Embeddings into Topological Full Groups

		\longrightarrow		

Jim Belk, University of Glasgow

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Collaborators

Collin Bleak U. of St Andrews

Francesco Matucci U. of Milano–Bicocca

Matthew Zaremsky SUNY at Albany

◆□ → ◆圖 → ◆ 国 → ◆ 国 → ○ 国

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in *G* (Dehn 1911)

Given a word $w = s_{i_1}^{k_1} \cdots s_{i_n}^{k_n}$, decide whether w represents the identity in *G*.

G has *solvable word problem* if there exists an algorithmic solution.

・ロト・西ト・ヨト・ヨト・ 日・ つへの

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in *G* (Dehn 1911)

Given a word $w = s_{i_1}^{k_1} \cdots s_{i_n}^{k_n}$, decide whether w represents the identity in *G*.

G has **solvable word problem** if there exists an algorithmic solution.

・ロト・西ト・ヨト・ヨト・ 日・ つへの

Example: Any finitely generated subgroup of $GL_n(\mathbb{Z})$.

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in *G* (Dehn 1911)

Given a word $w = s_{i_1}^{k_1} \cdots s_{i_n}^{k_n}$, decide whether w represents the identity in *G*.

G has **solvable word problem** if there exists an algorithmic solution.

Example: Any finitely generated subgroup of $GL_n(\mathbb{Z})$.

In general, having solvable word problem is inherited by finitely generated subgroups.

The word problem has two parts:

- 1. If w = 1, can we determine this in finite time?
- 2. If $w \neq 1$, can we determine this in finite time?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The word problem has two parts:

- 1. If w = 1, can we determine this in finite time?
- 2. If $w \neq 1$, can we determine this in finite time?

Part (1) is solvable whenever G is finitely presented

$$G = \langle s_1, \ldots, s_r \mid R_1, \ldots, R_n \rangle.$$

The word problem has two parts:

1. If w = 1, can we determine this in finite time?

2. If $w \neq 1$, can we determine this in finite time?

Part (1) is solvable whenever G is finitely presented

$$G = \langle s_1, \ldots, s_r \mid R_1, \ldots, R_n \rangle.$$

Indeed part (1) is solvable iff G is computably presented

$$G = \langle s_1, \ldots, s_r \mid R_1, R_2, R_3, \ldots \rangle.$$

The word problem has two parts:

1. If w = 1, can we determine this in finite time?

2. If $w \neq 1$, can we determine this in finite time?

Part (1) is solvable whenever G is finitely presented

$$G = \langle s_1, \ldots, s_r \mid R_1, \ldots, R_n \rangle.$$

Indeed part (1) is solvable iff G is computably presented

$$G = \langle s_1, \ldots, s_r \mid R_1, R_2, R_3, \ldots \rangle.$$

So the trick is solving part (2).

An Observation

Proposition (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An Observation

Proposition (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Proof.

Given a presentation $\langle s_1, \ldots s_m | R_1, \ldots R_n \rangle$ for a simple group *G* and a word *w*, we run two simultaneous searches:

Search #1Search #2Search for a proof thatSearch for a proof thatw = 1Search for a proof thatusing the relations R_1, \ldots, R_n using w = 1 and R_1, \ldots, R_n

ション 小田 マイビット ビックタン

Eventually one of the searches terminates.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ う へ つ >

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

Theorem (Boone–Higman 1974)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a computably presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

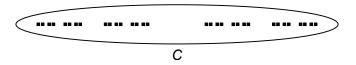
Thompson's group V is the largest of three groups defined by Richard J. Thompson in the 1960's.

Richard J. Thompson, 2004

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* α *C*.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* αC .

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

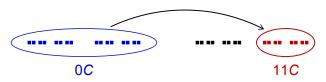
Each finite binary sequence α determines a *cone* αC .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

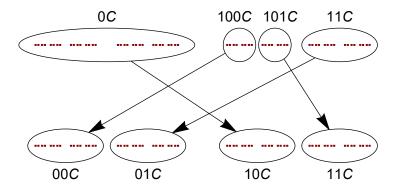
Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* αC .

There is a *prefix-replacement* homeomorphism between any two cones.

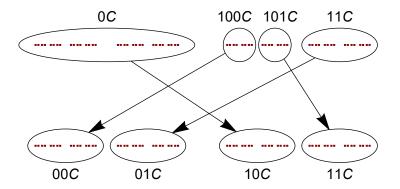


Elements of *Thompson's group V* map the cones of one partition to the cones of another by prefix replacement.



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Elements of *Thompson's group V* map the cones of one partition to the cones of another by prefix replacement.



(Thompson 1965, Higman 1974) V is finitely presented and simple.

Subgroups of V

The following groups embed into V:

- 1. All finite groups, free groups, free abelian groups, $\bigoplus_{\omega} V$.
- 2. (Higman 1974) Locally finite groups, e.g. \mathbb{Q}/\mathbb{Z} .
- 3. (Röver 1999) Free products of finitely many finite groups.
- 4. (Guba–Sapir 1999) $\mathbb{Z} \wr \mathbb{Z}$, $(\mathbb{Z} \wr \mathbb{Z}) \wr \mathbb{Z}$, $((\mathbb{Z} \wr \mathbb{Z}) \wr \mathbb{Z}) \wr \mathbb{Z}$, ...
- 5. (Bleak–Salazar-Díaz 2013) $V \wr A$ and V * A, where A is any finite group or $A \in \{\mathbb{Z}, \mathbb{Q}/\mathbb{Z}\}$.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Open Question: One-ended hyperbolic groups?

Non-Subgroups of V

The following groups do *not* embed into *V*:

- 1. (Higman 1974) $GL_3(\mathbb{Z})$.
- 2. (Higman 1974) Torsion-free abelian groups that are not free abelian, e.g. \mathbb{Q} .
- 3. (Röver 1999) Groups of Burnside type (i.e. infinite, finitely generated torsion groups).
- 4. (Bleak–Salazar-Díaz 2013) The free product $\mathbb{Z} * \mathbb{Z}^2$, and hence braid groups and mapping class groups.

5. (Corwin 2013) The restricted wreath product $\mathbb{Z} \wr \mathbb{Z}^2$.

Making Finitely Presented Simple Groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Groupoids of Germs

Let X be a Cantor space, and consider all triples

 $\{(x, h, y) \mid x, y \in X, h \in Homeo(X), h(x) = y\}.$

Write $(x, h, y) \sim (x, h', y)$ if *h* and *h'* agree near *x*.

The equivalence classes [x, h, y] are *germs* on *X*. They form a (very non-Hausdorff) étale groupoid germs(*X*).

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Groupoids of Germs

Let X be a Cantor space, and consider all triples

 $\{(x, h, y) \mid x, y \in X, h \in Homeo(X), h(x) = y\}.$

Write $(x, h, y) \sim (x, h', y)$ if *h* and *h'* agree near *x*.

The equivalence classes [x, h, y] are *germs* on *X*. They form a (very non-Hausdorff) étale groupoid germs(*X*).

Any subgroupoid of germs(X) that contains the unit space is a *groupoid of germs* on *X*.

Groupoids of Germs

Let X be a Cantor space, and consider all triples

 $\{(x, h, y) \mid x, y \in X, h \in Homeo(X), h(x) = y\}.$

Write $(x, h, y) \sim (x, h', y)$ if *h* and *h'* agree near *x*.

The equivalence classes [x, h, y] are *germs* on *X*. They form a (very non-Hausdorff) étale groupoid germs(*X*).

Any subgroupoid of germs(X) that contains the unit space is a *groupoid of germs* on *X*.

Note: Groupoids of germs are *effective*, i.e. the interior of $\{g \in \mathcal{G} \mid s(g) = r(g)\}$ is $\mathcal{G}^{(0)}$.

Example: The Full Shift

For example, let $C = \{0, 1\}^{\omega}$, and let $\sigma \colon C \to C$ be the shift map

$$\sigma(\mathbf{0}\psi) = \sigma(\mathbf{1}\psi) = \psi.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let \mathcal{G}_2 be the groupoid *generated* by all germs $[x, \sigma, y]$.

Example: The Full Shift

For example, let $C = \{0, 1\}^{\omega}$, and let $\sigma \colon C \to C$ be the shift map

$$\sigma(\mathbf{0}\psi) = \sigma(\mathbf{1}\psi) = \psi.$$

Let \mathcal{G}_2 be the groupoid *generated* by all germs $[x, \sigma, y]$.

Then the elements of \mathcal{G}_2 are all germs of all prefix replacements $\alpha \mathcal{C} \rightarrow \beta \mathcal{C}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example: The Full Shift

For example, let $C = \{0, 1\}^{\omega}$, and let $\sigma \colon C \to C$ be the shift map

$$\sigma(\mathbf{0}\psi) = \sigma(\mathbf{1}\psi) = \psi.$$

Let \mathcal{G}_2 be the groupoid *generated* by all germs $[x, \sigma, y]$.

Then the elements of \mathcal{G}_2 are all germs of all prefix replacements $\alpha C \rightarrow \beta C$.

Note: The reduced C^* -algebra $C^*_r(\mathcal{G}_2)$ is isomorphic to the Cuntz algebra \mathcal{O}_2 . More generally $C^*_r(\mathcal{G}_n) \cong \mathcal{O}_n$.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Topological Full Groups

Definition (Matui 2015)

Let *X* be a Cantor space and let \mathcal{G} be a groupoid of germs on *X*. The corresponding *topological full group* is

 $\llbracket G \rrbracket = \{g \in \text{Homeo}(X) \mid [x, g, g(x)] \in \mathcal{G} \text{ for all } x \in X\}.$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Topological Full Groups

Definition (Matui 2015)

Let *X* be a Cantor space and let \mathcal{G} be a groupoid of germs on *X*. The corresponding *topological full group* is

 $\llbracket G \rrbracket = \{g \in \text{Homeo}(X) \mid [x, g, g(x)] \in \mathcal{G} \text{ for all } x \in X\}.$

Example

If \mathcal{G}_2 is the groupoid generated by germs of the full shift, then $[[\mathcal{G}_2]] = V$.

Topological Full Groups

Definition (Matui 2015)

Let *X* be a Cantor space and let \mathcal{G} be a groupoid of germs on *X*. The corresponding *topological full group* is

 $\llbracket G \rrbracket = \{g \in \text{Homeo}(X) \mid [x, g, g(x)] \in \mathcal{G} \text{ for all } x \in X\}.$

Example

If \mathcal{G}_2 is the groupoid generated by germs of the full shift, then $[[\mathcal{G}_2]] = V$.

Most known finitely presented simple groups are topological full groups.

Example: Brin–Thompson groups

 $\mathcal{G}_2 \times \mathcal{G}_2$ is a groupoid of germs on $C \times C$. The group $[[\mathcal{G}_2 \times \mathcal{G}_2]]$ is the **Brin–Thompson group 2V** (Brin 2004).

 $\mathcal{G}_2 \times \mathcal{G}_2$ is a groupoid of germs on $C \times C$. The group $[[\mathcal{G}_2 \times \mathcal{G}_2]]$ is the **Brin–Thompson group 2V** (Brin 2004).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\mathcal{G}_2 \times \mathcal{G}_2$ is a groupoid of germs on $C \times C$. The group $[\![\mathcal{G}_2 \times \mathcal{G}_2]\!]$ is the **Brin–Thompson group 2V** (Brin 2004).

Matthew Brin

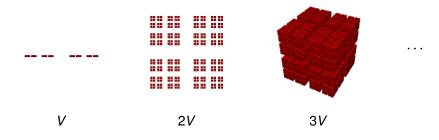
 $\mathcal{G}_2 \times \mathcal{G}_2$ is a groupoid of germs on $C \times C$. The group $[[\mathcal{G}_2 \times \mathcal{G}_2]]$ is the **Brin–Thompson group 2V** (Brin 2004).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\mathcal{G}_2 \times \mathcal{G}_2$ is a groupoid of germs on $C \times C$. The group $[\![\mathcal{G}_2 \times \mathcal{G}_2]\!]$ is the **Brin–Thompson group 2V** (Brin 2004).

		、 、		
		\rightarrow		

More generally, $[[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group nV**.



More generally, $[\![\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]\!]$ is the **Brin–Thompson group nV**.

More generally, $[\![\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]\!]$ is the **Brin–Thompson group nV**.

Theorem (Brin 2009, Hennig–Matucci 2012) All of the groups nV are finitely presented and simple.

More generally, $[\![\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]\!]$ is the **Brin–Thompson group nV**.

Theorem (Brin 2009, Hennig–Matucci 2012) All of the groups nV are finitely presented and simple.

Note: For $n \ge 2$, these groups have:

- 1. Unsolvable order problem (B-Bleak 2017), and
- 2. Unsolvable conjugacy problem (Salo 2020^{arXiv}).

The subgroup structure of the nV's seems to be very rich.

Theorem (B–Bleak–Matucci 2020, Salo 2021^{arXiv}) For $n \ge 2$, every right angled Artin group

$$A = \langle x_1, \ldots, x_d \mid [x_{i_1}, x_{j_1}] = \cdots = [x_{i_m}, x_{j_m}] = 1 \rangle$$

embeds into nV.

The subgroup structure of the nV's seems to be very rich.

Theorem (B–Bleak–Matucci 2020, Salo 2021^{arXiv}) For $n \ge 2$, every right angled Artin group

$$A = \langle x_1, \ldots, x_d \mid [x_{i_1}, x_{j_1}] = \cdots = [x_{i_m}, x_{j_m}] = 1 \rangle$$

embeds into nV.

Corollary

For $n \ge 2$, the following groups embed into nV:

- 1. All finitely generated Coxeter groups.
- 2. Many hyperbolic groups.
- 3. Many fundamental groups of 3-manifolds.

Finding More Examples

How can we find more étale groupoids \mathcal{G} for which $\llbracket \mathcal{G} \rrbracket$ is simple?

Finding More Examples

How can we find more étale groupoids \mathcal{G} for which $\llbracket \mathcal{G} \rrbracket$ is simple?

Theorem (Matui 2015)

If \mathcal{G} is minimal and purely infinite, then the commutator subgroup $[\![\mathcal{G}]\!]'$ is simple.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Finding More Examples

How can we find more étale groupoids \mathcal{G} for which $\llbracket \mathcal{G} \rrbracket$ is simple?

Theorem (Matui 2015)

If \mathcal{G} is minimal and purely infinite, then the commutator subgroup $[\![\mathcal{G}]\!]'$ is simple.

Here a groupoid of germs G over a Cantor space X is:

- 1. *Minimal* if every \mathcal{G} -orbit is dense in X.
- Purely infinite if for every clopen E ⊊ X, there exist g, h ∈ [[G]] so that g(E) and h(E) are disjoint subsets of E.

Let's make a finitely presented simple group that contains $GL_n(\mathbb{Z})$.

Let's make a finitely presented simple group that contains $GL_n(\mathbb{Z})$.

1. We need a Cantor space, so consider $\operatorname{GL}_n(\mathbb{Z}) \curvearrowright \mathbb{Z}_{(2)}^n$.

Let's make a finitely presented simple group that contains $GL_n(\mathbb{Z})$.

- 1. We need a Cantor space, so consider $\operatorname{GL}_n(\mathbb{Z}) \curvearrowright \mathbb{Z}_{(2)}^n$.
- 2. This action isn't minimal, so use $Aff(\mathbb{Z}^n) = \mathbb{Z}^n \rtimes GL_n(\mathbb{Z})$.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Let's make a finitely presented simple group that contains $GL_n(\mathbb{Z})$.

- 1. We need a Cantor space, so consider $\operatorname{GL}_n(\mathbb{Z}) \curvearrowright \mathbb{Z}_{(2)}^n$.
- 2. This action isn't minimal, so use $Aff(\mathbb{Z}^n) = \mathbb{Z}^n \rtimes GL_n(\mathbb{Z})$.
- 3. This isn't purely infinite, so throw in the germs for $\mathbf{v} \mapsto 2\mathbf{v}$.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Let's make a finitely presented simple group that contains $GL_n(\mathbb{Z})$.

- 1. We need a Cantor space, so consider $\operatorname{GL}_n(\mathbb{Z}) \curvearrowright \mathbb{Z}_{(2)}^n$.
- 2. This action isn't minimal, so use $Aff(\mathbb{Z}^n) = \mathbb{Z}^n \rtimes GL_n(\mathbb{Z})$.
- 3. This isn't purely infinite, so throw in the germs for $\mathbf{v} \mapsto 2\mathbf{v}$.

Let \mathcal{G} be the groupoid generated by germs of elements of $Aff(\mathbb{Z}^n)$ and $\mathbf{v} \mapsto 2\mathbf{v}$.

Theorem (Scott 1984)

The group $\llbracket \mathcal{G} \rrbracket$ is finitely presented, simple, and contains $\operatorname{GL}_n(\mathbb{Z})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let's make a finitely presented simple group that contains $GL_n(\mathbb{Z})$.

- 1. We need a Cantor space, so consider $\operatorname{GL}_n(\mathbb{Z}) \curvearrowright \mathbb{Z}_{(2)}^n$.
- 2. This action isn't minimal, so use $Aff(\mathbb{Z}^n) = \mathbb{Z}^n \rtimes GL_n(\mathbb{Z})$.
- 3. This isn't purely infinite, so throw in the germs for $\mathbf{v} \mapsto 2\mathbf{v}$.

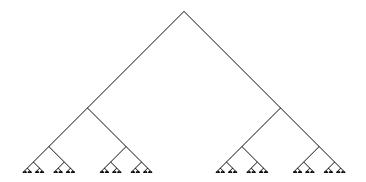
Let \mathcal{G} be the groupoid generated by germs of elements of $Aff(\mathbb{Z}^n)$ and $\mathbf{v} \mapsto 2\mathbf{v}$.

Theorem (Scott 1984)

The group $\llbracket \mathcal{G} \rrbracket$ is finitely presented, simple, and contains $\operatorname{GL}_n(\mathbb{Z})$.

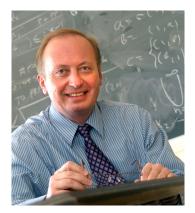
In particular, Boone–Higman holds for groups of polynomial growth.

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .



The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .



Rostislav Grigorchuk

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

It is famous because:

- 1. (Grigorchuk 1980) It is a concrete example of a Burnside group (infinite, finitely generated, torsion).
- 2. (Grigorchuk 1983) It was the first known example of a group of intermediate growth.

3. (Grigorchuk 1983) It was the first known example of an amenable group which is not elementary amenable.

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

It acts by homeomorphisms on the Cantor space $\partial T_2 = \{0, 1\}^{\omega}$.

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

It acts by homeomorphisms on the Cantor space $\partial T_2 = \{0, 1\}^{\omega}$.

Problem: The action is measure-preserving.

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

It acts by homeomorphisms on the Cantor space $\partial T_2 = \{0, 1\}^{\omega}$.

Problem: The action is measure-preserving.

Solution: Throw in the germs of the shift map σ .

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

It acts by homeomorphisms on the Cantor space $\partial T_2 = \{0, 1\}^{\omega}$.

Problem: The action is measure-preserving.

Solution: Throw in the germs of the shift map σ .

Theorem (Röver 1999)

If \mathcal{G} is the resulting étale groupoid, then $[\![\mathcal{G}]\!]$ is a finitely presented simple group.

The *Grigorchuk group* is a certain finitely generated group of automorphisms of an infinite rooted binary tree T_2 .

It acts by homeomorphisms on the Cantor space $\partial T_2 = \{0, 1\}^{\omega}$.

Problem: The action is measure-preserving.

Solution: Throw in the germs of the shift map σ .

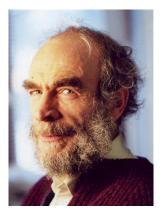
Theorem (Röver 1999)

If \mathcal{G} is the resulting étale groupoid, then $\llbracket \mathcal{G} \rrbracket$ is a finitely presented simple group.

This was later generalized by Nekrashevych (2004) to a class of self-similar groups.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

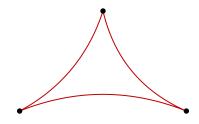


Misha Gromov

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

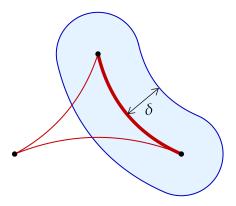
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

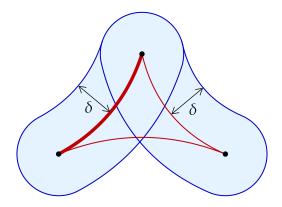


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

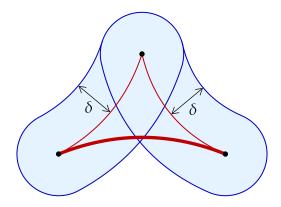
Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.



Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.



Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

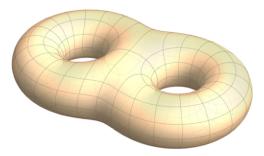


Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.



Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.

In a certain precise sense, almost every finitely presented group is hyperbolic (Ol'Shanskii 1991).

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.

In a certain precise sense, almost every finitely presented group is hyperbolic (Ol'Shanskii 1991).

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every hyperbolic group embeds into a finitely presented simple group.

Outline of the Proof

Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

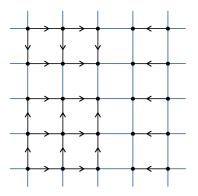
Let *G* be a hyperbolic group.

- 1. Find a Cantor space on which *G* acts by homeomorphisms, and let \mathcal{G} be the étale groupoid of germs.
- 2. Prove that the topological full group $[\![\mathcal{G}]\!]$ is finitely presented.
- 3. If [[G]] is not simple, embed it into a larger finitely presented simple group.

Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

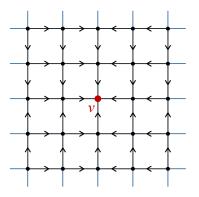
Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

A *vector field* on Γ is any assignment of orientations to some of the edges of Γ .



Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

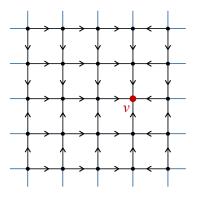
A **vector field** on Γ is any assignment of orientations to some of the edges of Γ . Every vertex *v* determines a **principal vector field**.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

A **vector field** on Γ is any assignment of orientations to some of the edges of Γ . Every vertex *v* determines a **principal vector field**.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

A **vector field** on Γ is any assignment of orientations to some of the edges of Γ . Every vertex *v* determines a **principal vector field**.

Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

A **vector field** on Γ is any assignment of orientations to some of the edges of Γ . Every vertex *v* determines a **principal vector field**.

The space $\operatorname{Vec}(\Gamma)$ of vector fields on Γ is a Cantor space, and principal vector fields determine an injection $V(\Gamma) \rightarrow \operatorname{Vec}(\Gamma)$.

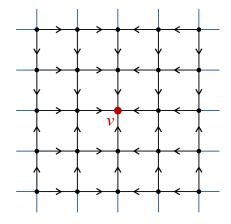
Every connected graph Γ has a *horofunction boundary* $\partial_h \Gamma$, which is compact, totally disconnected, and metrizable.

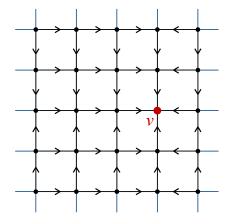
A **vector field** on Γ is any assignment of orientations to some of the edges of Γ . Every vertex *v* determines a **principal vector field**.

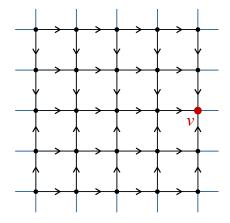
The space $Vec(\Gamma)$ of vector fields on Γ is a Cantor space, and principal vector fields determine an injection $V(\Gamma) \rightarrow Vec(\Gamma)$.

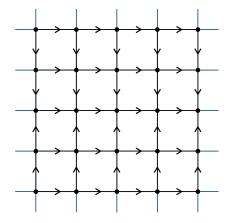
The *horofunction boundary* of Γ is the set of accumulation points of $V(\Gamma)$ in vec(Γ).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

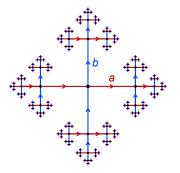




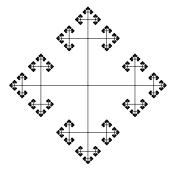




For "most" hyperbolic groups *G*, the horofunction boundary $\partial_h G$ is a Cantor space, and *G* acts faithfully on $\partial_h G$.

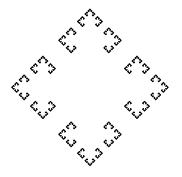


For "most" hyperbolic groups *G*, the horofunction boundary $\partial_h G$ is a Cantor space, and *G* acts faithfully on $\partial_h G$.



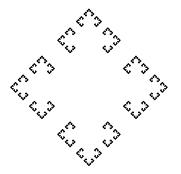
(日)

For "most" hyperbolic groups *G*, the horofunction boundary $\partial_h G$ is a Cantor space, and *G* acts faithfully on $\partial_h G$.



・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト ・

For "most" hyperbolic groups *G*, the horofunction boundary $\partial_h G$ is a Cantor space, and *G* acts faithfully on $\partial_h G$.

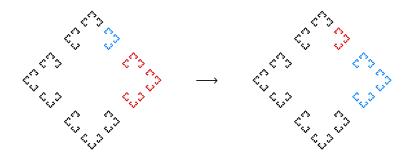


・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

If not, replacing *G* by $G * \mathbb{Z}$ fixes the problem.

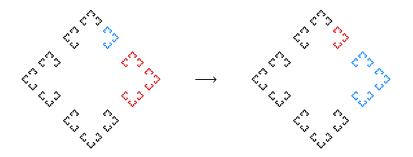
Let G be the étale groupoid of germs of elements of G acting on $\partial_h G$.

We wish to prove that $\llbracket \mathcal{G} \rrbracket$ is finitely presented.



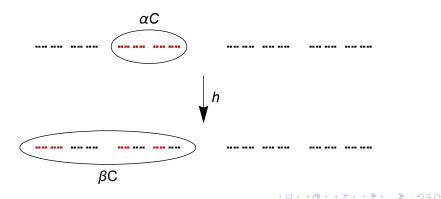
Let G be the étale groupoid of germs of elements of G acting on $\partial_h G$.

We wish to prove that $\llbracket \mathcal{G} \rrbracket$ is finitely presented.



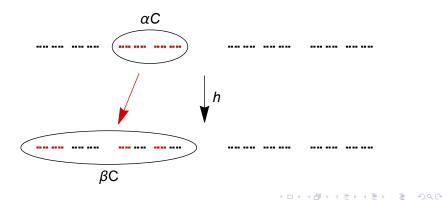
Strategy: Show that the action is *rational*.

Let *h* be a homeomorphism of $C = \{0, 1\}^{\omega}$, let αC be a cone, and let βC be the smallest cone that contains $h(\alpha C)$.



Let *h* be a homeomorphism of $C = \{0, 1\}^{\omega}$, let αC be a cone, and let βC be the smallest cone that contains $h(\alpha C)$.

The injection $C \rightarrow C$ determined by the mapping $\alpha C \rightarrow \beta C$ called the *local action* of *h* on αC .



Let *h* be a homeomorphism of $C = \{0, 1\}^{\omega}$, let αC be a cone, and let βC be the smallest cone that contains $h(\alpha C)$.

The injection $C \rightarrow C$ determined by the mapping $\alpha C \rightarrow \beta C$ called the *local action* of *h* on αC .

Let *h* be a homeomorphism of $C = \{0, 1\}^{\omega}$, let αC be a cone, and let βC be the smallest cone that contains $h(\alpha C)$.

The injection $C \rightarrow C$ determined by the mapping $\alpha C \rightarrow \beta C$ called the *local action* of *h* on αC .

ション・ 山田・ 山田・ 山田・ 山田・

The homeomorphism *h* is *rational* if it has only finitely many different local actions.

Let *h* be a homeomorphism of $C = \{0, 1\}^{\omega}$, let αC be a cone, and let βC be the smallest cone that contains $h(\alpha C)$.

The injection $C \rightarrow C$ determined by the mapping $\alpha C \rightarrow \beta C$ called the *local action* of *h* on αC .

The homeomorphism *h* is *rational* if it has only finitely many different local actions.

Theorem (Grigorchuk–Nekrashevych–Sushchanskiĭ 2000) The group of rational homeomorphisms of C is a topological full group $[[\mathcal{R}_2]]$.

ション・ 山田・ 山田・ 山田・ 山田・

Let *G* be a group of rational homeomorphisms of $C = \{0, 1\}^{\omega}$.

A local action $C \rightarrow C$ lies in the **nucleus** for G if it appears infinitely often in some $g \in G$.

G is *contracting* if its nucleus of local actions is finite.

Let *G* be a group of rational homeomorphisms of $C = \{0, 1\}^{\omega}$.

A local action $C \rightarrow C$ lies in the *nucleus* for *G* if it appears infinitely often in some $g \in G$.

G is *contracting* if its nucleus of local actions is finite.

Theorem (Nekrashevych 2017, BBMZ 2023)

If \mathcal{G} is a groupoid of rational germs that contains \mathcal{G}_2 and $\llbracket \mathcal{G} \rrbracket$ is contracting, then $\llbracket \mathcal{G} \rrbracket$ is finitely presented.

Let *G* be a group of rational homeomorphisms of $C = \{0, 1\}^{\omega}$.

A local action $C \rightarrow C$ lies in the **nucleus** for G if it appears infinitely often in some $g \in G$.

G is *contracting* if its nucleus of local actions is finite.

Theorem (Nekrashevych 2017, BBMZ 2023)

If \mathcal{G} is a groupoid of rational germs that contains \mathcal{G}_2 and $\llbracket \mathcal{G} \rrbracket$ is contracting, then $\llbracket \mathcal{G} \rrbracket$ is finitely presented.

Note: This theorem continues to hold if we replace C by an irreducible SFT.

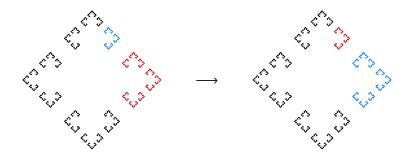
Theorem (B–Bleak–Matucci–Zaremsky)

Let G be a hyperbolic group with $\partial_h G$ a Cantor space. Then there exists an irreducible SFT X and a homeomorphism $\partial_h G \rightarrow X$ that conjugates $[\![G]\!]$ to a contracting group of rational homeomorphisms.

This proves that $\llbracket \mathcal{G} \rrbracket$ is finitely presented.

Let *G* be a hyperbolic group with $\partial_h G$ a Cantor space.

Even though *G* embeds in [[G]], we only know that [[G]]' is simple.



(日)

Let *G* be a hyperbolic group with $\partial_h G$ a Cantor space.

Even though *G* embeds in $\llbracket \mathcal{G} \rrbracket$, we only know that $\llbracket \mathcal{G} \rrbracket'$ is simple.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *G* be a hyperbolic group with $\partial_h G$ a Cantor space.

Even though *G* embeds in $\llbracket G \rrbracket$, we only know that $\llbracket G \rrbracket'$ is simple.

Theorem (B–Zaremsky 2022)

Under mild hypotheses, if [[G]] is any finitely presented topological full group, then [[G]] embeds in a finitely presented simple group.

Let *G* be a hyperbolic group with $\partial_h G$ a Cantor space.

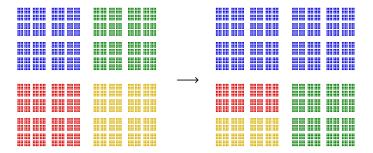
Even though *G* embeds in $\llbracket G \rrbracket$, we only know that $\llbracket G \rrbracket'$ is simple.

Theorem (B–Zaremsky 2022)

Under mild hypotheses, if [[G]] is any finitely presented topological full group, then [[G]] embeds in a finitely presented simple group.

This uses twisted Brin-Thompson groups.

Recall that $nV = [[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group**, which acts on $C^n = C \times \cdots \times C$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Recall that $nV = [[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group**, which acts on $C^n = C \times \cdots \times C$.

Recall that $nV = [[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group**, which acts on $C^n = C \times \cdots \times C$.

If $H \leq S_n$, then *H* acts on C^n by permutation of coordinates.

Recall that $nV = [[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group**, which acts on $C^n = C \times \cdots \times C$.

If $H \leq S_n$, then *H* acts on C^n by permutation of coordinates.

Let \mathcal{G} be the groupoid generated by $\mathcal{G}_2 \times \cdots \times \mathcal{G}_2$ and the germs of elements of H. Then $[\![\mathcal{G}]\!]$ is a *twisted Brin–Thompson group*.

Recall that $nV = [[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group**, which acts on $C^n = C \times \cdots \times C$.

If $H \leq S_n$, then *H* acts on C^n by permutation of coordinates.

Let \mathcal{G} be the groupoid generated by $\mathcal{G}_2 \times \cdots \times \mathcal{G}_2$ and the germs of elements of H. Then $[\![\mathcal{G}]\!]$ is a *twisted Brin–Thompson group*.

Theorem (B-Zaremsky 2022)

Twisted Brin–Thompson groups are always simple.

Recall that $nV = [[\mathcal{G}_2 \times \cdots \times \mathcal{G}_2]]$ is the **Brin–Thompson group**, which acts on $C^n = C \times \cdots \times C$.

If $H \leq S_n$, then *H* acts on C^n by permutation of coordinates.

Let \mathcal{G} be the groupoid generated by $\mathcal{G}_2 \times \cdots \times \mathcal{G}_2$ and the germs of elements of H. Then $[\![\mathcal{G}]\!]$ is a *twisted Brin–Thompson group*.

Theorem (B-Zaremsky 2022)

Twisted Brin–Thompson groups are always simple.

Note: There's no reason n needs to be finite. All of this still works if H is a group of permutations of a countably infinite set.

Theorem (B–Zaremsky 2022, Zaremsky 2023)

Let H be a group of permutations of a countable set A, and suppose:

- 1. H is finitely presented.
- 2. Stabilizers of finite sets in A are finitely generated, and

3. *H* has finitely many orbits on A^k for all $k \ge 1$. Then the corresponding twisted Brin–Thompson group is finitely presented.

In the case where H is a topological full group and A is an orbit, these conditions are almost always satisfied.

Outline of the Proof

Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Let *G* be a hyperbolic group.

- 1. Find a Cantor space on which *G* acts by homeomorphisms, and let \mathcal{G} be the étale groupoid of germs.
- 2. Prove that the topological full group $[\![\mathcal{G}]\!]$ is finitely presented.
- 3. If [[G]] is not simple, embed it into a larger finitely presented simple group.

Open Questions

Which of the following embed into finitely presented simple groups?

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

- **b** Braid groups B_n .
- Mapping class groups.
- Aut(F_n) and Out(F_n).
- Finitely presented metabelian groups.
- (Non-solvable) Baumslag–Solitar groups.
- ► $\operatorname{GL}_n(\mathbb{Q}).$
- Automatic groups.
- CAT(0) groups.
- Finitely presented residually finite groups.