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A diffeomorphism f : U → U′ between open subsets of Rn is
quasiconformal if there exists a 𝜆 ≥ 1 so that

⌈Dfp⌉
⌊Dfp⌋

≤ 𝜆

for all p ∈ U.

Note: If 𝜆 = 1 then f is conformal (or anticonformal).



Applications of Quasiconformal Maps

▶ Teichmüller theory: Metric on the Teichmüller space of a
hyperbolic surface. Leads to the Nielsen–Thurston
classification of mapping classes (Bers).

▶ Mostow rigidity: For n ≥ 3, if X and Y are closed hyperbolic
n-manifolds and 𝜋1(X) � 𝜋1(Y ) then X and Y are isometric.

▶ Groups quasi-isometric to Hn: Any f.g. group which is
quasi-isometric to Hn has a geometric action on Hn

(Tukia, Cannon, Cooper, Gromov).

▶ Further Applications: Complex dynamics, characteristic
classes, elliptic P.D.E.’s
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In 1980, Tukia and Väisälä introduced quasisymmetries as an
extension of quasiconformal geometry to arbitrary metric spaces.



Quasisymmetries

In 1980, Tukia and Väisälä introduced quasisymmetries as an
extension of quasiconformal geometry to arbitrary metric spaces.

Definition
A homeomorphism f : X → Y between metric spaces is a
quasisymmetry if

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)
for some homeomorphism 𝜂 : [0,∞) → [0,∞) and every triple
a, b, c of distinct points in X .

Note: The quasisymmetries X → X form a group.



Examples

d
(
f (a), f (b)

)
d
(
f (a), f (c)
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(
d(a, b)
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)

If f is bilipschitz with

1
K

d(x , x′) ≤ d
(
f (x), f (x′)

)
≤ K d(x , x′)

then f is quasisymmetric with 𝜂(t) = K 2t.



Examples

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)

The function f (x) = x1/3 is a quasisymmetry of [−1, 1], with

𝜂(t) =
{

6t1/3 if 0 ≤ t ≤ 1
6t if t > 1.



A Non-Example

d
(
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This function is not a quasisymmetry of [−1, 1].



A Non-Example

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)

For a = 0, b = 𝜀, and c = −𝜀, we have

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) =
𝜀1/3

𝜀
=

1
𝜀2/3

and
d(a, b)
d(a, c) = 1.



Quasiconformal vs. Quasisymmetric

Theorem (Beurling–Ahlfors 1956)
A homeomorphism of S1 is the restriction of a quasiconformal map
on D2 if and only if it is a quasisymmetry.

−→



Quasiconformal vs. Quasisymmetric

Let f be a homeomorphism between open subsets of Rn (n ≥ 2).

f−→



Quasiconformal vs. Quasisymmetric

Let f be a homeomorphism between open subsets of Rn (n ≥ 2).

f−→

Theorem (Väisälä 1981)
If f is quasiconformal then f restricts to a quasisymmetry on every
compact subset of its domain.
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Hyperbolic Groups

A group is hyperbolic if its Cayley graph satisfies Gromov’s thin
triangles condition.

Every hyperbolic group G has a boundary 𝜕∞G.

𝜕∞G Sierpiński carpet



Quasi-Isometries

Theorem (Bonk–Schramm 2000)
Any quasi-isometry G → H between hyperbolic groups induces a
quasisymmetry 𝜕∞G → 𝜕∞H.



Cannon’s Conjecture

Let G be a hyperbolic group.

Cannon’s Conjecture
If there exists a homeomorphism 𝜕∞G → S2, then G acts
geometrically on H3.

figure from Cannon, Floyd, and Parry 2001
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Cannon’s Conjecture

Let G be a hyperbolic group.

Cannon’s Conjecture
If there exists a homeomorphism 𝜕∞G → S2, then G acts
geometrically on H3.

Theorem (Sullivan–Tukia 1986)
If there exists a quasisymmetry 𝜕∞G → S2 then G acts
geometrically on H3.

Conjecture (Kapovich–Kleiner)
If 𝜕∞G is homeomorphic to the Sierpiński carpet, then G acts
geometrically on a convex subset of H3 with totally geodesic
boundary.



By the Way

Theorem (Dahmani–Guirardel–Przytycki 2011)
The boundary of a “random” hyperbolic group is homeomorphic to
the Menger sponge.

figure by Niabot from Wikimedia Commons
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Quasisymmetries of Fractals

We want to understand the quasisymmetry groups of fractal spaces
such as the Sierpiński carpet.



Quasisymmetries of Fractals

Theorem (Bonk–Merenkov 2013)
The quasisymmetry group of the square Sierpiński carpet is
dihedral of order 8.



Quasisymmetries of Fractals

Theorem (Bonk–Merenkov 2013)
The quasisymmetry group of the square Sierpiński carpet is
dihedral of order 8.

−→

The full homeomorphism group is very large.



Quasisymmetries of Fractals

Other Sierpiński carpets can have many quasisymmetries.

So the quasisymmetry group depends on the metric.



Julia Sets

Sierpiński carpets also arise as Julia sets for certain rational
functions (Milnor–Lei 1993).

f (z) = z2 − 1
16z2



Julia Sets

Every rational function on the Riemann sphere has an associated
Julia set.



Julia Sets

The Julia set is the closure of the set of repelling periodic points.
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Sierpiński carpets also arise as Julia sets for certain rational
functions (Milnor–Lei 1993).
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Julia Sets

Sierpiński carpets also arise as Julia sets for certain rational
functions (Milnor–Lei 1993).

Theorem (Bonk–Lyubich–Merenkov 2016)
Let f (z) be a rational function whose Julia set Jf is a Sierpiński
carpet. If f is postcritically finite, then the quasisymmetry group of Jf
is finite.

Qiu, Yang, and Zeng (2019) extend this to a large family of
semi-hyperbolic Sierpiński carpet Julia sets.



Julia Sets

Some other Julia sets are also known to have finite quasisymmetry
group.

f (z) = z2 − 16
27z

(Ushiki 1991,
Kameyama 2000)



The Basilica

The basilica is the Julia set for f (z) = z2 − 1

Theorem (Lyubich–Merenkov 2018)
The quasisymmetry group of the basilica is infinite.



Quasisymmetries of the Basilica

Thompson’s group T is the group of all piecewise-linear
homeomorphisms of the circle S1 = R/Z that satisfy the following
conditions:

1. All slopes have the form 2n for some n ∈ Z.
2. Each breakpoint is a dyadic rational, as is the image of 0.

01/2

1/4

−→ 01/2

3/4
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In 2015, Bradley Forrest and I proved that Thompson’s group T
acts on the basilica in a natural way.
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In 2015, Bradley Forrest and I proved that Thompson’s group T
acts on the basilica in a natural way.
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This T is contained in a larger group of piecewise-conformal
homeomorphisms that we called the basilica Thompson group.
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The basilica Thompson group is finitely generated, co-embeddable
with T, and has an index-two subgroup which is simple.



Quasisymmetries of the Basilica

In 2015, Bradley Forrest and I proved that Thompson’s group T
acts on the basilica in a natural way.

This T is contained in a larger group of piecewise-conformal
homeomorphisms that we called the basilica Thompson group.

Theorem (B–Forrest 2015)
The basilica Thompson group is finitely generated, co-embeddable
with T, and has an index-two subgroup which is simple.

Theorem (Lyubich–Merenkov 2018)
All elements of the basilica Thompson group are quasisymmetries.



Other Julia Sets

Can we extend this to other polynomial Julia sets?

Julia set for f (z) = z2 − 0.157 + 1.032 i
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Roughly speaking, a fractal is finitely ramified if it is made from
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Definition (Teplyaev 2008)
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General Definition

Definition (Teplyaev 2008)
Let X be a compact, connected metrizable space.

For each n ≥ 0, fix a finite collection of subsets of X (the n-cells).

These define a finitely ramified fractal if:

1. Each n-cell is compact, connected, and has nonempty interior.

2. The intersection of any two n-cells is finite.

3. The entire space X is the unique 0-cell, and every n-cell is a
union of (n + 1)-cells.

4. If E0 ⊇ E1 ⊇ E2 ⊇ · · · with each En an n-cell, then
⋂

n=0 En is
a single point.



Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.
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Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.

Four 1-cells



Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.

Twelve 2-cells



Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.

Thirty-six 3-cells



Cellular Maps

Let X be a finitely ramified fractal, and let E ,E′ be cells in X .

E (n-cell)

−→

E′ (n′-cell)

A homeomorphism E → E′ is cellular if it maps (n + k)-cells in E
to (n′ + k)-cells in E′ for all k ≥ 0.



Cellular Maps

Let X be a finitely ramified fractal, and let E ,E′ be cells in X .

E (n-cell)

−→

E′ (n′-cell)

A homeomorphism E → E′ is cellular if it maps (n + k)-cells in E
to (n′ + k)-cells in E′ for all k ≥ 0.



Piecewise-Cellular Maps

A homeomorphism f : X → X is piecewise-cellular if there exist
subdivisions

{E1 , . . . ,En} and {E′
1 , . . . ,E

′
n}

of X into cells so that f maps each Ei to E′
i by a cellular map.

→

Note: The piecewise-cellular homeomorphisms of X form a group.



Piecewise-Cellular Maps

A homeomorphism f : X → X is piecewise-cellular if there exist
subdivisions

{E1 , . . . ,En} and {E′
1 , . . . ,E

′
n}

of X into cells so that f maps each Ei to E′
i by a cellular map.

→

Question: When are piecewise-cellular homeomorphisms
quasisymmetries?
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A metric on a finitely ramified fractal X is quasiregular if:

1. It satisfies the exponential decay condition.

2. It has bounded neighbor ratios, and

3. It satisfies the cell separation condition.

Theorem (B–Forrest 2021)
Any two quasiregular metrics on X are quasisymmetrically
equivalent.

Theorem (B–Forrest 2021)
If the metric on X is quasiregular then any piecewise-cellular
homeomorphism of X is a quasisymmetry.
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Exponential Decay Condition:
There exist constants 0 < r < R < 1 and C ≥ 1 so that

r k

C
≤ diam(E′)

diam(E) ≤ CRk

for any n-cell E and any (n + k)-cell E′ contained in E.
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A metric on a finitely ramified fractal X is quasiregular if:

1. It satisfies the exponential decay condition.

2. It has bounded neighbor ratios, and

3. It satisfies the cell separation condition.

Bounded Neighbor Ratios:
There exists a constant 𝜆 ≥ 1 so that

1
𝜆

≤ diam(E′)
diam(E) ≤ 𝜆

for any two n-cells E and E′ that intersect.
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A metric on a finitely ramified fractal X is quasiregular if:

1. It satisfies the exponential decay condition.

2. It has bounded neighbor ratios, and

3. It satisfies the cell separation condition.

Cell Separation Condition:
There exists a constant 𝛿 > 0 so that

d(E ,E′) ≥ 𝛿 diam(E)

for any two n-cells E and E′ that are disjoint.
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Main Results

A metric on a finitely ramified fractal X is quasiregular if:

1. It satisfies the exponential decay condition.

2. It has bounded neighbor ratios, and

3. It satisfies the cell separation condition.

Theorem (B–Forrest 2021)
Any two quasiregular metrics on X are quasisymmetrically
equivalent.

Theorem (B–Forrest 2021)
If the metric on X is quasiregular then any piecewise-cellular
homeomorphism of X is a quasisymmetry.
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Finitely Ramified Julia Sets

Julia sets for polynomials tend to be finitely ramified.

Julia set for f (z) = z3 − 0.21 + 1.09 i



Finitely Ramified Julia Sets

Julia sets for rational functions are sometimes finitely ramified.

Julia set for f (z) = z2 − 1
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Finitely Ramified Julia Sets

Julia sets for rational functions are sometimes finitely ramified.

Julia set for f (z) = 1
z2 − 1



Finitely Ramified Julia Sets

Julia sets for rational functions are sometimes finitely ramified.

Julia set for f (z) = e2𝜋i/3z2 − 1
z2 − 1
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A rational function f (z) is hyperbolic if the forward orbit of each
critical point converges to an attracting cycle.

Such maps are expanding on their Julia set with respect to an
appropriate metric.
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Main Results

Let f (z) be a hyperbolic rational function with connected Julia set Jf .

Suppose there exists a finite set S ⊂ Jf such that f (S) ⊆ S and f is
one-to-one on each component of Jf \ S.

For such a set, the iterated preimages f−n(S) cut Jf into cells.

Theorem (B–Forrest 2021)
In this case, the resulting cells define a finitely ramified cell structure
on Jf , and the restriction of the Euclidean metric is quasiregular.

In particular, piecewise-cellular homeomorphisms are
quasisymmetries.
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Theorem (B–Forrest 2021)
If f (z) is a hyperbolic polynomial, then such a set S exists.
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Open Questions

Can this theory be extended to the subhyperbolic case?

Julia set for f (z) = z2 + i
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The End
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