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Higman’s Embedding Theorem

Consider a countable group presentation

〈s1 , s2 , s3 , . . . | r1 , r2 , r3 , . . .〉.

Such a presentation is computable if there exists an algorithm that
outputs the list of relations r1 , r2 , r3 , . . . as words in the generators.

A group G is computably presented if there exists a computable
presentation for G.

Examples
1. Any finitely presented group is computably presented.

2. Any finitely generated subgroup of a finitely presented group is
computably presented.



Higman’s Embedding Theorem (1961)
Every computably presented group can be embedded into a finitely
presented group.

Graham Higman, 1960



Example: The Rational Numbers

Let Q be the group of rational numbers under addition.

Then Q is computably presented:

Q �
〈
s1 , s2 , s3 , . . .

�� (sn)n � sn−1 for all n ≥ 2
〉
.

Corollary
The group Q can be embedded into a finitely presented group.

Higman’s proof is only partially constructive, but can be carried out
explicitly for Q (Mikaelian 2020). The resulting presentation is very
large.



Other Abelian Groups

The situation for other countable abelian groups is similar. It is
known that any countable abelian group embeds into

∞⊕
k�1
Q ⊕

∞⊕
k�1
Q/Z.

But this group is computably presented, so by Higman’s theorem it
embeds into some finitely presented group.

Corollary
There exists a finitely presented group G that contains all countable
abelian groups.



The Problem

In 1999, Bridson and de la Harpe submitted the following
“well-known problem” to the Kourovka Notebook.

Problem (Kourovka Notebook 14.10)
(a) Find an explicit and “natural” finitely presented group G and an

embedding of the additive group of the rationals Q in G.

There is an analogous question for a group Gn and an
embedding of GLn(Q) in Gn.

(b) Find an explicit embedding of Q in a finitely generated group.



Mikaelian’s Examples

In 2005, Mikaelian gave two examples of finitely generated groups
that contain Q, solving part (b) of the problem.

Vahagn Mikaelian



Mikaelian’s Examples

In 2005, Mikaelian gave two examples of finitely generated groups
that contain Q, solving part (b) of the problem.

Theorem (Mikaelian 2005)
The wreath product (Q o Z) o Z has a two-generated subgroup which
contains Q.

Theorem (Mikaelian 2005)
The free product Q ∗ F2 has an HNN extension which can be
generated by two elements.

Neither of Mikaelian’s examples are finitely presented.
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All of them are related to the Thompson groups F , T , and V .



Main Results

We give five explicit examples of finitely presented groups that
contain Q.

All of them are related to the Thompson groups F , T , and V .

Theorem (BHM 2020)
The following well-known finitely presented groups contain Q:

1. The lift T of Thompson’s group T to the real line.

2. The braided Thompson group BV.

3. The automorphism group Aut(F) of Thompson’s group F.



Main Results: Two More Examples

We also give two simple examples TA and VA.

These act on the circle and the Cantor set, respectively.

Theorem (BHM 2020)
The groups TA and VA are two-generated, finitely presented simple
groups. Moreover:
1. TA contains Q, and
2. VA contains every countable abelian group.



Main Results: Two More Examples

We also give two simple examples TA and VA.

These act on the circle and the Cantor set, respectively.

Theorem (BHM 2020)
The groups TA and VA are two-generated, finitely presented simple
groups. Moreover:
1. TA contains Q, and
2. VA contains every countable abelian group.

We actually prove something stronger than finite presentability:

Theorem (BHM 2020)
Both TA and VA have type F∞.



Thompson’s Groups



Thompson’s Groups

In the 1960’s, Richard J. Thompson defined three infinite groups.

Richard Thompson, 2004



Thompson’s Groups

In the 1960’s, Richard J. Thompson defined three infinite groups.

F acts on the interval.

T acts on the circle.

V acts on the Cantor set.



Thompson’s Group F

Thompson’s group F is the group of all piecewise-linear
homeomorphisms of [0, 1] for which:
I Each segment has slope 2n (n ∈ Z), and
I Each breakpoint has dyadic rational coordinates.



Properties of F
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Properties of F

I F is infinite and torsion-free.

I F is dense in Homeo+
(
[0, 1]

)
.

I F is generated by two elements.

I F is finitely presented.

F � 〈x0 , x1 | xx12 � x3 , xx13 � x4〉

where
x2 � xx01 , x3 � xx02 , x4 � xx03 .



Type F∞

In 1983, Brown and Geoghegan generalized this result by proving
that F has type F∞.

Kenneth Brown Ross Geoghegan
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Type F∞

Let G be a group.

A K(G, 1)-complex is a connected CW complex X such that:

1. π1(X) � G, and

2. The universal cover X̃ is contractible.

We say that G has type Fn if there exists a K (G, 1)-complex whose
n-skeleton has finitely many cells.

type F1 � finitely generated
type F2 � finitely presented

...

We say that G has type F∞ if it has type Fn for all n.



Type F∞

Brown and Geoghegan proved that Thompson’s group F has a
K (F , 1)-complex with exactly two cells in each dimension.

Kenneth Brown Ross Geoghegan

Thus F has type F∞.



Thompson’s Group T
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Thompson’s Group T

Let S1 be the circle obtained from [0, 1] by identifying 0 and 1.

Thompson’s group T is the group of all piecewise-linear
homeomorphisms f of S1 for which:

I Each segment has slope 2n (n ∈ Z),
I Each breakpoint has dyadic rational coordinates, and

I f (0) is dyadic.

A

B
C

D

−→
A

B

C
D



Thompson’s Group T

A

B
C

D

−→
A

B

C
D

A

B

C

D
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Properties of T

I T contains F .

I T is simple and finitely presented.

Lochak–Schneps presentation (1997):〈
a, b

�� a4 , b3 , [bab, a2baba2] , [bab, a2b2a2baba2ba2] , (ba)5〉
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Properties of T

I T contains F .

I T is simple and finitely presented.

I Indeed, T has type F∞ (Brown 1987).

I T has elements of finite order.

A
B

C

D E

−→

E
A

B

C D
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Properties of T

I T contains F .

I T is simple and finitely presented.

I Indeed, T has type F∞ (Brown 1987).

I T has elements of finite order.

I Indeed, T contains Q/Z (Bleak, Kassabov, Matucci 2011).
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The Group T

A lift of an element g ∈ T is a homeomorphism g : R→ R that
makes the following diagram commute:

R
g
//

��

R

��

S1
g
// S1

Note: If g is a lift of g then so is g + n for any n ∈ Z.

Let T be the group of all lifts of elements of T .



The Group T

For example, here’s an element of T :

AB

C

−→

A

B

C

and here’s one possible lift in T :

A A

A A

B B

B B

C C

C C



The Group T

A A

A A

B B

B B

C C

C C

A PL homeomorphism f : R→ R lies in T if and only if:

I Each segment of f has slope 2n (n ∈ Z),
I Each breakpoint of f has dyadic rational coordinates,

I f (0) is dyadic, and

I f (t + 1) � f (t) + 1 for all t ∈ R.



Properties of T
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Properties of T

I T is torsion free.

I The stabilizer of 0 in T is isomorphic to F .

I T is generated by x0, x1, and s2(t) � t + 1
2 .

I The center of T is infinite cyclic, generated by the translation

s1(t) � t + 1.

Indeed, we have a short exact sequence

1 −→ Z −→ T −→ T −→ 1.

I T is finitely presented. Indeed, it has type F∞.



Presentation for T

Theorem (BHM 2020)
The group T has a presentation with two generators and four
relators:〈

a, b
�� a4b−3 , (ba)5b−9 , [bab, a2baba2] , [bab, a2b2a2baba2ba2] 〉

Note: This is obtained by “lifting” the Lochak–Schneps presentation
for T and simplifying. Adding a4 � 1 gives a presentation for T .



Properties of T

The group T was first considered by Ghys and Sergiescu in 1987,
as part of their work on the cohomology of T .

Étienne Ghys Vlad Sergiescu

They proved that T is perfect and is a central extension of T (but
not the universal central extension).



T Contains Q

Theorem (BHM 2020)
The group T has uncountably many subgroups isomorphic to Q.

Note: Every such subgroup contains the center of T .

Our strategy will be to find subgroups that realize the presentation〈
s1 , s2 , s3 , . . . | snn � sn−1 for all n ≥ 2

〉
.



T Contains Q

Let s1 ∈ T be the map s1(t) � t + 1.

Then s1 has a square root s2(t) � t + 1
2 .

Does s2 have a cube root?
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T Contains Q

Yes. We just need to cut each half-interval into three pieces of sizes
1/8, 1/8, and 1/4:

Each piece maps linearly to the next under s3.

To get a fourth root of s3, we cut each interval into four pieces.

Again, each piece maps linearly to the next under s4.



T Contains Q

In general, for each n ∈ N we need a cut pattern that cuts [0, 1]
into n intervals whose widths are powers of 1/2.

n � 2:

n � 3:

n � 4:

By iteratively cutting subintervals using the cut patterns, we can
construct the desired sequence {sn} in T .
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The group BV

The braided Thompson group BV was introduced independently
by Brin and Dehornoy in 2004.

Matthew Brin Patrick Dehornoy
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The group BV

The braided Thompson group BV was introduced independently
by Brin and Dehornoy in 2004.

Elements of BV are “braided tree pair diagrams”.

The following three elements generate a copy of T in BV .

x0 x1 s2

Thus BV contains Q.
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Automorphisms of F

The structure of Aut(F) was pinned down by Brin in 1996.
His methods are based on a theorem of Rubin.

Matthew Brin Matatyahu Rubin



Rubin’s Theorem

Given a space X and a subgroup G ≤ Homeo(X), consider the
normalizer

N(G) � {n ∈ Homeo(X) | n−1Gn � G}.

Each element n ∈ N(G) induces an automorphism of G defined by

g 7→ n−1gn.

Theorem (Rubin 1996)
Suppose X is locally compact, Hausdorff, and has no isolated
points. If G is “locally moving”, then

Aut(G) � N(G).



Structure of Aut(F)

Brin proved that the action of F on (0, 1) is locally moving. Thus:

Corollary
Aut(F) is the normalizer of F in Homeo([0, 1]).



Structure of Aut(F)

Brin proved that the action of F on (0, 1) is locally moving. Thus:

Corollary
Aut(F) is the normalizer of F in Homeo([0, 1]).

It follows easily that
Aut(F) � A o Z2

where A is the orientation-preserving subgroup of Aut(F).



Elements of A

Brin showed that elements of A are piecewise-linear on (0, 1), but
breakpoints can accumulate near 0 and 1.



Elements of A

Brin showed that elements of A are piecewise-linear on (0, 1), but
breakpoints can accumulate near 0 and 1.

Theorem (Brin 1996)
A homeomorphism f : [0, 1] → [0, 1] lies in A if and only if it
satisfies the following conditions:

1. f is piecewise-linear, except perhaps at 0 and 1.

2. Each linear segment of f has slope 2n (n ∈ Z).

3. Each breakpoint of f has dyadic rational coordinates.

4. f (2t) � 2 f (t) for all t in a neighborhood of 0.

5. f (2t − 1) � 2 f (t) − 1 for all t in a neighborhood of 1.



Elements of A

The condition that f (2t) � 2 f (t) for t near 0 means that the graph
of f is self-similar near (0, 0).



Structure of A

Brin constructed two homomorphisms

ϕ0 : A→ T , ϕ1 : A→ T

that describe the “bad part” of an element of A near 0 and 1.

Theorem (Brin 1996)
The group A fits into a short exact sequence

1 −→ F −→ A −→ T × T −→ 1

It follows that A is finitely presented, and indeed has type F∞.



Embedding T into A

It is not difficult to embed T into A.

x0



Embedding T into A

It is not difficult to embed T into A.
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Embedding T into A

It is not difficult to embed T into A.

s2



Embedding T into A

It is not difficult to embed T into A. It follows that A contains Q.

s2



The Group TA



The Group TA

Identifying 0 and 1 gives an action of A on the circle.

Elements of A are piecewise-linear on the complement of the
point 0 � 1.



The Group TA
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The Group TA

Let TA be the group of circle homeomorphisms generated by T
and A.

Conjugating an element a ∈ A by an element t ∈ T moves the
accumulation point.

a t−1at
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The Group TA

Let TA be the group of circle homeomorphisms generated by T
and A.

General elements of TA are piecewise-linear except at finitely many
dyadic accumulation points.

Theorem (BHM 2020)
TA is simple and finitely presented. Indeed, it has type F∞.

Note: TA contains
⊕

n∈NA and hence
⊕

n∈NQ.

Thus TA contains every countable, torsion-free abelian group.
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Proof that TA is simple

Let N be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T .

(

)

n−→
(

)

Then ntn−1t−1 ∈ N ∩ T
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Step 3: N contains [A,A].

a1 a2
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Step 2: Since T is simple, it follows that N contains T .

Step 3: N contains [A,A].

(
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Proof that TA is simple

Let N be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T .

Step 2: Since T is simple, it follows that N contains T .

Step 3: N contains [A,A].

(
)

t1a1

(
)

t2a2



Proof that TA is simple

Let N be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T .

Step 2: Since T is simple, it follows that N contains T .

Step 3: N contains [A,A].

(
)

t1a1

()

t−13 t2a2t3



Proof that TA is simple

Let N be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T .

Step 2: Since T is simple, it follows that N contains T .

Step 3: N contains [A,A].

Step 4: But [A,A] � A, so N contains A.



Proof that TA is simple

Let N be a nontrivial normal subgroup of TA.

Step 1: N contains a nontrivial element of T .

Step 2: Since T is simple, it follows that N contains T .

Step 3: N contains [A,A].

Step 4: But [A,A] � A, so N contains A.

Thus N � TA, so TA is simple.
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We use Brown’s criterion (Brown 1987).
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Proof that TA has type F∞

We use Brown’s criterion (Brown 1987).

Step 1: Construct a contractible simplicial complex K on which TA
acts by isometries, with simplex stabilizers having type F∞.
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Proof that TA has type F∞

We use Brown’s criterion (Brown 1987).

Step 1: Construct a contractible simplicial complex K on which TA
acts by isometries, with simplex stabilizers having type F∞.
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Proof that TA has type F∞

We use Brown’s criterion (Brown 1987).

Step 1: Construct a contractible simplicial complex K on which TA
acts by isometries, with simplex stabilizers having type F∞.

Step 2: Filter K as a union of invariant subcomplexes

K1 ≤ K2 ≤ K3 ≤ · · · .

Each Kn has finitely many orbits of simplices.

Step 3: Use Bestvina–Brady discrete Morse theory to prove that
the connectivity of Kn goes to∞ as n→∞.



Presentation for TA

Theorem (BHM 2020)
TA is the amalgam of three of its finitely presented subgroups:

T A H � A o Z2

Note that the intersections

T ∩A � F , T ∩ H � F o Z2 , A ∩ H � StabA(1/2)

are finitely generated.
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The Group VA

The action of A on [0, 1] induces an action of A on the Cantor set.

Let VA be the group generated by A and Thompson’s group V .

Theorem (BHM 2020)
VA is simple and finitely presented. Indeed, it has type F∞.

Note: VA contains
⊕

n∈N VA and hence
⊕

n∈N
(
Q ⊕ Q/Z

)
.

It follows that VA contains every countable abelian group.



Nekrashevych groups

Our simplicity and F∞ proofs apply to a large class of groups G that
satisfy the following conditions:

1. G contains a generalized Thompson group Fn, Tn, or Vn.

2. Every element of G has finitely many “unusual” points.

For example, Röver’s group is the group VG generated by
Thompson’s group V and Grigorchuk’s group G. Our methods give
a new proof that VG is simple (Röver 1999) and has type F∞
(BM 2014).

Indeed, we can prove simplicity and finiteness results for a large
class of Nekrashevych groups.



The End


	Higman's Theorem

