

We use *Brown's criterion* (Brown 1987).

**Step 1:** Construct a contractible simplicial complex *K* on which TA acts by isometries, with simplex stabilizers having type  $F_{\infty}$ .



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

We use *Brown's criterion* (Brown 1987).

**Step 1:** Construct a contractible simplicial complex *K* on which TA acts by isometries, with simplex stabilizers having type  $F_{\infty}$ .



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

We use *Brown's criterion* (Brown 1987).

**Step 1:** Construct a contractible simplicial complex *K* on which TA acts by isometries, with simplex stabilizers having type  $F_{\infty}$ .

**Step 2:** Filter *K* as a union of invariant subcomplexes

$$K_1 \leq K_2 \leq K_3 \leq \cdots$$

Each  $K_n$  has finitely many orbits of simplices.

**Step 3:** Use Bestvina–Brady discrete Morse theory to prove that the connectivity of  $K_n$  goes to  $\infty$  as  $n \to \infty$ .

ション・ 山下・ 山下・ 山下・ 山下・ 山下・

## Presentation for TA

#### Theorem (BHM 2020)

TA is the amalgam of three of its finitely presented subgroups:



Note that the intersections

 $T \cap \mathcal{A} \cong F$ ,  $T \cap H \cong F \wr \mathbb{Z}_2$ ,  $\mathcal{A} \cap H \cong \operatorname{Stab}_{\mathcal{A}}(1/2)$ 

are finitely generated.

# Other Groups

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

### The Group VA

The action of  $\mathcal{A}$  on [0, 1] induces an action of  $\mathcal{A}$  on the Cantor set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let VA be the group generated by A and Thompson's group V.

### The Group VA

The action of  $\mathcal{A}$  on [0, 1] induces an action of  $\mathcal{A}$  on the Cantor set.

Let VA be the group generated by A and Thompson's group V.

Theorem (BHM 2020)

VA is simple and finitely presented. Indeed, it has type  $F_{\infty}$ .

#### The Group VA

The action of  $\mathcal{A}$  on [0, 1] induces an action of  $\mathcal{A}$  on the Cantor set.

Let VA be the group generated by A and Thompson's group V.

#### Theorem (BHM 2020)

VA is simple and finitely presented. Indeed, it has type  $F_{\infty}$ .

**Note:** *VA* contains  $\bigoplus_{n \in \mathbb{N}} VA$  and hence  $\bigoplus_{n \in \mathbb{N}} (\mathbb{Q} \oplus \mathbb{Q}/\mathbb{Z})$ . It follows that *VA* contains every countable abelian group.

#### Nekrashevych groups

Our simplicity and  $F_{\infty}$  proofs apply to a large class of groups *G* that satisfy the following conditions:

- 1. *G* contains a generalized Thompson group  $F_n$ ,  $T_n$ , or  $V_n$ .
- 2. Every element of *G* has finitely many "unusual" points.

For example, *Röver's group* is the group  $V\mathcal{G}$  generated by Thompson's group V and Grigorchuk's group  $\mathcal{G}$ . Our methods give a new proof that  $V\mathcal{G}$  is simple (Röver 1999) and has type  $F_{\infty}$ (BM 2014).

Indeed, we can prove simplicity and finiteness results for a large class of Nekrashevych groups.

# The End

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @