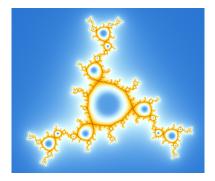
Quasisymmetries of Finitely Ramified Julia Sets



Jim Belk

University of St Andrews

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

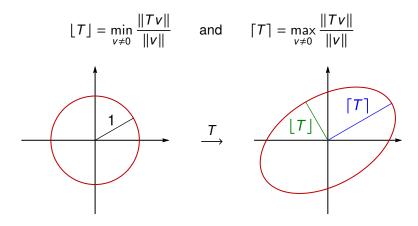
Joint Work

Bradley Forrest Stockton University

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let



The ratio [T]/[T] is a measure of *eccentricity*.

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

A diffeomorphism $f: U \to U'$ between domains \mathbb{R}^n is *quasiconformal* if there exists a $\lambda \ge 1$ so that

$$\frac{\left[Df_{p}\right]}{\left\lfloor Df_{p}\right\rfloor} \leq \lambda$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

for all $p \in U$.

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

A diffeomorphism $f: U \to U'$ between domains \mathbb{R}^n is *quasiconformal* if there exists a $\lambda \ge 1$ so that

$$\frac{\left[Df_{p}\right]}{\left\lfloor Df_{p}\right\rfloor} \leq \lambda$$

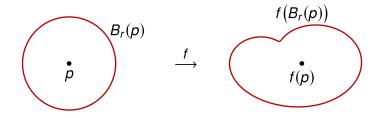
for all $p \in U$.

Note: If $\lambda = 1$ then *f* is *conformal* (or anticonformal).

うせん 同一人 出す 不可す 不可す ふせき

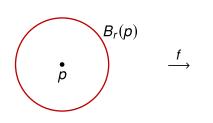
More generally, let $f: U \rightarrow U'$ be a homeomorphism.

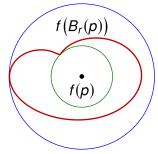
More generally, let $f: U \rightarrow U'$ be a homeomorphism.



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

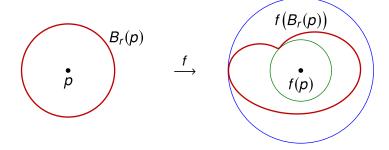
More generally, let $f: U \rightarrow U'$ be a homeomorphism.





▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

More generally, let $f: U \rightarrow U'$ be a homeomorphism.



We say *f* is *quasiconformal* if there exists a $\lambda \ge 1$ so that

$$\limsup_{r \to 0^+} \frac{\text{outer radius of } f(B_r(p))}{\text{inner radius of } f(B_r(p))} \le \lambda$$

for all $p \in U$.

Applications of Quasiconformal Maps

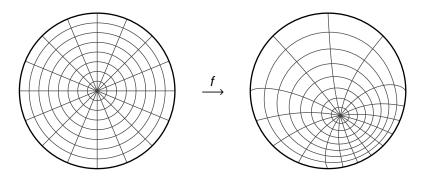
- Mostow rigidity: For n ≥ 3, two compact hyperbolic n-manifolds are isometric if and only if their fundamental groups are isomorphic.
- No wandering domains: Every component of the Fatou set for a complex rational map is periodic or pre-periodic (Sullivan).
- ► Topological manifolds: Every *n*-manifold (n ≠ 4) supports a "quasiconformal structure" (Sullivan). This allows a theory of characteristic classes for such manifolds (Sullivan, Connes, Teleman).
- Elliptic PDE's: Solution to Calderón's problem on electrical impedance tomography in two dimensions (Astala, Päivärinta).

Quasisymmetries

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

Let $f: D^2 \to D^2$ be a homeomorphism which is quasiconformal on the interior.

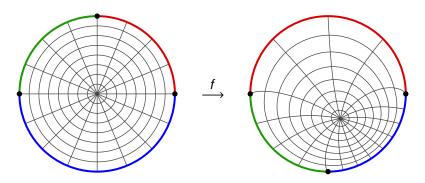
What can the restriction of f to S^1 look like?



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $f: D^2 \to D^2$ be a homeomorphism which is quasiconformal on the interior.

What can the restriction of f to S^1 look like?



Let $f: D^2 \to D^2$ be a homeomorphism which is quasiconformal on the interior.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What can the restriction of f to S^1 look like?

Let $f: D^2 \to D^2$ be a homeomorphism which is quasiconformal on the interior.

What can the restriction of f to S^1 look like?

Theorem (Beurling–Ahlfors 1956)

A homeomorphism $f: S^1 \to S^1$ is a restriction of a quasiconformal map on D^2 iff there exists a homeomorphism $\eta: [0, \infty) \to [0, \infty)$ so that

$$\frac{\|f(a) - f(b)\|}{\|f(a) - f(c)\|} \le \eta \left(\frac{\|a - b\|}{\|a - c\|}\right)$$

for every triple a, b, c of distinct points in S^1 .

These are the **quasisymmetries** of S^1 .

General Definition

By a *gauge* we mean any homeomorphism $\eta : [0, \infty) \rightarrow [0, \infty)$.

A homeomorphism $f: X \to Y$ between metric spaces is a *quasisymmetry* if there exists a gauge η so that

$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

ション 小田 マイビット ビックタン

for every triple *a*, *b*, *c* of distinct points in *X*.

General Definition

By a *gauge* we mean any homeomorphism $\eta : [0, \infty) \rightarrow [0, \infty)$.

A homeomorphism $f: X \to Y$ between metric spaces is a *quasisymmetry* if there exists a gauge η so that

$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

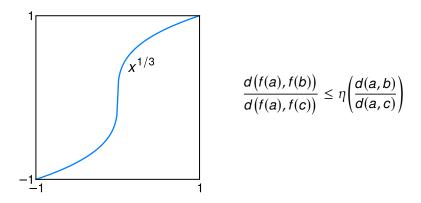
for every triple *a*, *b*, *c* of distinct points in *X*.

Example: If f is bilipschitz with

$$\frac{1}{K}d(x,x') \le d\big(f(x),f(x')\big) \le K\,d(x,x')$$

then *f* is quasisymmetric with gauge $\eta(t) = K^2 t$.

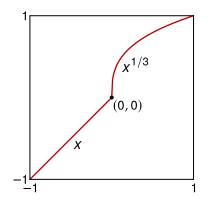
An Example



The function $f(x) = x^{1/3}$ is a quasisymmetry of [-1, 1], with gauge

$$\eta(t) = \begin{cases} 6t^{1/3} & \text{if } 0 \le t \le 1\\ 6t & \text{if } t > 1. \end{cases}$$

A Non-Example

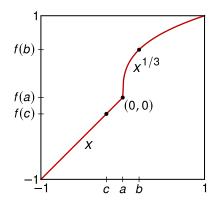


 $\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

This function is **not** a quasisymmetry of [-1, 1].

A Non-Example



$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \leq \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

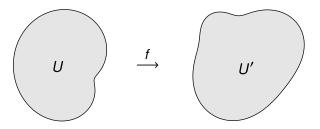
ヘロト 人間 ト 人 ヨト 人 ヨトー

æ

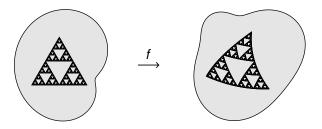
For $a = 0, b = \varepsilon$, and $c = -\varepsilon$, we have

$$\frac{d(f(a), f(b))}{d(f(a), f(c))} = \frac{\varepsilon^{1/3}}{\varepsilon} = \frac{1}{\varepsilon^{2/3}} \quad \text{and} \quad \frac{d(a, b)}{d(a, c)} = 1.$$

Let $f: U \to U'$ be a homeomorphism between domains in \mathbb{R}^n .



Let $f: U \to U'$ be a homeomorphism between domains in \mathbb{R}^n .

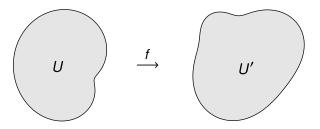


Theorem (Väisälä 1981)

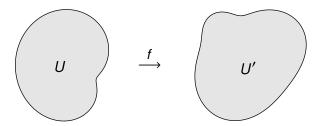
If f is quasiconformal then f restricts to a quasisymmetry on every compact subset of U.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Let $f: U \to U'$ be a homeomorphism between domains in \mathbb{R}^n .



Let $f: U \to U'$ be a homeomorphism between domains in \mathbb{R}^n .

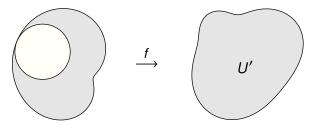


Theorem (Egg Yolk Principle, Väisälä 1981)

The following are equivalent:

- 1. f is quasiconformal.
- 2. There exists a gauge $\eta: [0, \infty) \rightarrow [0, \infty)$ so that *f* is η -quasisymmetric on every "egg yolk" in *U*.

Let $f: U \to U'$ be a homeomorphism between domains in \mathbb{R}^n .

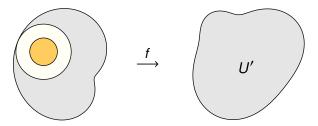


Theorem (Egg Yolk Principle, Väisälä 1981)

The following are equivalent:

- 1. f is quasiconformal.
- 2. There exists a gauge $\eta: [0, \infty) \rightarrow [0, \infty)$ so that *f* is η -quasisymmetric on every "egg yolk" in *U*.

Let $f: U \to U'$ be a homeomorphism between domains in \mathbb{R}^n .



Theorem (Egg Yolk Principle, Väisälä 1981)

The following are equivalent:

- 1. f is quasiconformal.
- 2. There exists a gauge $\eta: [0, \infty) \rightarrow [0, \infty)$ so that *f* is η -quasisymmetric on every "egg yolk" in *U*.

Theorem (Beurling–Ahlfors 1956)

A homeomorphism of S^1 is the restriction of a quasiconformal map on D^2 if and only if it is a quasisymmetry.

Theorem (Beurling–Ahlfors 1956)

A homeomorphism of S^1 is the restriction of a quasiconformal map on D^2 if and only if it is a quasisymmetry.

Theorem (Bonk–Schramm 2000)

Any quasi-isometry $f: X \to Y$ between hyperbolic metric spaces induces a quasisymmetry $\partial X \to \partial Y$.

Theorem (Beurling–Ahlfors 1956)

A homeomorphism of S^1 is the restriction of a quasiconformal map on D^2 if and only if it is a quasisymmetry.

Theorem (Bonk–Schramm 2000)

Any quasi-isometry $f: X \to Y$ between hyperbolic metric spaces induces a quasisymmetry $\partial X \to \partial Y$.

Theorem (Sullivan–Tukia 1986)

Let G be a hyperbolic group. If there exists a quasisymmetry $\partial G \rightarrow S^2$ then G is a cocompact Kleinian group.

Theorem (Beurling–Ahlfors 1956)

A homeomorphism of S^1 is the restriction of a quasiconformal map on D^2 if and only if it is a quasisymmetry.

Theorem (Bonk–Schramm 2000)

Any quasi-isometry $f: X \to Y$ between hyperbolic metric spaces induces a quasisymmetry $\partial X \to \partial Y$.

Theorem (Sullivan–Tukia 1986)

Let G be a hyperbolic group. If there exists a quasisymmetry $\partial G \rightarrow S^2$ then G is a cocompact Kleinian group.

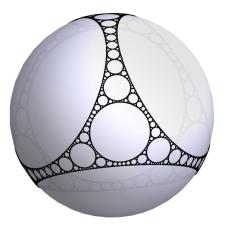
Cannon's Conjecture

Let G be a hyperbolic group. If there exists a **homeomorphism** $\partial G \rightarrow S^2$ then G is a cocompact Kleinian group.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Theorem (Bonk–Schramm 2000)

Any quasi-isometry $f: X \to Y$ between hyperbolic metric spaces induces a quasisymmetry $\partial X \to \partial Y$.



Quasisymmetries of Fractals

Quasisymmetry Groups

Observation

If X is a metric space, then the quasisymmetries $X \to X$ form a group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Quasisymmetry Groups

Observation

If X is a metric space, then the quasisymmetries $X \to X$ form a group.

Proof.

Suppose *f* and *g* are quasisymmetric with gauges η and ϑ .

$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta \left(\frac{d(a, b)}{d(a, c)} \right) \quad \text{and} \quad \frac{d(g(a), g(b))}{d(g(a), g(c))} \le \vartheta \left(\frac{d(a, b)}{d(a, c)} \right)$$

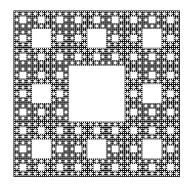
Then:

- 1. $f \circ g$ is quasisymmetric with gauge $\eta \circ \vartheta$, and
- 2. f^{-1} is quasisymmetric with gauge $t \mapsto 1/\eta^{-1}(1/t)$.

Some metric spaces have surprisingly few quasisymmetries.

Theorem (Bonk–Merenkov 2013)

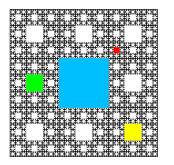
The quasisymmetry group of the square Sierpiński carpet is dihedral of order 8.



Some metric spaces have surprisingly few quasisymmetries.

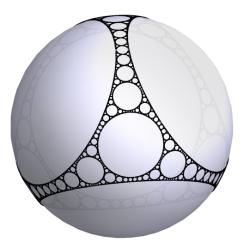
Theorem (Bonk–Merenkov 2013)

The quasisymmetry group of the square Sierpiński carpet is dihedral of order 8.



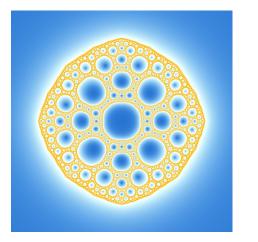
CXXXX	******	********	****
62 666 -	360 GEO GE	G GKG GKG GK	2 662
KXXXX	*******	********	****
CXXX	3333333	****	
0 0	0 00 0	0 00 0	
Peet -	<u>79999999</u>	******	- PP
$P\Psi\Psi\Psi\Psi\Psi$	<u><u>₩₩₩₩₩₩</u>₩</u>	********	$\Psi \Psi \Psi \Psi$
ምንወሮ	უდღუდღუდ	ᠣ᠋ᡪᠣᠧ᠇ᡪᠣᠧ᠇ᡪᡆ	ዮንውዮ
₽₽₽₽₽	ად და ი და	€₽₽₽₽₽₽	6906
}@@@@	00000000	*****	***
ከ ሶ ዓመድ	<u>ዓመታ ዓብ</u>	10 A A	<u> </u>
66 36 6.	àtha àt	14. JA	é
кжжжж	****		****
EXX3	3883	28.83	
88	- C - C	0 0	
C110	202	<u> </u>	- <u>B</u>
PPPP +	¥¥¥¥?	222	$\Psi \Psi \Psi \Psi$
beame.	. λ.Μ. 6 λί		6 ath 6
ምፍ ወጥፍ	ጋዋፍ ብ	96.29	ፍወዋፍ
₽₽₽₽₽	₽₽₽₽₽₽₽₽₽		$\Phi \Phi \Phi \Phi$
ኦሮ ዓወሮ	ንወሮ ንወሮ ን ቆ	ዸዀቘዸዀ	<u> </u>
₩₽₽₽₽	.ንመራንመራንመ	ነፋንመፋንመፋንመ	6566
533333	××××××××	********	<u> </u>
KXXX	33333	(BRBBR)	
62 G2	CC CACC CC	0 CHC C	<u> </u>
EXX	CREEKES.	(XXXXXX)	38
FREEXE	¥¥¥¥¥¥¥¥	********	***
B 28	28 28 2	5 PHS 245 24	1 BB.
Hhoud Hill for	additte and the second se	H	timiten

Other Sierpiński carpets can have many quasisymmetries.



<ロト < 回ト < 回ト < 回ト < 回

Milnor and Lei (1993) observed that the Julia sets for some rational functions are Sierpiński carpets.



$$f(z) = z^2 - \frac{1}{16z^2}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Milnor and Lei (1993) observed that the Julia sets for some rational functions are Sierpiński carpets.

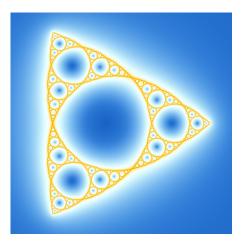
Theorem (Bonk–Lyubich–Merenkov 2016)

Let f(z) be a postcritically finite rational function whose Julia set J_f is a Sierpiński carpet. Then J_f has only finitely many quasisymmetries.

Qiu, Yang, and Zeng (2019) extend this to a large family of semi-hyperbolic Sierpiński carpet Julia sets.

A Sierpiński Triangle

Some other Julia sets are also known to have only finitely many quasisymmetries.



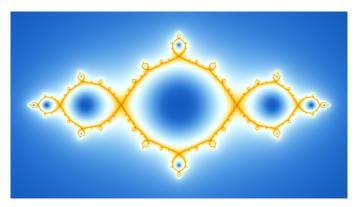
$$f(z) = z^2 - \frac{16}{27z}$$

(Ushiki 1991, Kameyama 2000)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The Basilica

The **basilica** is the Julia set for $f(z) = z^2 - 1$



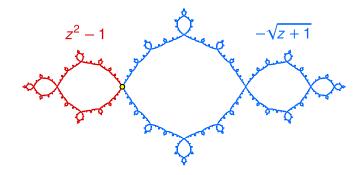
Theorem (Lyubich–Merenkov 2018)

The basilica has infinitely many quasisymmetries.

Quasisymmetries of the Basilica

Definition (B–Forrest 2015)

The *basilica Thompson group* consists of all piecewise-conformal homeomorphisms of the basilica whose breakpoints are cut points.



Quasisymmetries of the Basilica

Definition (B–Forrest 2015)

The *basilica Thompson group* consists of all piecewise-conformal homeomorphisms of the basilica whose breakpoints are cut points.

Theorem (B–Forrest 2015)

The basilica Thompson group is infinite, finitely generated, and has an index-two subgroup which is simple.

Quasisymmetries of the Basilica

Definition (B–Forrest 2015)

The *basilica Thompson group* consists of all piecewise-conformal homeomorphisms of the basilica whose breakpoints are cut points.

Theorem (B–Forrest 2015)

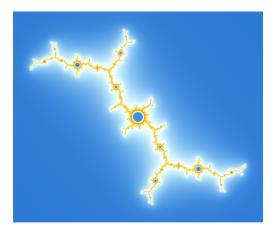
The basilica Thompson group is infinite, finitely generated, and has an index-two subgroup which is simple.

Theorem (Lyubich–Merenkov 2018)

Elements of the basilica Thompson group are quasisymmetries.

Other Julia Sets

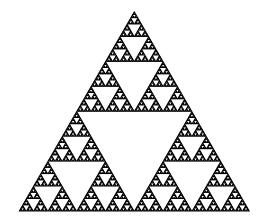
Can we extend this to other polynomial Julia sets?



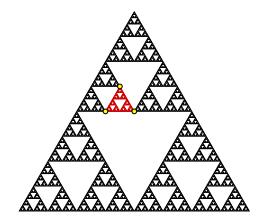
Julia set for $f(z) = z^2 - 0.157 + 1.032i$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

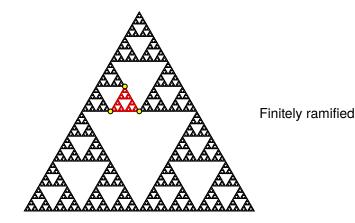
Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.

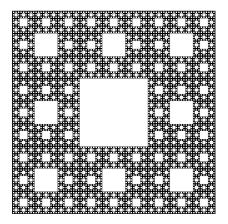


Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.

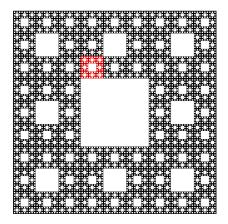


・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

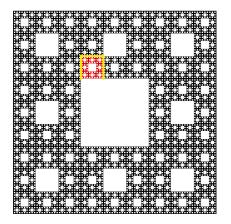
Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Not finitely ramified

Definition (Teplyaev 2008)

Let *X* be a compact, connected metrizable space.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

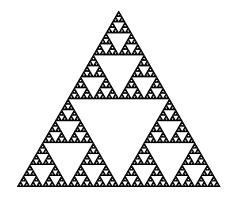
For each $n \ge 0$, fix a finite collection of subsets of *X* (the *n-cells*).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

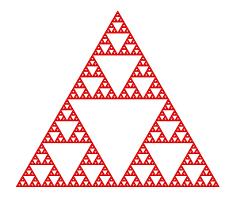
For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



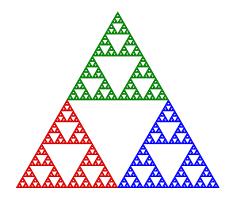
One 0-cell

・ロト・日本・日本・日本・日本・日本

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



Three 1-cells

・ロト・日本・日本・日本・日本・日本

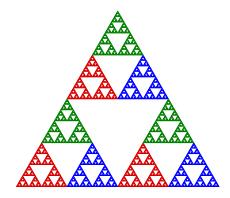
Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

Nine 2-cells

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで



Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of *X* (the *n-cells*).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

These define a *finitely ramified fractal* if:

1.
 2.
 3.
 4.
 5.

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. Each *n*-cell is compact, connected, and has at least two points.

2.

3.

4.

5.

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. Each *n*-cell is compact, connected, and has at least two points.

- 2. The intersection of any two *n*-cells is finite.
- 3.
- 4.
- 5.

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. Each *n*-cell is compact, connected, and has at least two points.

- 2. The intersection of any two *n*-cells is finite.
- 3. The entire space X is the (unique) 0-cell.
- 4.
- 5.

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. Each *n*-cell is compact, connected, and has at least two points.

- 2. The intersection of any two *n*-cells is finite.
- 3. The entire space X is the (unique) 0-cell.
- 4. Every *n*-cell is a union of (n + 1)-cells.

5.

Definition (Teplyaev 2008)

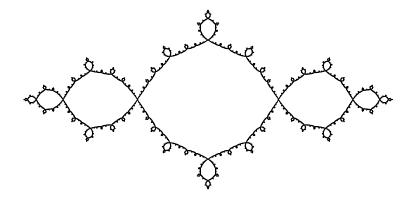
Let *X* be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

- 1. Each *n*-cell is compact, connected, and has at least two points.
- 2. The intersection of any two *n*-cells is finite.
- 3. The entire space X is the (unique) 0-cell.
- 4. Every *n*-cell is a union of (n + 1)-cells.
- 5. If $E_0 \supseteq E_1 \supseteq E_2 \supseteq \cdots$ with each E_n an *n*-cell, then $\bigcap_{n=0} E_n$ is a single point.

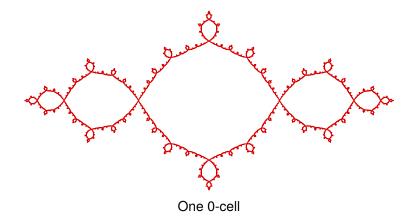
The basilica Julia set can be viewed as a finitely ramified fractal.



ヘロト 人間 ト 人 ヨト 人 ヨト

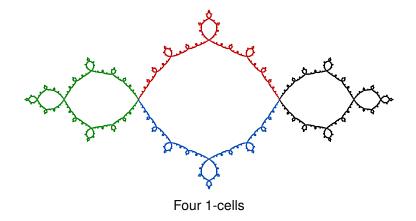
э

The basilica Julia set can be viewed as a finitely ramified fractal.



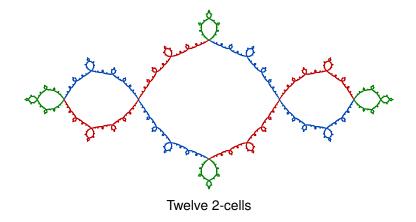
<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回

The basilica Julia set can be viewed as a finitely ramified fractal.



<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回

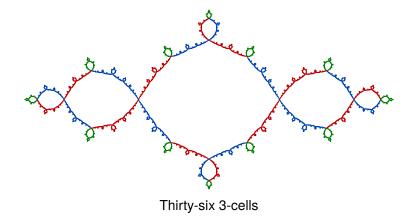
The basilica Julia set can be viewed as a finitely ramified fractal.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Example: The Basilica

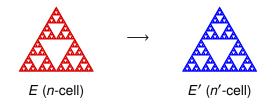
The basilica Julia set can be viewed as a finitely ramified fractal.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Cellular Maps

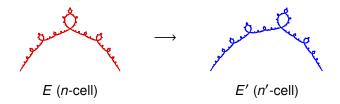
Let X be a finitely ramified fractal, and let E, E' be cells in X.



A homeomorphism $E \to E'$ is *cellular* if it maps (n + k)-cells in E to (n' + k)-cells in E' for all $k \ge 0$.

Cellular Maps

Let X be a finitely ramified fractal, and let E, E' be cells in X.



A homeomorphism $E \rightarrow E'$ is *cellular* if it maps (n + k)-cells in E to (n' + k)-cells in E' for all $k \ge 0$.

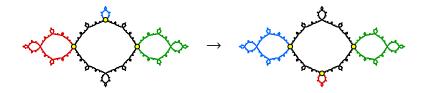
・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Piecewise-Cellular Maps

A homeomorphism $f: X \to X$ is **piecewise-cellular** if there exist subdivisions

 $\{E_1, ..., E_n\}$ and $\{E'_1, ..., E'_n\}$

of X into cells so that f maps each E_i to E'_i by a cellular map.



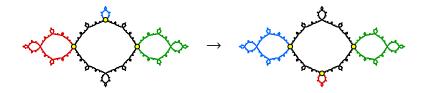
Note: The piecewise-cellular homeomorphisms of *X* form a group.

Piecewise-Cellular Maps

A homeomorphism $f: X \to X$ is **piecewise-cellular** if there exist subdivisions

$$\{E_1, \ldots, E_n\}$$
 and $\{E'_1, \ldots, E'_n\}$

of X into cells so that f maps each E_i to E'_i by a cellular map.



Question: When are piecewise-cellular homeomorphisms quasisymmetries?

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Theorem (B–Forrest 2021)

If the metric on X is quasiregular then any piecewise-cellular homeomorphism of X is a quasisymmetry.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Exponential Decay Condition:

There exist constants 0 < r < R < 1 and $C \ge 1$ so that

$$\frac{r^k}{C} \le \frac{\operatorname{diam}(E')}{\operatorname{diam}(E)} \le CR^k$$

for any *n*-cell *E* and any (n + k)-cell *E'* contained in *E*.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Bounded Neighbor Ratios:

There exists a constant $\lambda \ge 1$ so that

$$\frac{1}{\lambda} \le \frac{\operatorname{diam}(E')}{\operatorname{diam}(E)} \le \lambda$$

for any two n-cells E and E' that intersect.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Cell Separation Condition:

There exists a constant $\delta > 0$ so that

 $d(E, E') \ge \delta \operatorname{diam}(E)$

for any two *n*-cells E and E' that are disjoint.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

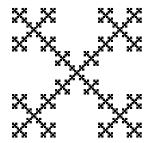
A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Theorem (B–Forrest 2021)

If the metric on X is quasiregular then any piecewise-cellular homeomorphism of X is a quasisymmetry.

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .

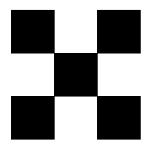


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .

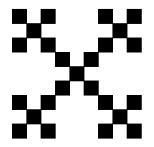
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



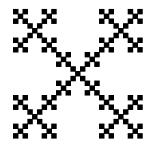
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



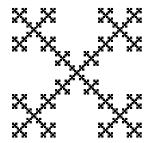
▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



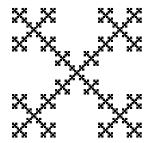
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



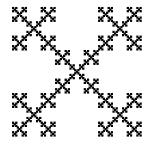
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



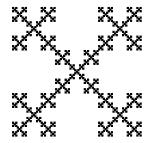
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



The restriction of the Euclidean metric is clearly quasiregular with respect to the natural cell structure.

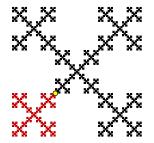
The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



The restriction of the Euclidean metric is clearly quasiregular with respect to the natural cell structure.

... Any piecewise-cellular homeomorphism is a quasisymmetry.

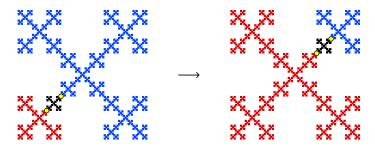
The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



The restriction of the Euclidean metric is clearly quasiregular with respect to the natural cell structure.

: Any piecewise-cellular homeomorphism is a quasisymmetry.

The *Vicsek fractal* is the following subset of \mathbb{R}^2 .



The restriction of the Euclidean metric is clearly quasiregular with respect to the natural cell structure.

: Any piecewise-cellular homeomorphism is a quasisymmetry.

Two metrics d and d' on a metric space X are *quasi-equivalent* if the identity map

$$(X,d) \longrightarrow (X,d')$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

is a quasisymmetry.

Two metrics d and d' on a metric space X are **quasi-equivalent** if the identity map

$$(X,d) \longrightarrow (X,d')$$

is a quasisymmetry.

Theorem (B–Forrest 2021)

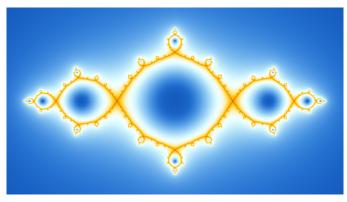
Let X be a finitely ramified fractal.

- 1. Any two quasiregular metrics on X are quasi-equivalent.
- 2. If d and d' are quasi-equivalent, then d is quasiregular iff d' is quasiregular.

So any finitely ramified fractal that admits a quasiregular metric has a natural *topological* notion of quasisymmetry.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

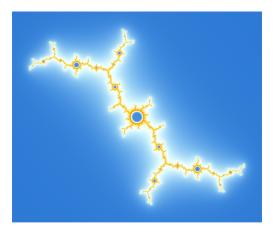
Julia sets for polynomials tend to be finitely ramified.



Julia set for $f(z) = z^2 - 1$

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

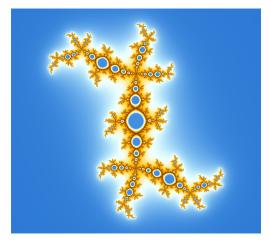
Julia sets for polynomials tend to be finitely ramified.



Julia set for $f(z) = z^2 - 0.157 + 1.032i$

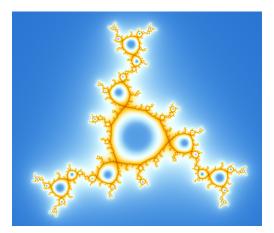
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Julia sets for polynomials tend to be finitely ramified.



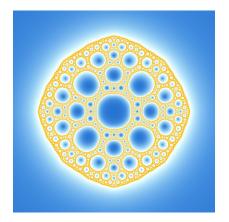
Julia set for $f(z) = z^2 + 0.32 + 0.56i$

Julia sets for polynomials tend to be finitely ramified.



Julia set for $f(z) = z^3 - 0.21 + 1.09i$

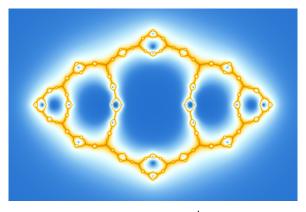
Julia sets for rational maps are sometimes finitely ramified.



Julia set for
$$f(z) = z^2 - \frac{1}{16z^2}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Julia sets for rational maps are sometimes finitely ramified.

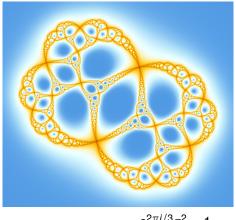


Julia set for
$$f(z) = \frac{1}{z^2} - 1$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Julia sets for rational maps are sometimes finitely ramified.



Julia set for
$$f(z) = \frac{e^{z(z)/3}z^2 - 1}{z^2 - 1}$$

Hyperbolic Julia Sets

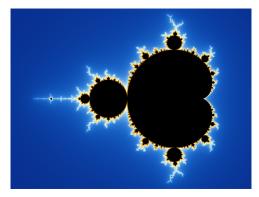
A rational map f(z) is **hyperbolic** if the forward orbit of each critical point converges to an attracting cycle.

Such maps are expanding on their Julia set with respect to an appropriate metric.

Hyperbolic Julia Sets

A rational map f(z) is **hyperbolic** if the forward orbit of each critical point converges to an attracting cycle.

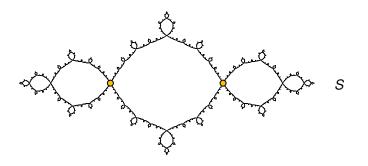
Such maps are expanding on their Julia set with respect to an appropriate metric.



Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

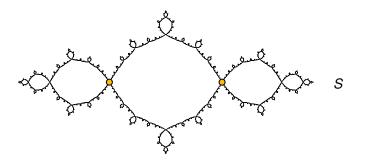
A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.



Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

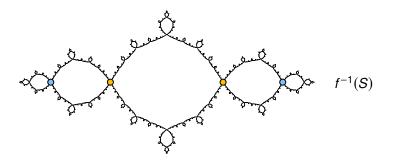
For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.



Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

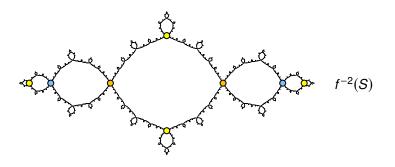
For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.



Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

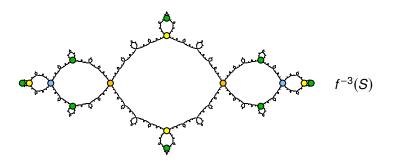
For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.



Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.



Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

Theorem (B–Forrest 2021)

Any simple cut set determines a finitely ramified cell structure on J_f .

・ロト・西ト・ヨト・ヨト・ 日・ つへの

Let f(z) be a hyperbolic rational function with Julia set $J_f \subset \mathbb{C}$.

A *simple cut set* is a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

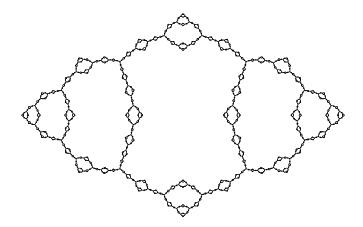
Theorem (B–Forrest 2021)

Any simple cut set determines a finitely ramified cell structure on J_f .

Theorem (B–Forrest 2021)

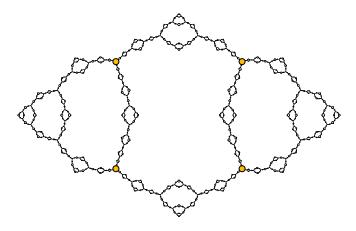
If J_f has a simple cut set, then the restriction of the Euclidean metric to J_f is quasiregular with respect to the resulting cell structure.

Consider the Julia set for $f(z) = \frac{1}{z^2} - 1$.



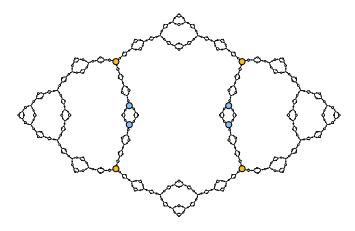
▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Consider the Julia set for $f(z) = \frac{1}{z^2} - 1$.



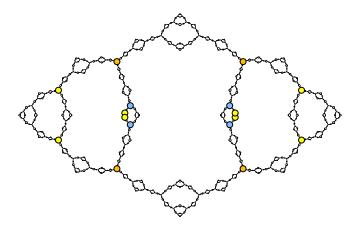
Six 1-cells

Consider the Julia set for $f(z) = \frac{1}{z^2} - 1$.



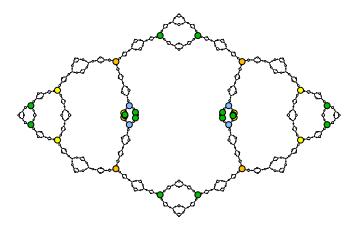
Twelve 2-cells

Consider the Julia set for $f(z) = \frac{1}{z^2} - 1$.



Twenty-four 3-cells

Consider the Julia set for $f(z) = \frac{1}{z^2} - 1$.

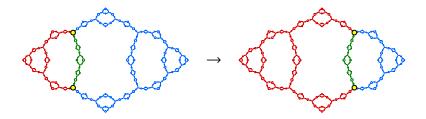


Forty-eight 4-cells

Consider the Julia set for
$$f(z) = \frac{1}{z^2} - 1$$
.

Consider the Julia set for $f(z) = \frac{1}{z^2} - 1$.

Any piecewise-cellular homeomorphism of J_f is a quasisymmetry.



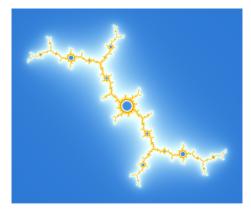
It follows that J_f has infinitely many quasisymmetries.

Polynomials

・ロト・日本・日本・日本・日本・日本

Theorem (B-Forrest 2021)

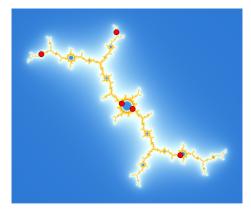
If f(z) is a hyperbolic polynomial, then J_f has a simple cut set.



Julia set for $f(z) = z^2 - 0.157 + 1.032i$

Theorem (B-Forrest 2021)

If f(z) is a hyperbolic polynomial, then J_f has a simple cut set.



Julia set for $f(z) = z^2 - 0.157 + 1.032i$

Theorem (B–Forrest 2021)

If f(z) is a hyperbolic polynomial, then J_f has a simple cut set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (B–Forrest 2021)

If f(z) is a hyperbolic polynomial, then J_f has a simple cut set.

Sketch of Proof.

Let U_1, \ldots, U_n be the bounded components of $\mathbb{C} \setminus J_f$ that contain the critical points.

If U_i contains a critical point of local degree d_i , then choose d_i pre-periodic points on ∂U_i that have the same image under f.

The union of all of these points and their forward orbits is a simple cut set.

Theorem (B–Forrest 2021)

If f(z) is a hyperbolic polynomial, then J_f has a simple cut set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (B–Forrest 2021)

If f(z) is a hyperbolic polynomial, then J_f has a simple cut set.

Thus:

- Every such Julia set has a finitely ramified cell structure, and
- The restriction of the Euclidean metric is quasiregular, so
- Piecewise-cellular homeomorphisms are quasisymmetries.

Theorem (B–Forrest 2021)

If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Theorem (B–Forrest 2021)

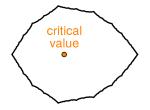
If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

"Sketch" of Proof.

Theorem (B-Forrest 2021)

If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

"Sketch" of Proof.

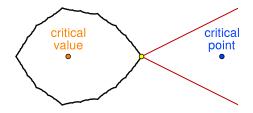


▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Theorem (B-Forrest 2021)

If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

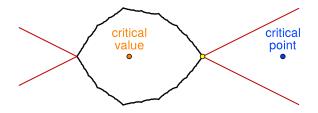
"Sketch" of Proof.



Theorem (B-Forrest 2021)

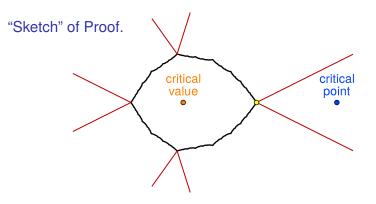
If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

"Sketch" of Proof.



Theorem (B-Forrest 2021)

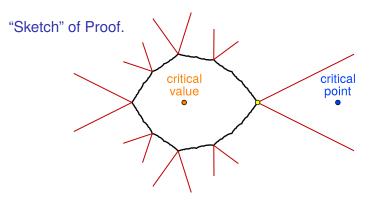
If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Theorem (B-Forrest 2021)

If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

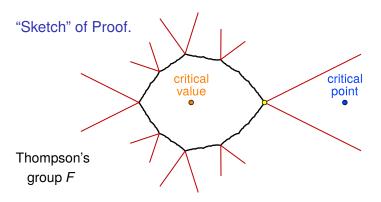


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Theorem (B-Forrest 2021)

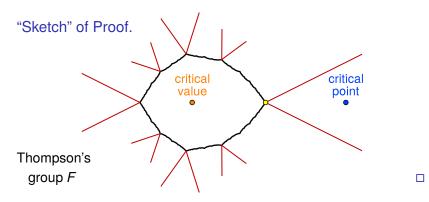
If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()



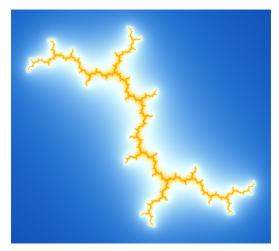
Theorem (B-Forrest 2021)

If f is a hyperbolic quadratic polynomial, then J_f has infinitely many quasisymmetries.



Open Questions

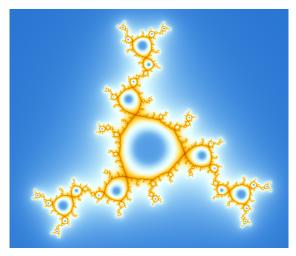
Can this theory be extended to the subhyperbolic case?



Julia set for $f(z) = z^2 + i$

Open Questions

What about hyperbolic cubic polynomials?



Julia set for $f(z) = z^3 - 0.21 + 1.09i$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

The End

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @