Quasisymmetry Groups of Finitely Ramified Fractals



Jim Belk

Cornell University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Joint Work

Bradley Forrest Stockton University

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Quasiconformal Geometry

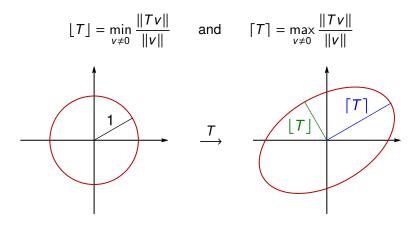
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let



The ratio [T]/[T] is a measure of *eccentricity*.

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

A diffeomorphism $f: U \to U'$ between open subsets of \mathbb{R}^n is *quasiconformal* if there exists a $\lambda \ge 1$ so that

$$\frac{\left[Df_{\rho}\right]}{\left\lfloor Df_{\rho}\right\rfloor} \leq \lambda$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

for all $p \in U$.

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, let

$$\lfloor T \rfloor = \min_{v \neq 0} \frac{\|Tv\|}{\|v\|}$$
 and $\lceil T \rceil = \max_{v \neq 0} \frac{\|Tv\|}{\|v\|}$

A diffeomorphism $f: U \to U'$ between open subsets of \mathbb{R}^n is *quasiconformal* if there exists a $\lambda \ge 1$ so that

$$\frac{\left[Df_{\rho}\right]}{\left\lfloor Df_{\rho}\right\rfloor} \leq \lambda$$

for all $p \in U$.

Note: If $\lambda = 1$ then *f* is *conformal* (or anticonformal).

・ロト・西・・日・・日・・日・

Applications of Quasiconformal Maps

- Teichmüller theory: Metric on the Teichmüller space of a hyperbolic surface. Leads to the Nielsen–Thurston classification of mapping classes (Bers).
- ▶ *Mostow rigidity:* For $n \ge 3$, if *X* and *Y* are closed hyperbolic *n*-manifolds and $\pi_1(X) \cong \pi_1(Y)$ then *X* and *Y* are isometric.
- ► Groups quasi-isometric to Hⁿ: Any f.g. group which is quasi-isometric to Hⁿ has a geometric action on Hⁿ (Tukia, Cannon, Cooper, Gromov).
- Further Applications: Complex dynamics, characteristic classes, elliptic P.D.E.'s

Quasisymmetries

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ 三臣 - のへぐ

Quasisymmetries

In 1980, Tukia and Väisälä introduced *quasisymmetries* as an extension of quasiconformal geometry to arbitrary metric spaces.

Quasisymmetries

In 1980, Tukia and Väisälä introduced *quasisymmetries* as an extension of quasiconformal geometry to arbitrary metric spaces.

Definition

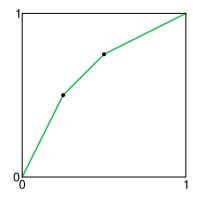
A homeomorphism $f: X \to Y$ between metric spaces is a *quasisymmetry* if

$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

for some homeomorphism $\eta : [0, \infty) \to [0, \infty)$ and every triple *a*, *b*, *c* of distinct points in *X*.

Note: The quasisymmetries $X \rightarrow X$ form a group.

Examples



$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

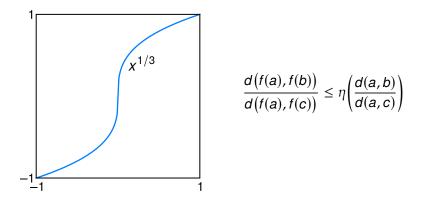
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If f is bilipschitz with

$$\frac{1}{K}d(x,x') \le d\big(f(x),f(x')\big) \le K\,d(x,x')$$

then *f* is quasisymmetric with $\eta(t) = K^2 t$.

Examples

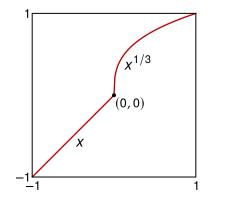


The function $f(x) = x^{1/3}$ is a quasisymmetry of [-1, 1], with

$$\eta(t) = \begin{cases} 6t^{1/3} & \text{if } 0 \le t \le 1\\ 6t & \text{if } t > 1. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

A Non-Example

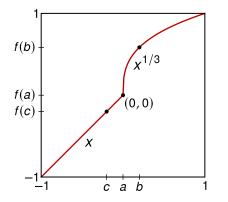


$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

This function is **not** a quasisymmetry of [-1, 1].

A Non-Example



$$\frac{d(f(a), f(b))}{d(f(a), f(c))} \le \eta\left(\frac{d(a, b)}{d(a, c)}\right)$$

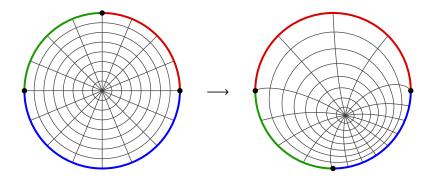
For $a = 0, b = \varepsilon$, and $c = -\varepsilon$, we have

$$\frac{d(f(a), f(b))}{d(f(a), f(c))} = \frac{\varepsilon^{1/3}}{\varepsilon} = \frac{1}{\varepsilon^{2/3}} \quad \text{and} \quad \frac{d(a, b)}{d(a, c)} = 1.$$

Quasiconformal vs. Quasisymmetric

Theorem (Beurling–Ahlfors 1956)

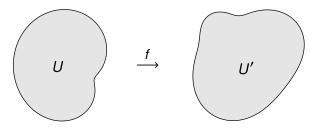
A homeomorphism of S^1 is the restriction of a quasiconformal map on D^2 if and only if it is a quasisymmetry.



・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Quasiconformal vs. Quasisymmetric

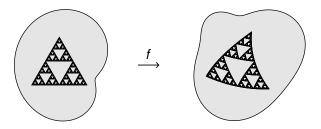
Let *f* be a homeomorphism between open subsets of \mathbb{R}^n ($n \ge 2$).



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Quasiconformal vs. Quasisymmetric

Let *f* be a homeomorphism between open subsets of \mathbb{R}^n ($n \ge 2$).



Theorem (Väisälä 1981)

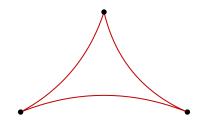
If f is quasiconformal then f restricts to a quasisymmetry on every compact subset of its domain.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

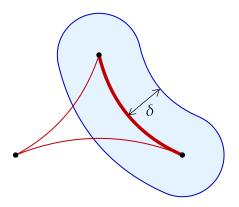
Relation to Hyperbolic Groups

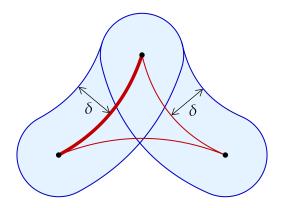
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

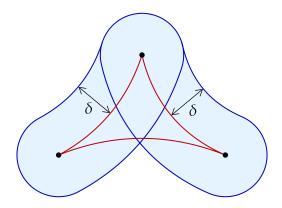
A group is *hyperbolic* if its Cayley graph satisfies Gromov's thin triangles condition.

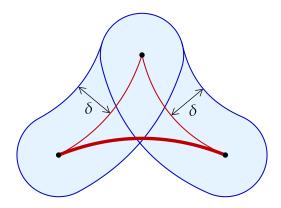


▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで









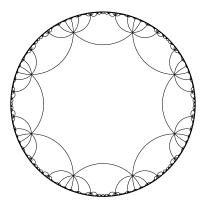
A group is *hyperbolic* if its Cayley graph satisfies Gromov's thin triangles condition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Every hyperbolic group *G* has a **boundary** $\partial_{\infty}G$.

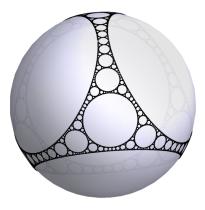
A group is *hyperbolic* if its Cayley graph satisfies Gromov's thin triangles condition.

Every hyperbolic group *G* has a **boundary** $\partial_{\infty}G$.



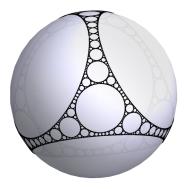
A group is *hyperbolic* if its Cayley graph satisfies Gromov's thin triangles condition.

Every hyperbolic group *G* has a **boundary** $\partial_{\infty}G$.



A group is *hyperbolic* if its Cayley graph satisfies Gromov's thin triangles condition.

Every hyperbolic group *G* has a **boundary** $\partial_{\infty}G$.



Sierpiński carpet

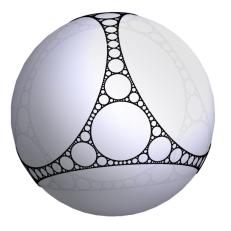
<ロト < 同ト < 回ト < 回ト = 三日

 $\partial_{\infty}G$

Quasi-Isometries

Theorem (Bonk–Schramm 2000)

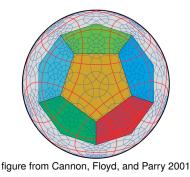
Any quasi-isometry $G \to H$ between hyperbolic groups induces a quasisymmetry $\partial_{\infty}G \to \partial_{\infty}H$.



Let *G* be a hyperbolic group.

Cannon's Conjecture

If there exists a homeomorphism $\partial_{\infty}G \to S^2$, then G acts geometrically on \mathbb{H}^3 .



Let *G* be a hyperbolic group.

Cannon's Conjecture

If there exists a homeomorphism $\partial_{\infty}G \to S^2$, then G acts geometrically on \mathbb{H}^3 .

Let G be a hyperbolic group.

Cannon's Conjecture

If there exists a homeomorphism $\partial_{\infty}G \to S^2$, then G acts geometrically on \mathbb{H}^3 .

Theorem (Sullivan–Tukia 1986)

If there exists a **quasisymmetry** $\partial_{\infty}G \to S^2$ then G acts geometrically on \mathbb{H}^3 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Let G be a hyperbolic group.

Cannon's Conjecture

If there exists a homeomorphism $\partial_{\infty}G \to S^2$, then G acts geometrically on \mathbb{H}^3 .

Theorem (Sullivan–Tukia 1986)

If there exists a **quasisymmetry** $\partial_{\infty}G \to S^2$ then G acts geometrically on \mathbb{H}^3 .

Conjecture (Kapovich-Kleiner)

If $\partial_{\infty}G$ is homeomorphic to the Sierpiński carpet, then G acts geometrically on a convex subset of \mathbb{H}^3 with totally geodesic boundary.

By the Way

Theorem (Dahmani–Guirardel–Przytycki 2011)

The boundary of a "random" hyperbolic group is homeomorphic to the Menger sponge.

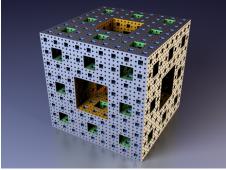


figure by Niabot from Wikimedia Commons

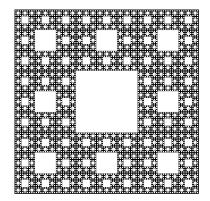
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We want to understand the quasisymmetry groups of fractal spaces such as the Sierpiński carpet.

	8
	8
	8
	2
	ei -
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	H.
	H.
	ä.
	7
₽€₽₽€₽₽€₽€	Ħ.
	H.
	8
	ä.
	8
	2
	ei -
`************************************	

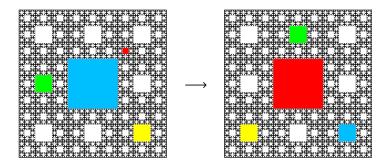
Theorem (Bonk–Merenkov 2013)

The quasisymmetry group of the square Sierpiński carpet is dihedral of order 8.



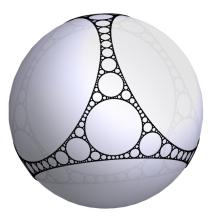
Theorem (Bonk–Merenkov 2013)

The quasisymmetry group of the square Sierpiński carpet is dihedral of order 8.



The full homeomorphism group is very large.

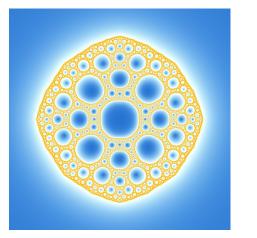
Other Sierpiński carpets can have many quasisymmetries.



・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

So the quasisymmetry group depends on the metric.

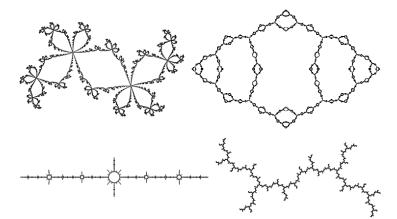
Sierpiński carpets also arise as Julia sets for certain rational functions (Milnor–Lei 1993).



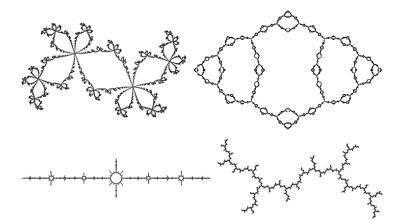
$$f(z) = z^2 - \frac{1}{16z^2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

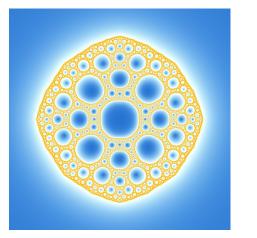
Every rational function on the Riemann sphere has an associated *Julia set*.



The Julia set is the closure of the set of repelling periodic points.



Sierpiński carpets also arise as Julia sets for certain rational functions (Milnor–Lei 1993).



$$f(z) = z^2 - \frac{1}{16z^2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

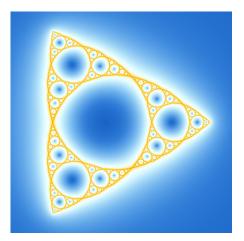
Sierpiński carpets also arise as Julia sets for certain rational functions (Milnor–Lei 1993).

Theorem (Bonk–Lyubich–Merenkov 2016)

Let f(z) be a rational function whose Julia set J_f is a Sierpiński carpet. If f is postcritically finite, then the quasisymmetry group of J_f is finite.

Qiu, Yang, and Zeng (2019) extend this to a large family of semi-hyperbolic Sierpiński carpet Julia sets.

Some other Julia sets are also known to have finite quasisymmetry group.



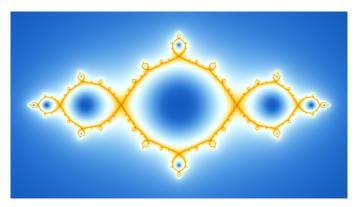
$$f(z) = z^2 - \frac{16}{27z}$$

(Ushiki 1991, Kameyama 2000)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

The Basilica

The **basilica** is the Julia set for $f(z) = z^2 - 1$



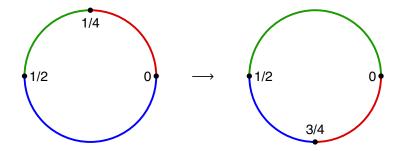
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Theorem (Lyubich–Merenkov 2018)

The quasisymmetry group of the basilica is infinite.

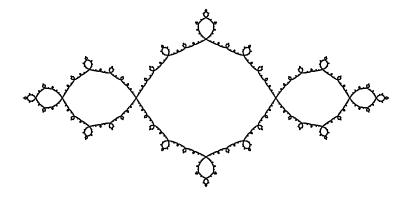
Thompson's group *T* is the group of all piecewise-linear homeomorphisms of the circle $S^1 = \mathbb{R}/\mathbb{Z}$ that satisfy the following conditions:

- 1. All slopes have the form 2^n for some $n \in \mathbb{Z}$.
- 2. Each breakpoint is a dyadic rational, as is the image of 0.



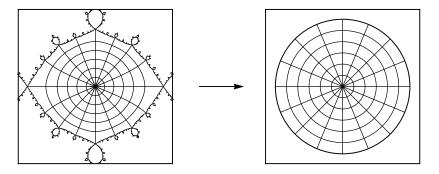
(日) (雪) (日) (日) (日)

In 2015, Bradley Forrest and I proved that Thompson's group T acts on the basilica in a natural way.



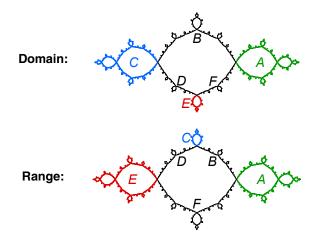
・ロト ・ 四ト ・ ヨト ・ ヨト

In 2015, Bradley Forrest and I proved that Thompson's group T acts on the basilica in a natural way.



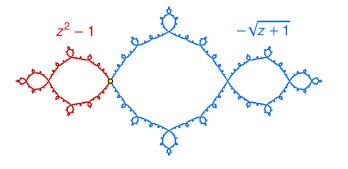
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

In 2015, Bradley Forrest and I proved that Thompson's group T acts on the basilica in a natural way.



In 2015, Bradley Forrest and I proved that Thompson's group T acts on the basilica in a natural way.

This T is contained in a larger group of piecewise-conformal homeomorphisms that we called the *basilica Thompson group*.



In 2015, Bradley Forrest and I proved that Thompson's group *T* acts on the basilica in a natural way.

This T is contained in a larger group of piecewise-conformal homeomorphisms that we called the *basilica Thompson group*.

Theorem (B–Forrest 2015)

The basilica Thompson group is finitely generated, co-embeddable with *T*, and has an index-two subgroup which is simple.

In 2015, Bradley Forrest and I proved that Thompson's group T acts on the basilica in a natural way.

This T is contained in a larger group of piecewise-conformal homeomorphisms that we called the *basilica Thompson group*.

Theorem (B–Forrest 2015)

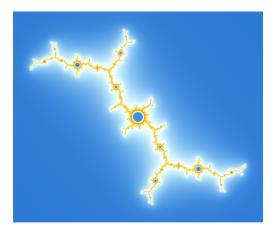
The basilica Thompson group is finitely generated, co-embeddable with *T*, and has an index-two subgroup which is simple.

Theorem (Lyubich–Merenkov 2018)

All elements of the basilica Thompson group are quasisymmetries.

Other Julia Sets

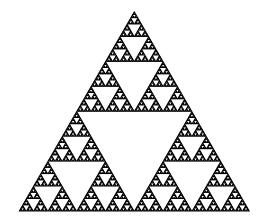
Can we extend this to other polynomial Julia sets?



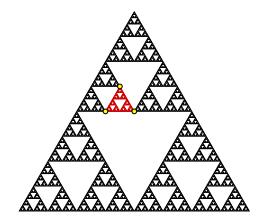
Julia set for $f(z) = z^2 - 0.157 + 1.032i$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

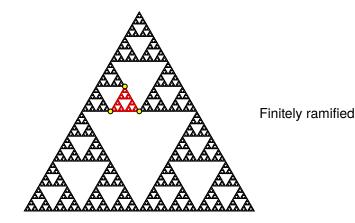
Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.

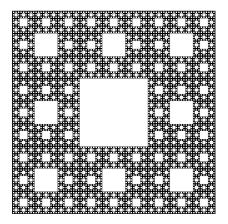


Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.

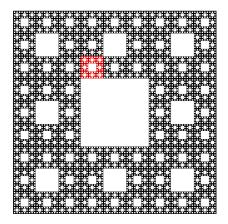


・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

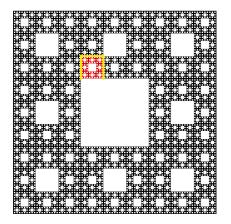
Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Roughly speaking, a fractal is *finitely ramified* if it is made from pieces (called *cells*) that have finitely many boundary points.



Not finitely ramified

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Definition (Teplyaev 2008)

Let *X* be a compact, connected metrizable space.

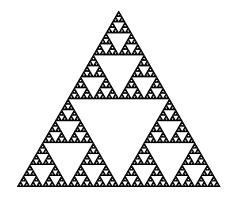
For each $n \ge 0$, fix a finite collection of subsets of *X* (the *n-cells*).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

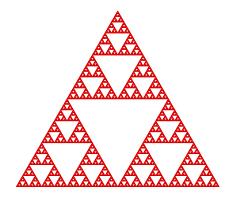
For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



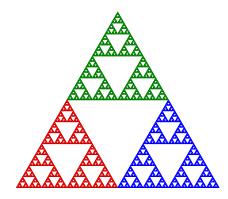
One 0-cell

・ロト・日本・日本・日本・日本・日本

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



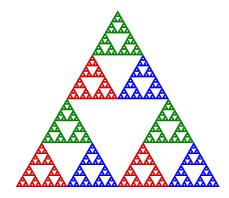
Three 1-cells

・ロト・西ト・ヨト・ヨー シック

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).



Nine 2-cells

・ロト・日本・山田・山田・山口・

Definition (Teplyaev 2008)

Let *X* be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of *X* (the *n-cells*).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. 2. 3.

4.

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. Each *n*-cell is compact, connected, and has nonempty interior.

2.

3.

4.

General Definition

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

1. Each *n*-cell is compact, connected, and has nonempty interior.

2. The intersection of any two *n*-cells is finite.

3.

4.

General Definition

Definition (Teplyaev 2008)

Let X be a compact, connected metrizable space.

For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

- 1. Each *n*-cell is compact, connected, and has nonempty interior.
- 2. The intersection of any two *n*-cells is finite.
- 3. The entire space *X* is the unique 0-cell, and every *n*-cell is a union of (*n* + 1)-cells.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

4.

General Definition

Definition (Teplyaev 2008)

Let *X* be a compact, connected metrizable space.

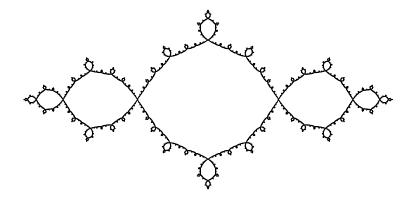
For each $n \ge 0$, fix a finite collection of subsets of X (the *n-cells*).

These define a *finitely ramified fractal* if:

- 1. Each n-cell is compact, connected, and has nonempty interior.
- 2. The intersection of any two *n*-cells is finite.
- 3. The entire space X is the unique 0-cell, and every *n*-cell is a union of (n + 1)-cells.
- 4. If $E_0 \supseteq E_1 \supseteq E_2 \supseteq \cdots$ with each E_n an *n*-cell, then $\bigcap_{n=0} E_n$ is a single point.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

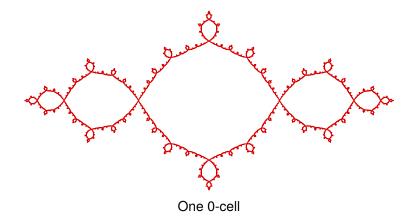
The basilica Julia set can be viewed as a finitely ramified fractal.



ヘロト 人間 ト 人 ヨト 人 ヨト

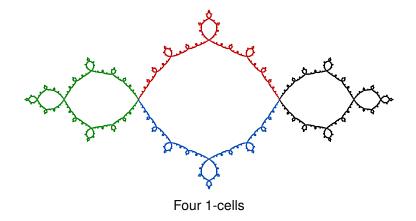
э

The basilica Julia set can be viewed as a finitely ramified fractal.



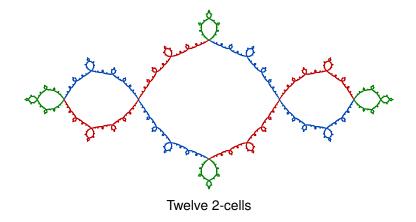
<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回

The basilica Julia set can be viewed as a finitely ramified fractal.



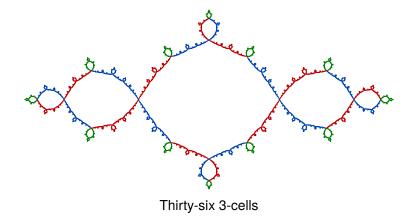
<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回

The basilica Julia set can be viewed as a finitely ramified fractal.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

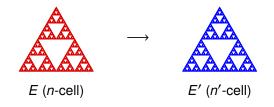
The basilica Julia set can be viewed as a finitely ramified fractal.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Cellular Maps

Let X be a finitely ramified fractal, and let E, E' be cells in X.

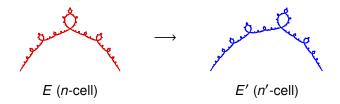


A homeomorphism $E \rightarrow E'$ is *cellular* if it maps (n + k)-cells in E to (n' + k)-cells in E' for all $k \ge 0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Cellular Maps

Let X be a finitely ramified fractal, and let E, E' be cells in X.



A homeomorphism $E \rightarrow E'$ is *cellular* if it maps (n + k)-cells in E to (n' + k)-cells in E' for all $k \ge 0$.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Piecewise-Cellular Maps

A homeomorphism $f: X \to X$ is **piecewise-cellular** if there exist subdivisions

$$\{E_1, \ldots, E_n\}$$
 and $\{E'_1, \ldots, E'_n\}$

of X into cells so that f maps each E_i to E'_i by a cellular map.

Note: The piecewise-cellular homeomorphisms of *X* form a group.

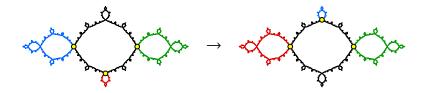
・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Piecewise-Cellular Maps

A homeomorphism $f: X \to X$ is **piecewise-cellular** if there exist subdivisions

$$\{E_1, \ldots, E_n\}$$
 and $\{E'_1, \ldots, E'_n\}$

of X into cells so that f maps each E_i to E'_i by a cellular map.



Question: When are piecewise-cellular homeomorphisms quasisymmetries?

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Theorem (B-Forrest 2021)

Any two quasiregular metrics on X are quasisymmetrically equivalent.

Theorem (B–Forrest 2021)

If the metric on X is quasiregular then any piecewise-cellular homeomorphism of X is a quasisymmetry.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Exponential Decay Condition:

There exist constants 0 < r < R < 1 and $C \ge 1$ so that

$$\frac{r^k}{C} \le \frac{\operatorname{diam}(E')}{\operatorname{diam}(E)} \le CR^k$$

for any *n*-cell *E* and any (n + k)-cell *E'* contained in *E*.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Bounded Neighbor Ratios:

There exists a constant $\lambda \ge 1$ so that

$$\frac{1}{\lambda} \le \frac{\operatorname{diam}(E')}{\operatorname{diam}(E)} \le \lambda$$

for any two *n*-cells E and E' that intersect.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Cell Separation Condition:

There exists a constant $\delta > 0$ so that

 $d(E, E') \ge \delta \operatorname{diam}(E)$

for any two *n*-cells E and E' that are disjoint.

A metric on a finitely ramified fractal X is *quasiregular* if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

A metric on a finitely ramified fractal X is *quasiregular* if:

- 1. It satisfies the exponential decay condition.
- 2. It has bounded neighbor ratios, and
- 3. It satisfies the cell separation condition.

Theorem (B-Forrest 2021)

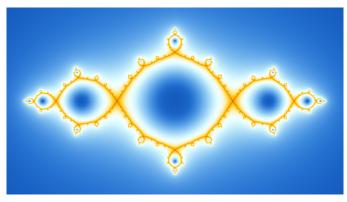
Any two quasiregular metrics on X are quasisymmetrically equivalent.

Theorem (B–Forrest 2021)

If the metric on X is quasiregular then any piecewise-cellular homeomorphism of X is a quasisymmetry.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

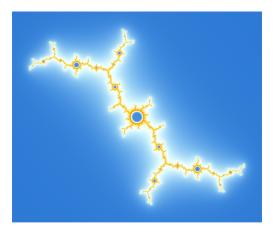
Julia sets for polynomials tend to be finitely ramified.



Julia set for $f(z) = z^2 - 1$

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

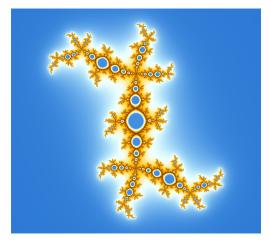
Julia sets for polynomials tend to be finitely ramified.



Julia set for $f(z) = z^2 - 0.157 + 1.032i$

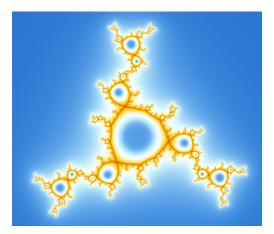
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Julia sets for polynomials tend to be finitely ramified.



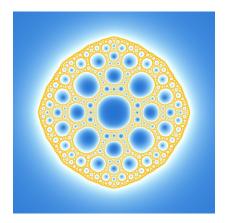
Julia set for $f(z) = z^2 + 0.32 + 0.56i$

Julia sets for polynomials tend to be finitely ramified.



Julia set for $f(z) = z^3 - 0.21 + 1.09i$

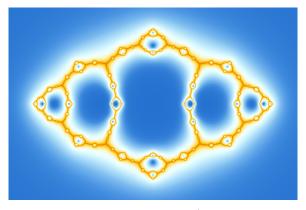
Julia sets for rational functions are sometimes finitely ramified.



Julia set for
$$f(z) = z^2 - \frac{1}{16z^2}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

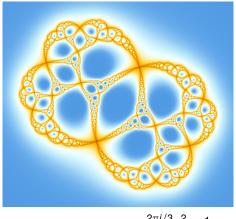
Julia sets for rational functions are sometimes finitely ramified.



Julia set for
$$f(z) = \frac{1}{z^2} - 1$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Julia sets for rational functions are sometimes finitely ramified.



Julia set for
$$f(z) = \frac{e^{z(z)/3}z^2 - 1}{z^2 - 1}$$

Hyperbolic Julia Sets

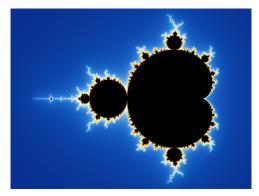
A rational function f(z) is **hyperbolic** if the forward orbit of each critical point converges to an attracting cycle.

Such maps are expanding on their Julia set with respect to an appropriate metric.

Hyperbolic Julia Sets

A rational function f(z) is **hyperbolic** if the forward orbit of each critical point converges to an attracting cycle.

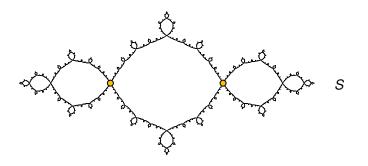
Such maps are expanding on their Julia set with respect to an appropriate metric.



Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.



Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

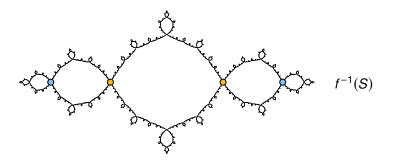


・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

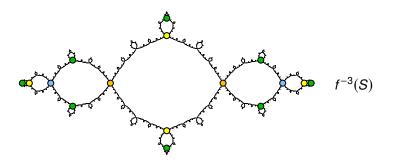


・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

Theorem (B–Forrest 2021)

In this case, the resulting cells define a finitely ramified cell structure on J_f , and the restriction of the Euclidean metric is quasiregular.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Let f(z) be a hyperbolic rational function with connected Julia set J_f .

Suppose there exists a finite set $S \subset J_f$ such that $f(S) \subseteq S$ and f is one-to-one on each component of $J_f \setminus S$.

For such a set, the iterated preimages $f^{-n}(S)$ cut J_f into cells.

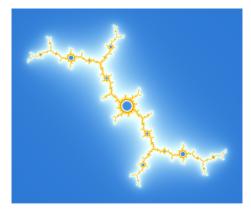
Theorem (B–Forrest 2021)

In this case, the resulting cells define a finitely ramified cell structure on J_f , and the restriction of the Euclidean metric is quasiregular.

In particular, piecewise-cellular homeomorphisms are quasisymmetries.

Theorem (B-Forrest 2021)

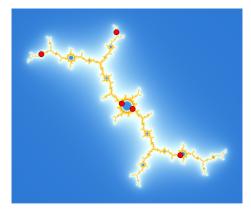
If f(z) is a hyperbolic polynomial, then such a set S exists.



Julia set for $f(z) = z^2 - 0.157 + 1.032i$

Theorem (B-Forrest 2021)

If f(z) is a hyperbolic polynomial, then such a set S exists.



Julia set for $f(z) = z^2 - 0.157 + 1.032i$

・ロト・日本・日本・日本・日本・日本

Theorem (B-Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (B–Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.

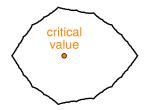
▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

"Sketch" of Proof.

Theorem (B–Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.

"Sketch" of Proof.

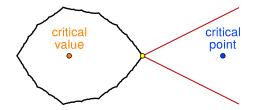


▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (B-Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.

"Sketch" of Proof.

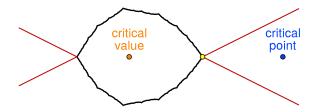


▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (B–Forrest 2021)

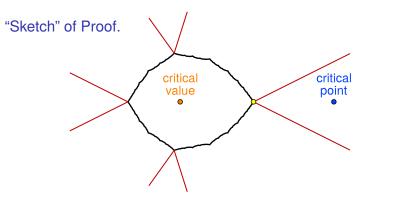
If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.

"Sketch" of Proof.



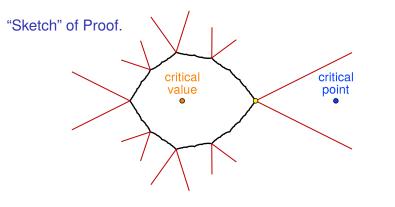
Theorem (B–Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.



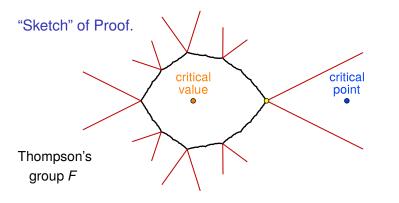
Theorem (B–Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.



Theorem (B–Forrest 2021)

If f is a hyperbolic quadratic polynomial and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains Thompson's group F.



◆□▶▲□▶▲≣▶▲≣▶ ▲□▶

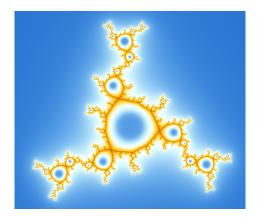
Theorem (B–Forrest 2021)

If f is a hyperbolic polynomial of any degree with only one critical point and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains $\mathbb{Z}_m * \mathbb{Z}_n$ for some $m, n \ge 2$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Theorem (B–Forrest 2021)

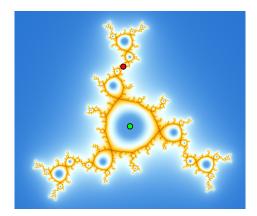
If f is a hyperbolic polynomial of any degree with only one critical point and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains $\mathbb{Z}_m * \mathbb{Z}_n$ for some $m, n \ge 2$.



Julia set for $f(z) = z^3 - 0.21 + 1.09i$

Theorem (B–Forrest 2021)

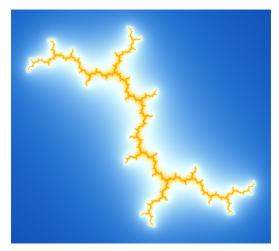
If f is a hyperbolic polynomial of any degree with only one critical point and J_f is connected, then the quasisymmetry group of J_f is infinite. Indeed, it contains $\mathbb{Z}_m * \mathbb{Z}_n$ for some $m, n \ge 2$.



Julia set for $f(z) = z^3 - 0.21 + 1.09i$

Open Questions

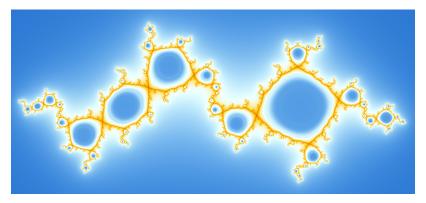
Can this theory be extended to the subhyperbolic case?



Julia set for $f(z) = z^2 + i$

Open Questions

What about other hyperbolic cubic polynomials?

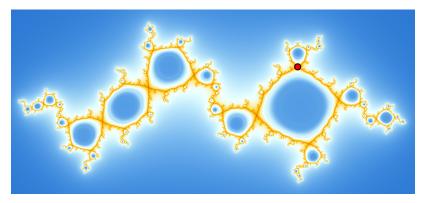


Julia set for $f(z) = (4.424 + 1.374i)(z^3 - 3z + 2) - 1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Open Questions

What about other hyperbolic cubic polynomials?



Julia set for $f(z) = (4.424 + 1.374i)(z^3 - 3z + 2) - 1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The End

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @