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Homeomorphisms of the Cantor Set

The Cantor set C is the space {0, 1}ω of all infinite binary
sequences.

Theorem (Anderson 1958)
The full group Homeo(C) of homeomorphisms of C is an
uncountable simple group.

Homeo(C) has many interesting subgroups.
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Homeomorphisms of the Cantor Set

Grigorchuk’s group

a b

c d

... ...

...



Homeomorphisms of the Cantor Set

Iterated monodromy groups



Homeomorphisms of the Cantor Set

Definition (Grigorchuk, Nekrashevych, Sushchanskĭı)
A homeomorphism of C is rational if it can be defined by a
finite-state automaton.

The group of all such homeomorphisms is the rational group R.



Homeomorphisms of the Cantor Set

Definition (Grigorchuk, Nekrashevych, Sushchanskĭı)
A homeomorphism of C is rational if it can be defined by a
finite-state automaton.

The group of all such homeomorphisms is the rational group R.

Theorem (GNS 2000)
Subgroups of R include:
1. Thompson’s groups F, T, and V.
2. Grigorchuk’s group and other self-similar groups.
3. The automorphism group of a full shift (one or two-sided) over

a finite alphabet.
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Automata
A finite-state automaton is a machine for processing binary
strings.

There are transitions between the states:

p | q
−−−−−−−−→ input p and output q.

The input must be 0 or 1, but the output can be any binary string.
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Automata
A finite-state automaton is a machine for processing binary
strings.

This defines a rational function

f : {0, 1}ω −→ {0, 1}ω

Such a function is a homeomorphism as long as it is bijective.



The Rational Group

Definition (Grigorchuk, Nekrashevych, Sushchanskĭı)
The group of all rational homeomorphisms of {0, 1}ω is the
rational group R.

Theorem (B, Hyde, Matucci 2017)

I R is simple.

I R is not finitely generated.

An automata group is any finitely generated subgroup of R.



Example: Thompson’s Group F

The following automaton defines two rational homeomorphisms
x0 and x1:

The group 〈x0 , x1〉 is Thompson’s group F .



Example: Grigorchuk’s Group

The following automaton defines four rational homeomorphisms
a, b, c, and d:

The group 〈a, b, c, d〉 is Grigorchuk’s group.



Two Notes



1. Synchronous vs. Asynchronous

Grigorchuk’s group is a synchronous automata group, but
Thompson’s group F is asynchronous.

synchronous asynchronous



2. Other Finite Alphabets

Grigorchuk, Nekrashevych, and Sushchanskiı̆ also considered
rational homeomorphisms with respect to larger alphabets.
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For each n ≥ 3, the group Rn of rational homeomorphisms of
{1, 2, . . . , n}ω is isomorphic to R.



2. Other Finite Alphabets

Theorem (Grigorchuk, Nekrashevych, Sushchanskiı̆)
For each n ≥ 3, the group Rn of rational homeomorphisms of
{1, 2, . . . , n}ω is isomorphic to R.

Example
For n � 3, define a homeomorphism h : {1, 2, 3}ω → {0, 1}ω by

1 7→ 00, 2 7→ 01, 3 7→ 1.

Then conjugation by h is an isomorphism from R3 to R.
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Rational Embeddings

Question
Which finitely generated groups G can be realized as automata
groups?

Example (The Lamplighter Group)
Grigorchuk and Zuk (2000) realized the group Z2 o Z using
synchronous automata:

Here 〈a, b〉 � Z2 o Z.



Rational Embeddings

Theorem (Brunner and Sidki 1998)
GL(n,Z) embeds into R for all n ≥ 1.

Theorem (Silva and Steinberg 2005)
The generalized lamplighter groups Zn o Z embed into R.

Theorem (Bartholdi and Šunić 2006)
The Baumslag-Solitar groups BS(1, n) embed into R.

Theorem (B, Bleak 2014)
The higher-dimensional Thompson groups nV embed into R.



Rational Embeddings

Main Theorem (B, Bleak, and Matucci 2018)
All hyperbolic groups embed into R.
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Hyperbolic Groups

In the 1980’s, Mikhail Gromov transformed the study of infinite
discrete groups using ideas from Riemannian geometry.

A group G is viewed geometrically as a Cayley graph.
Shortest-length paths in the graph are geodesics.

Certain “large-scale” properties of manifolds also make sense for
graphs (and hence groups).
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Hyperbolic Groups

Let Γ be a locally finite graph, and let δ > 0.

I Γ is δ-hyperbolic if all geodesic triangles in Γ are δ-thin.

I Γ is hyperbolic if it is δ-hyperbolic for some δ > 0.

Definition (Gromov)
A finitely-generated group G is hyperbolic if its Cayley graph is
hyperbolic.

Note: This does not depend on the generating set.
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Hyperbolic Groups

Examples

I Fundamental groups of negatively curved compact manifolds.

I Symmetry groups of hyperbolic tessellations.

I Free groups, free products of finite groups, etc.

Principle (Gromov)
“Almost all” finitely presented groups are hyperbolic.
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Hyperbolic Boundaries

Examples

I If G is a free group, then ∂G is its Cantor set of leaves.

I If G is the symmetry group of a hyperbolic tessellation, then
∂G is a circle.

I For a “typical” hyperbolic group, the boundary is a fractal.
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Rational Actions

Let X be a compact metrizable space.

Definition (Binary Addresses)
A system of binary addresses for X is a quotient map

q : {0, 1}ω → X .

For example, the usual binary number system defines a quotient
map

q : {0, 1}ω → [0, 1].



Rational Actions

Let X be a compact metrizable space.

Definition (Binary Addresses)
A system of binary addresses for X is a quotient map

q : {0, 1}ω → X .

Theorem (Well-Known)
Every compact metrizable space has a system of binary addresses.



Rational Actions

Let G be a group acting by homeomorphisms on a compact
metrizable space X .

Definition (Rational Action)
The action of G on X is rational if there exists a quotient map
q : {0, 1}ω → X and a homomorphism ϕ : G→ R such that the
diagram

{0, 1}ω

q
����

ϕ(g)
// {0, 1}ω

q
����

X g
// X

commutes for all g ∈ G.



Rational Actions

Observation: A group G embeds into R if and only if G acts
faithfully and rationally on some compact metrizable space.

Definition (Rational Action)
The action of G on X is rational if there exists a quotient map
q : {0, 1}ω → X and a homomorphism ϕ : G→ R such that the
diagram

{0, 1}ω

q
����

ϕ(g)
// {0, 1}ω

q
����

X g
// X

commutes for all g ∈ G.
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elements of G act by automata.
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Rational Actions

Main Theorem (B, Bleak, Matucci 2018)
Let G be a hyperbolic group. Then the action of G on ∂G is rational.

That is, there exists a system of binary addresses for ∂G such that
elements of G act by automata.

Note: As long as the action of G on ∂G is faithful, it follows that G
embeds into R.

Note: Sometimes the action isn’t faithful, but G always does act
faithfully on ∂(G ∗ Z), and thus always embeds into R.
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Some Terminology

By definition, R acts on the binary Cantor set C � {0, 1}ω.

Each finite binary sequence α corresponds to a branch Cα of C.

Any two branches of C have a canonical homeomorphism
between them.



Geometric Characterization of R

Theorem (Grigorchuk, Nekrashevych, Sushchanskiı̆)
A homeomorphism F : C→ C is rational if and only if it has finitely
many local actions on the branches of C.



Self-Similar Trees

We will need to use a more general class of Cantor spaces.
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A self-similar tree has finitely many types of vertices:



Self-Similar Trees

We also allow finite sets of canonical homeomorphisms.



Self-Similar Trees

Definition (Rational Homeomorphism)
Let C be the space of leaves of a self-similar tree. A
homeomorphism F : C→ C is rational if it has finitely many
different local actions.

Here F has the same local action on C1 and C2 if there exist

C′1 ⊇ F(C1) and C′2 ⊇ F(C2)

and canonical homeomorphisms ϕ and ψ making the following
diagram commute:

C1
F //

ϕ
��

C′1
ψ
��

C2 F
// C′2



Self-Similar Trees

Definition (Rational Homeomorphism)
Let C be the space of leaves of a self-similar tree. A
homeomorphism F : C→ C is rational if it has finitely many
different local actions.

Theorem (B, Bleak, Matucci)
As long as C has no isolated points, the group RC of rational
homeomorphisms of C is isomorphic to R.

Indeed, RC is conjugate to R by a homeomorphism C→ {0, 1}ω.
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The Tree of Atoms

Let Γ be any hyperbolic graph (e.g. a Cayley graph).

We will construct a collection of subsets of Γ called “atoms”.
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The Tree of Atoms

Let G be a hyperbolic group.

Theorem (B, Bleak, Matucci)
The collection of infinite atoms in G has the structure of a
self-similar tree.

The Cantor space of leaves is the horofunction boundary ∂hG
of G, which has ∂G as a quotient.

Theorem (B, Bleak, Matucci)
Elements of G act as rational homeomorphisms of ∂hG.

The proofs make essential use of hyperbolicity.
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The group
〈
r1 , r2 , r3 , r4

�� r2i � 1, (rirj)6 � 1
〉
has boundary

homeomorphic to the Sierpiński carpet.



Questions

1. Do any of the following classes of groups embed into R?
I CAT(0) groups
I Braid groups
I Mapping class groups
I Out(Fn)

2. Does there exist a finitely generated subgroup of R that
contains all hyperbolic groups?

3. Is there an efficient algorithm to compute automata for the
generators of a hyperbolic group?
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