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For a linear transformation T : Rn → Rn, let

bTc � min
v,0

‖Tv‖
‖v‖ and dTe � max

v,0
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A diffeomorphism f : U → U′ between domains Rn is
quasiconformal if there exists a λ ≥ 1 so that

dDfpe
bDfpc

≤ λ

for all p ∈ U.

Note: If λ � 1 then f is conformal (or anticonformal).
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More General Definition

More generally, let f : U → U′ be a homeomorphism.

f−→

We say f is quasiconformal if there exists a λ ≥ 1 so that

lim sup
r→0+

outer radius of f
(
Br(p)

)
inner radius of f

(
Br(p)

) ≤ λ
for all p ∈ U.



Applications of Quasiconformal Maps

I Mostow rigidity: For n ≥ 3, two compact hyperbolic
n-manifolds are isometric if and only if their fundamental
groups are isomorphic.

I No wandering domains: Every component of the Fatou set
for a complex rational map is periodic or pre-periodic (Sullivan).

I Topological manifolds: Every n-manifold (n , 4) supports a
“quasiconformal structure” (Sullivan). This allows a theory of
characteristic classes for such manifolds (Sullivan, Connes,
Teleman).

I Elliptic PDE’s: Solution to Calderón’s problem on electrical
impedance tomography in two dimensions (Astala, Päivärinta).
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Quasiconformal Maps on a Disk

Let f : D2 → D2 be a homeomorphism which is quasiconformal on
the interior.

What can the restriction of f to S1 look like?

Theorem (Beurling–Ahlfors 1956)
A homeomorphism f : S1 → S1 is a restriction of a quasiconformal
map on D2 iff there exists a homeomorphism η : [0,∞) → [0,∞) so
that

‖f (a) − f (b)‖
‖f (a) − f (c)‖ ≤ η

(
‖a − b‖
‖a − c‖

)
for every triple a, b, c of distinct points in S1.

These are the quasisymmetries of S1.
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General Definition

By a gauge we mean any homeomorphism η : [0,∞) → [0,∞).

A homeomorphism f : X → Y between metric spaces is a
quasisymmetry if there exists a gauge η so that

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ η(d(a, b)
d(a, c)

)
for every triple a, b, c of distinct points in X .

Example: If f is bilipschitz with

1
K

d(x , x′) ≤ d
(
f (x), f (x′)

)
≤ K d(x , x′)

then f is quasisymmetric with gauge η(t) � K 2t.



An Example

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ η(d(a, b)
d(a, c)

)

The function f (x) � x1/3 is a quasisymmetry of [−1, 1], with gauge

η(t) �
{
6t1/3 if 0 ≤ t ≤ 1
6t if t > 1.



A Non-Example

d
(
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This function is not a quasisymmetry of [−1, 1].



A Non-Example

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ η(d(a, b)
d(a, c)

)

For a � 0, b � ε, and c � −ε, we have

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) �
ε1/3

ε
�

1
ε2/3

and
d(a, b)
d(a, c) � 1.
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If f is quasiconformal then f restricts to a quasisymmetry on every
compact subset of U.
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Application: Hyperbolic Boundaries

Theorem (Beurling–Ahlfors 1956)
A homeomorphism of S1 is the restriction of a quasiconformal map
on D2 if and only if it is a quasisymmetry.

Theorem (Bonk–Schramm 2000)
Any quasi-isometry f : X → Y between hyperbolic metric spaces
induces a quasisymmetry ∂X → ∂Y.

Theorem (Sullivan–Tukia 1986)
Let G be a hyperbolic group. If there exists a quasisymmetry
∂G→ S2 then G is a cocompact Kleinian group.

Cannon’s Conjecture
Let G be a hyperbolic group. If there exists a homeomorphism
∂G→ S2 then G is a cocompact Kleinian group.



Application: Hyperbolic Boundaries

Theorem (Bonk–Schramm 2000)
Any quasi-isometry f : X → Y between hyperbolic metric spaces
induces a quasisymmetry ∂X → ∂Y.
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Quasisymmetry Groups

Observation
If X is a metric space, then the quasisymmetries X → X form a
group.

Proof.
Suppose f and g are quasisymmetric with gauges η and ϑ.

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ η(d(a, b)
d(a, c)

)
and

d
(
g(a), g(b)

)
d
(
g(a), g(c)

) ≤ ϑ(
d(a, b)
d(a, c)

)
Then:

1. f ◦ g is quasisymmetric with gauge η ◦ ϑ, and

2. f−1 is quasisymmetric with gauge t 7→ 1
/
η−1(1/t). �
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Sierpiński Carpets

Milnor and Lei (1993) observed that the Julia sets for some rational
functions are Sierpiński carpets.

Theorem (Bonk–Lyubich–Merenkov 2016)
Let f (z) be a postcritically finite rational function whose Julia set Jf is
a Sierpiński carpet. Then Jf has only finitely many quasisymmetries.

Qiu, Yang, and Zeng (2019) extend this to a large family of
semi-hyperbolic Sierpiński carpet Julia sets.



A Sierpiński Triangle

Some other Julia sets are also known to have only finitely many
quasisymmetries.

f (z) � z2 − 16
27z

(Ushiki 1991,
Kameyama 2000)



The Basilica

The basilica is the Julia set for f (z) � z2 − 1

Theorem (Lyubich–Merenkov 2018)
The basilica has infinitely many quasisymmetries.
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Quasisymmetries of the Basilica

Definition (B–Forrest 2015)
The basilica Thompson group consists of all piecewise-conformal
homeomorphisms of the basilica whose breakpoints are cut points.

Theorem (B–Forrest 2015)
The basilica Thompson group is infinite, finitely generated, and has
an index-two subgroup which is simple.

Theorem (Lyubich–Merenkov 2018)
Elements of the basilica Thompson group are quasisymmetries.



Other Julia Sets

Can we extend this to other polynomial Julia sets?

Julia set for f (z) � z2 − 0.157 + 1.032 i
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Definition (Teplyaev 2008)
Let X be a compact, connected metrizable space.

For each n ≥ 0, fix a finite collection of subsets of X (the n-cells).

These define a finitely ramified fractal if:

1. Each n-cell is compact, connected, and has at least two points.

2. The intersection of any two n-cells is finite.

3. The entire space X is the (unique) 0-cell.

4. Every n-cell is a union of (n + 1)-cells.

5.



General Definition

Definition (Teplyaev 2008)
Let X be a compact, connected metrizable space.

For each n ≥ 0, fix a finite collection of subsets of X (the n-cells).

These define a finitely ramified fractal if:

1. Each n-cell is compact, connected, and has at least two points.

2. The intersection of any two n-cells is finite.

3. The entire space X is the (unique) 0-cell.

4. Every n-cell is a union of (n + 1)-cells.

5. If E0 ⊇ E1 ⊇ E2 ⊇ · · · with each En an n-cell, then
⋂

n�0 En is
a single point.
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The basilica Julia set can be viewed as a finitely ramified fractal.
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Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.
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Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.

Thirty-six 3-cells



Cellular Maps

Let X be a finitely ramified fractal, and let E ,E′ be cells in X .

E (n-cell)

−→

E′ (n′-cell)

A homeomorphism E → E′ is cellular if it maps (n + k)-cells in E
to (n′ + k)-cells in E′ for all k ≥ 0.
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Piecewise-Cellular Maps

A homeomorphism f : X → X is piecewise-cellular if there exist
subdivisions

{E1 , . . . ,En} and {E′1 , . . . ,E′n}

of X into cells so that f maps each Ei to E′i by a cellular map.

→

Note: The piecewise-cellular homeomorphisms of X form a group.
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A homeomorphism f : X → X is piecewise-cellular if there exist
subdivisions

{E1 , . . . ,En} and {E′1 , . . . ,E′n}

of X into cells so that f maps each Ei to E′i by a cellular map.

→

Question: When are piecewise-cellular homeomorphisms
quasisymmetries?
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Exponential Decay Condition:
There exist constants 0 < r < R < 1 and C ≥ 1 so that

r k

C
≤ diam(E′)

diam(E) ≤ CRk

for any n-cell E and any (n + k)-cell E′ contained in E.
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There exists a constant λ ≥ 1 so that

1
λ
≤ diam(E′)

diam(E) ≤ λ

for any two n-cells E and E′ that intersect.
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There exists a constant δ > 0 so that

d(E ,E′) ≥ δ diam(E)

for any two n-cells E and E′ that are disjoint.
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1. It satisfies the exponential decay condition.

2. It has bounded neighbor ratios, and

3. It satisfies the cell separation condition.

Theorem (B–Forrest 2021)
If the metric on X is quasiregular then any piecewise-cellular
homeomorphism of X is a quasisymmetry.
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The Vicsek fractal is the following subset of R2.
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The restriction of the Euclidean metric is clearly quasiregular with
respect to the natural cell structure.

∴ Any piecewise-cellular homeomorphism is a quasisymmetry.
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Main Results

Two metrics d and d′ on a metric space X are quasi-equivalent if
the identity map

(X , d) −→ (X , d′)

is a quasisymmetry.

Theorem (B–Forrest 2021)
Let X be a finitely ramified fractal.

1. Any two quasiregular metrics on X are quasi-equivalent.

2. If d and d′ are quasi-equivalent, then d is quasiregular iff d′ is
quasiregular.

So any finitely ramified fractal that admits a quasiregular metric has
a natural topological notion of quasisymmetry.
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Finitely Ramified Julia Sets

Julia sets for rational maps are sometimes finitely ramified.

Julia set for f (z) � e2πi/3z2 − 1
z2 − 1
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Main Results

Let f (z) be a hyperbolic rational function with Julia set Jf ⊂ C.

A simple cut set is a finite set S ⊂ Jf such that f (S) ⊆ S and f is
one-to-one on each component of Jf \ S.

For such a set, the iterated preimages f−n(S) cut Jf into cells.

Theorem (B–Forrest 2021)
Any simple cut set determines a finitely ramified cell structure on Jf .

Theorem (B–Forrest 2021)
If Jf has a simple cut set, then the restriction of the Euclidean metric
to Jf is quasiregular with respect to the resulting cell structure.
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Example: z−2 − 1

Consider the Julia set for f (z) � 1
z2
− 1.

Any piecewise-cellular homeomorphism of Jf is a quasisymmetry.

→

It follows that Jf has infinitely many quasisymmetries.
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Main Results

Theorem (B–Forrest 2021)
If f (z) is a hyperbolic polynomial, then Jf has a simple cut set.

Sketch of Proof.
Let U1 , . . . ,Un be the bounded components of C \ Jf that contain
the critical points.

If Ui contains a critical point of local degree di , then choose di
pre-periodic points on ∂Ui that have the same image under f .

The union of all of these points and their forward orbits is a simple
cut set. �
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Main Results

Theorem (B–Forrest 2021)
If f (z) is a hyperbolic polynomial, then Jf has a simple cut set.

Thus:
I Every such Julia set has a finitely ramified cell structure, and

I The restriction of the Euclidean metric is quasiregular, so

I Piecewise-cellular homeomorphisms are quasisymmetries.
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Main Results

Theorem (B–Forrest 2021)
If f is a hyperbolic quadratic polynomial, then Jf has infinitely many
quasisymmetries.

“Sketch” of Proof.

Thompson’s
group F �



Open Questions

Can this theory be extended to the subhyperbolic case?

Julia set for f (z) � z2 + i



Open Questions

What about hyperbolic cubic polynomials?

Julia set for f (z) � z3 − 0.21 + 1.09 i



The End
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