Thompson-Like Groups Acting on Julia Sets

Jim Belk¹ Bradley Forrest²

¹Mathematics Program Bard College

²Mathematics Program Stockton College

Groups St Andrews, August 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thompson's Groups

In the 1960's, Richard J. Thompson defined three infinite groups:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A *dyadic subdivision* of [0, 1] is any subdivision obtained by repeatedly cutting intervals in half:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A *dyadic subdivision* of [0, 1] is any subdivision obtained by repeatedly cutting intervals in half:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A *dyadic subdivision* of [0, 1] is any subdivision obtained by repeatedly cutting intervals in half:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A *dyadic subdivision* of [0, 1] is any subdivision obtained by repeatedly cutting intervals in half:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A *dyadic subdivision* of [0, 1] is any subdivision obtained by repeatedly cutting intervals in half:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The partition points are always dyadic fractions.

A *dyadic rearrangement* of [0, 1] is a PL homeomorphism that maps linearly between the intervals of two dyadic subdivisions:

The set of all dyadic rearrangements of [0, 1] is *Thompson's group F*.

A *dyadic rearrangement* of [0, 1] is a PL homeomorphism that maps linearly between the intervals of two dyadic subdivisions.

The set of all dyadic rearrangements is *Thompson's group F*.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions of T and V

Thompson's Group T acts on a circle.

Thompson's Group V acts on a Cantor set.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Properties of the Thompson Groups

- ► *T* and *V* are **infinite**, **finitely presented simple groups**.
- ► *F* is finitely presented but not simple.
- ► Finiteness properties: All three have type F_∞. (Brown & Geoghegan, 1984)
- Geometry: All three act properly and isometrically on CAT(0) cubical complexes. (Farley, 2003)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Generalizations

Basic Question:

Why are there three Thompson groups?

Generalizations

Basic Question:

Why are there three Thompson groups?

Generalizations:

- ► *F*(*n*), *T*(*n*), and *V*(*n*) (Higman 1974, Brown 1987)
- Other PL groups (Bieri & Strebel 1985, Stein 1992)

(ロ) (同) (三) (三) (三) (○) (○)

- Diagram Groups (Guba & Sapir 1997)
- "Braided" V (Brin 2004, Dehornoy 2006)
- ▶ 2*V*, 3*V*, ... (Brin 2004)

F depends on the *self-similarity* of the interval:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

F depends on the *self-similarity* of the interval:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

F depends on the *self-similarity* of the interval:

Some fractals have this same self-similar structure:

Koch Curve

・ コット (雪) (小田) (コット 日)

F depends on the *self-similarity* of the interval:

Some fractals have this same self-similar structure:

Koch Curve

・ コット (雪) (小田) (コット 日)

Thompson's group F acts on such a fractal by piecewise similarities.

Thompson's group F acts on such a fractal by piecewise similarities.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Idea: Find Thompson-like groups associated to other self-similar structures.

Thompson's group F acts on such a fractal by piecewise similarities.

Idea: Find Thompson-like groups associated to other self-similar structures.

But where can we find other self-similar structures?

(ロ) (同) (三) (三) (三) (○) (○)

Julia Sets

Every rational function on the Riemann sphere has an associated *Julia set*.

Julia Sets: The Basilica

Example: The Julia set for $f(z) = z^2 - 1$ is called the **Basilica**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

It is the simplest example of a fractal Julia set.

Julia Sets: The Basilica

The Basilica has a "self-similar" structure.

Invariance of the Basilica under $z^2 - 1$

The Basilica maps to itself under $f(z) = z^2 - 1$.

Julia Sets: The Basilica

The Basilica has a *conformally self-similar* structure.

The Basilica Group

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The Plan

Let's try to construct a Thompson-like group that acts on the Basilica.

The Plan

Let's try to construct a Thompson-like group that acts on the Basilica.

Interval	Basilica
linear map	conformal map
dyadic subdivision	???

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Terminology: Each of the highlighted sets below is a *bulb*.

The Basilica is the union of two bulbs.

Each bulb has three parts.

э

Each bulb has three parts.

ヘロト ヘ週 ト ヘ ヨ ト ヘ ヨ ト

3

Each edge also has three parts.

Each edge also has three parts.

Allowed Subdivisions of the Basilica

Allowed subdivision:

Start with the base and repeatedly apply the two subdivision moves.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Rearrangements of the Basilica

A *rearrangement* is a homeomorphism that maps conformally between the pieces of two allowed subdivisions.

Example 1

Example 2

三 のへで

Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Let T_B be the group of all rearrangements of the Basilica.

Theorem

1. T_B contains isomorphic copies of Thompson's group T.

Let T_B be the group of all rearrangements of the Basilica.

Theorem

- 1. T_B contains isomorphic copies of Thompson's group T.
- 2. T contains an isomorphic copy of T_B .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let T_B be the group of all rearrangements of the Basilica.

Theorem

- 1. T_B contains isomorphic copies of Thompson's group T.
- 2. T contains an isomorphic copy of T_B .
- 3. T_B is generated by four elements.

Let T_B be the group of all rearrangements of the Basilica.

Theorem

- 1. T_B contains isomorphic copies of Thompson's group T.
- 2. T contains an isomorphic copy of T_B .
- 3. T_B is generated by four elements.
- 4. T_B has a simple subgroup of index two.

Everything here is combinatorial.

An allowed subdivision can be represented by a directed graph:

ヘロト ヘポト ヘヨト ヘヨト

Everything here is combinatorial.

An allowed subdivision can be represented by a directed graph:

There are two *replacement rules* for these graphs:

These constitute a graph rewriting system.

All we really need to define T_B are the graph rewriting system:

and the base graph:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Victor Guba and Mark Sapir defined *diagram groups*:

- Generalization of Thompson's groups
- Uses string rewriting systems.

 T_B is similar to a diagram group, except that it uses graph rewriting.

Theorem (Farley). Every diagram group over a finite string rewriting system acts properly by isometries on a CAT(0) cubical complex.

A similar construction gives a natural CAT(0) cubical complex on which T_B acts properly by isometries.

Other Julia Sets

Julia Sets

Every rational function on the Riemann sphere has an associated Julia set.

Julia sets for quadratic polynomials $f(z) = z^2 + c$ are parameterized by the *Mandelbrot set*:

Julia sets for quadratic polynomials $f(z) = z^2 + c$ are parameterized by the *Mandelbrot set*:

Points in the interior of the Mandelbrot set are called *hyperbolic*.

Hyperbolic points from the same interior region give Julia sets with the same structure.

We can construct a Thompson-like group T_J for each of these regions. (Hubbard tree \rightarrow Graph rewriting system)

We can construct a Thompson-like group T_J for each of these regions. (Hubbard tree \rightarrow Graph rewriting system)

The Airplane Group

Let T_A be the group of rearrangements of the airplane Julia set.

Theorem.

- 1. T_A has a simple subgroup of index 3.
- 2. T_A has type F_{∞} .

The proof of (2) involves discrete Morse Theory on the CAT(0) cubical complex for T_A .

Questions

- Are all the T_J finitely generated? Is there a uniform method to find a generating set?
- Which T_J are finitely presented? Which have type F_{∞} ?
- Which of these groups are virtually simple?
- ► What is the relation between these groups? For which Julia sets J and J' does T_J contain an isomorphic copy of T_{J'}?

(日) (日) (日) (日) (日) (日) (日)

For which rational Julia sets can we construct a Thompson-like group? Are there Thompson-like groups associated to other families of fractals?

The End

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○