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Thompson’s Groups

In the 1960’s, Richard J. Thompson defined three infinite groups:

. F acts on the unit interval.

Q T acts on the unit circle.

s e V acts on the Cantor set.
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repeatedly cutting intervals in half:
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Definition of F

A dyadic subdivision of [0,1] is any subdivision obtained by
repeatedly cutting intervals in half:
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The intervals of such a subdivision are standard dyadic intervals:
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Definition of F

A dyadic rearrangement of [0,1] is a PL homeomorphism that
maps linearly between the intervals of two dyadic subdivisions:
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The group of all dyadic rearrangements is Thompson’s group F.



Definition of F

The grou\p of all dyadic rearrangements is Thompson’s group F.
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Given an element of F:

e Each segment has slope 2.
e Each breakpoint has dyadic rational coordinates.

These conditions characterize the elements of F.



Definitions of T and V

Thompson’s group T acts on the circle.
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Properties of F, T, and V

F embeds into T, and T embeds into V.

F, T, and V are finitely generated.

I and V are infinite, finitely presented simple groups.

F is finitely presented, but not simple (though [F, F] is simple).

Finiteness property: F, T, and V have type F...

e -, T,and V act properly and isometrically on CAT(0) cubical

complexes.
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Generalizations

Basic Questions:
Why are there three Thompson groups?

What do the interval, circle, and Cantor set have in common?

Generalizations:
e F(n), T(n), V(n) (Higman 1974, Brown 1987)
e Other PL groups (Bieri & Strebel 1985, Stein 1992)
e Diagram Groups (Guba & Sapir 1997)
e “Braided” V (Brin 2004, Dehornoy 2006)
2V (Brin 2004)
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The definition of F depends on the self-similarity of the interval.
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Self-Similarity
The definition of F depends on the self-similarity of the interval.

Interval
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Some fractals have the same self-similar structure as an interval:
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Self-Similarity

Thompson’s group F acts on such a fractal by piecewise

similarities.
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Self-Similarity
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Self-Similarity

Thompson’s group F acts on such a fractal by piecewise

similarities.

There are also fractals on which T or V acts by piecewise

similarities.

Main Idea:

Perhaps there are Thompson-like groups acting on other fractal

shapes.
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Julia Sets

Every rational map on the Riemann sphere has an associated
Julia set.




Julia Sets

Let f(2) = z° + ¢, where z and ¢ are complex.

The filled Julia set for f is the set

{p € C | the orbit of p under f is bounded}

Example: The filled Julia set for f(z) = 7% is the closed unit disk.
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Filled Julia Set for 72 — 1




Filled Julia Set for 72 — 1

This Julia set is known as the Basilica.




Filled Julia Set




Julia Set




Julia Sets: The Basilica

Example: The Julia set for f(z) = 7° — 1 is called the Basilica.

It is the simplest example of a fractal Julia set.



Julla Sets: The Basilica

The Julia set has a self-similar structure:

Note: The “similarity” maps are not actually linear.



Invariance of the Basilica

[

The Basilica maps to itself under f(z) = 77— 1.
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Invariance of the Basilica

[

— 1.
i

The Basilica maps to itself under f(2) = 2




Julia Sets: The Basilica

The “self-similarities” of the Basilica are conformal maps.

We want a Thompson-like group of piecewise-conformal
homeomorphisms.
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The Basilica Group

We need an analogue of “dyadic subdivision” for the Basilica.




The Basilica Group

Dyadic subdivisions of [0, 1] are made of standard dyadic
intervals.

We need similar “building blocks” for the Basilica.



Bulbs and Edges

These structures are all conformally isomorphic. Let's call them bulbs.




Bulbs and Edges

The Basilica is actually the union of two bulbs.




Bulbs and Edges

Each bulb can be partitioned into one smaller bulb and two edges.
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Bulbs and Edges

Similarly, each edge can be partitioned into one bulb and two edges.
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Bulbs and Edges

Similarly, each edge can be partitioned into one bulb and two edges.
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Two Subdivision Moves
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Allowed Subdivisions

An allowed subdivision of the Basilica is obtained by repeatedly
applying these two moves, starting with the two main bulbs.
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Allowed Subdivisions

An allowed subdivision of the Basilica is obtained by repeatedly
applying these two moves, starting with the two main bulbs.
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The Basilica Group

A rearrangement of the Basilica is a homeomorphism that maps
conformally between the pieces of two allowed subdivisions.

The group of all rearrangements is the Basilica Thompson group Tg.



Example Element
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Example Element 2

Domain:

Range:
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Properties of Ig

Theorem
1. Tgcontains copies of Thompson’s group T.

2. g Is generated by four elements.

3. [T, Tg] hasindextwo,and Ig = [Tg, ] X Z>.

4. [Tg, Tg] is simple.

5. [Tg, I'g] is nhot isomorphic to Thompson’s group T.

Open Question
Is Tg finitely presented? (We suspect not.)
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External Angles

The exterior region for the Basilica is simply connected in the
Riemann sphere:




External Angles

The complement of a disk is also simply connected:



External Angles

So there exists a Riemann map between the two regions.




External Angles

)
=
.5,
d)
p
o
@
=
o)
0
0
©
-
=
©
Al
©
2
8%
>
0
0
p
0
=



External Angles

The radial lines are called external rays.




External Angles

These define the external angles.

38 1/3  7p4 1/4 s5p4a  1/6 1/8

5/12 1/12
11/24 1/24
1/2 0
13/24 23/24
712 1112

5/8 2/3 1724 3/4 1904 5/6 7/8



Pinch Points

5/12

11/24

13/24

712

External Angles

: Denominator is 3 - 2"

1/3

2/3

7/24

17/24

5/24 1/6

19/24 5/6

1/12

1/24

23/24

11/12



The Invariant Lamination

This picture shows an equivalence relation on the circle. ltis
called the invariant lamination for the Basilica.

2 /3 A, Weg 0
17/24  19/24



The Invariant Lamination

Homeomorphisms that preserve this equivalence relation descend
to the Julia set.
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Piecewise-Linear Homeomorphisms

Elements of Tz act as piecewise-linear homeomorphisms.
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Elements of Tz act as piecewise-linear homeomorphisms.

1/3 1/6

0/2 if -1/3<0<1/3

=
1) {26?—1/2 if1/3<0<2/3



Piecewise-Linear Homeomorphisms

Elements of Tz act as piecewise-linear homeomorphisms.

1/3 1/6
2/3 5/6
g/2 =113 =f="1{3
f(@)={ / =1 /
20-1/2 if1/3<6<2/3



Piecewise-Linear Homeomorphisms

Elements of Tz act as piecewise-linear homeomorphisms.
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Piecewise-Linear Homeomorphisms

Elements of Tz act as piecewise-linear homeomorphisms.




Piecewise-Linear Homeomorphisms

Elements of Tz act as piecewise-linear homeomorphisms.

1/3 1/6 1/3 7/24 5/24 1/6

2/3 17/24 19/24 5/6 2/3 5/6



Piecewise-Linear Homeomorphisms

Theorem

I'g is isomorphic to the group of all PL homeomorphisms f of the
circle for which:

1. f preserves the invariant lamination, and

2. Each breakpoint of f is a pinch point.

Observations

1. All slopes of elements of Tg are powers of two.

2. All breakpoints have denominators of the form 3 - 2".



Piecewise-Linear Homeomorphisms

Theorem
T'g is isomorphic to a subgroup of Thompson’s group T.

Question
What can be said in general about subgroups of T defined by
laminations?



Edge Replacement
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Edge Replacement

We can represent allowed subdivisions of the Basilica using finite
graphs.
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Edge Replacement

We can represent allowed subdivisions of the Basilica using finite
graphs.
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Edge Replacement

Instead of subdivision rules, we have an edge replacement rule.
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Edge Replacement

Instead of subdivision rules, we have an edge replacement rule.



Edge Replacement

Together, these define an edge replacement system.

Base Graph:

Replacement Rule: > — };



Edge Replacement Systems

In general, an edge replacement system consists of:

1. Afinite set of edge types.
2. A base graph (directed graph, edges of the given types).

3. One replacement rule for each edge type.

Under certain conditions:

Edge .
Limit
Replacement —_—
Space
System

Each edge corresponds to a portion of the limit space.



General Plan

Given: A Julia set (or other fractal).

B S8
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Find: An edge replacement system that defines it.

Once we have an edge replacement system, it is easy to construct

a Thompson-like group that acts on the fractal.



Diagram Groups

Actually, these groups almost fit into a well-known scheme.

Victor Guba and Mark Sapir defined diagram groups:

e Generalization of Thompson’s groups.

e Defined using a string rewriting system.

Theorem (Farley)
Every diagram group over a finite string rewriting system acts

properly by isometries on a CAT(0) cubical complex.



CAT(0) Cubical Complexes

An edge replacement system is a type of graph rewriting system.

String Graph
Rewriting —_— Rewriting
System System

We have defined a class of groups called graph diagram groups,
which includes all diagram groups as well as all Julia set groups.

Theorem
Every graph diagram group over a finite graph rewriting system

acts properly by isometries on a CAT(0) cubical complex.
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More Julia Sets

Every rational map on the Riemann sphere has an associated
Julia set.




Julia sets for quadratic polynomials z — z° + ¢ are parameterized
by the Mandelbrot set.
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More Julia Sets

For “most” points in the Mandelbrot set, the structure of the Julia

set Is described by a Hubbard ftree.

There exists a simple algorithm:

Ed
Hubbard ok
Tree — Replacement
System

Conclusion

We can construct a Thompson-like group for “most” quadratic
Julia sets.
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The Douady Rabbit

Theorem
The rabbit Thompson group Tg has the following properties:

1. Tpis generated by four elements.

2. [Tp.Tr] has index three in Tg, and is simple.
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A Dendrite Julia Set



A Dendrite Julia Set

Theorem (Belk & Smith)

The dendrite Thompson group Tp has the following properties:

1. Tp Is generated by three elements.
2. [Tp.Tp] has infinite index in Tp, with virtually cyclic

quotient.

3. Tp contains Thompson’s group F, but does not contain T.
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A Rational Julia Set

Here is the Julia setforz — 1 — z7°.




A Rational Julia Set

Here is the Julia set for z — 1 — z72.




A Rational Julia Set

Theorem (Belk & Weinrich-Burd)

The Thompson group T, for this Julia set has the following
properties:

1. T.at IS generated by four elements.

2. [Tiat. Trat] has index two, and is not simple.

3. Tat = H x S5, Wwhere H is a simple normal subgroup.

Note: 7,.: Is presumably not isomorphic to a subgroup of 7.



The End



