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Let G be a group with finite generating set S = {s1 , . . . , sr}.

The Word Problem in G (Dehn 1911)
Given a word w = sk1

i1 · · · skn
in , decide whether w represents the

identity in G.

G has solvable word problem if there exists an algorithmic
solution.

Example: Any finitely generated subgroup of GLn(Z).

In general, having solvable word problem is inherited by finitely
generated subgroups.
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The Word Problem

The word problem has two parts:

1. If w = 1, can we determine this in finite time?

2. If w ≠ 1, can we determine this in finite time?

Part (1) is solvable whenever G is finitely presented

G = ⟨s1 , . . . , sr | R1 , . . . ,Rn⟩.

Indeed part (1) is solvable iff G is computably presented

G = ⟨s1 , . . . , sr | R1 ,R2 ,R3 , . . .⟩.

So the trick is solving part (2).
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An Observation

Proposition (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Proof.
Given a presentation ⟨s1 , . . . sm | R1 , . . .Rn⟩ for a simple group G
and a word w, we run two simultaneous searches:

Search #1
Search for a proof that

w = 1

using the relations R1 , . . . ,Rn.

Search #2
Search for a proof that

s1 = · · · = sm = 1

using w = 1 and R1 , . . . ,Rn.

Eventually one of the searches terminates. □
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The Boone–Higman Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Theorem (Boone–Higman 1974)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a computably
presented simple group
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Thompson’s Group V

Thompson’s group V is the largest of three groups defined by
Richard J. Thompson in the 1960’s.

Richard J. Thompson, 2004
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Let C be the Cantor space {0, 1}𝜔.

Each finite binary sequence 𝛼 determines a cone 𝛼C.

00C 01C 10C 11C

There is a prefix-replacement homeomorphism between any two
cones.

0C 11C
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Thompson’s Group V

Elements of Thompson’s group V map the cones of one partition
to the cones of another by prefix replacement.

0C 100C 101C 11C

00C 01C 10C 11C

(Thompson 1965, Higman 1974) V is finitely presented and simple.



Subgroups of V

The following groups embed into V :

1. All finite groups, free groups, free abelian groups,
⊕

𝜔V .

2. (Higman 1974) Locally finite groups, e.g. Q/Z.

3. (Röver 1999) Free products of finitely many finite groups.

4. (Guba–Sapir 1999) Z ≀ Z, (Z ≀ Z) ≀ Z, ((Z ≀ Z) ≀ Z) ≀ Z, . . .

5. (Bleak–Salazar-Díaz 2013) V ≀ A and V ∗ A, where A is any
finite group or A ∈ {Z,Q/Z}.

Open Question: One-ended hyperbolic groups?



Non-Subgroups of V

The following groups do not embed into V :

1. (Higman 1974) GL3(Z).

2. (Higman 1974) Torsion-free abelian groups that are not free
abelian, e.g. Q.

3. (Röver 1999) Groups of Burnside type (i.e. infinite, finitely
generated torsion groups).

4. (Bleak–Salazar-Díaz 2013) The free product Z ∗ Z2, and hence
braid groups and mapping class groups.

5. (Corwin 2013) The restricted wreath product Z ≀ Z2.



Making Finitely Presented
Simple Groups
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Let X be a Cantor space, and consider all triples

{(x , h, y) | x , y ∈ X , h ∈ Homeo(X), h(x) = y}.

Write (x , h, y) ∼ (x , h′, y) if h and h′ agree near x.

The equivalence classes [x , h, y] are germs on X . They form a
(very non-Hausdorff) étale groupoid germs(X).
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Groupoids of Germs

Let X be a Cantor space, and consider all triples

{(x , h, y) | x , y ∈ X , h ∈ Homeo(X), h(x) = y}.

Write (x , h, y) ∼ (x , h′, y) if h and h′ agree near x.

The equivalence classes [x , h, y] are germs on X . They form a
(very non-Hausdorff) étale groupoid germs(X).

Any subgroupoid of germs(X) that contains the unit space is a
groupoid of germs on X .

Note: Groupoids of germs are effective, i.e. the interior of
{g ∈ G | s(g) = r(g)} is G(0).
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Example: The Full Shift

For example, let C = {0, 1}𝜔, and let 𝜎 : C → C be the shift map

𝜎(0𝜓) = 𝜎(1𝜓) = 𝜓.

Let G2 be the groupoid generated by all germs [x , 𝜎, y].

Then the elements of G2 are all germs of all prefix replacements
𝛼C → 𝛽C.

Note: The reduced C∗-algebra C∗
r (G2) is isomorphic to the Cuntz

algebra O2. More generally C∗
r (Gn) � On.
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Topological Full Groups

Definition (Matui 2015)
Let X be a Cantor space and let G be a groupoid of germs on X .
The corresponding topological full group is

[[G]] = {g ∈ Homeo(X) | [x , g, g(x)] ∈ G for all x ∈ X}.

Example
If G2 is the groupoid generated by germs of the full shift,
then [[G2]] = V .

Most known finitely presented simple groups are topological full
groups.
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Matthew Brin
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Example: Brin–Thompson groups

More generally, [[G2 × · · · × G2]] is the Brin–Thompson group nV .

Theorem (Brin 2009, Hennig–Matucci 2012)
All of the groups nV are finitely presented and simple.

Note: For n ≥ 2, these groups have:

1. Unsolvable order problem (B–Bleak 2017), and

2. Unsolvable conjugacy problem (Salo 2020arXiv).
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The subgroup structure of the nV ’s seems to be very rich.

Theorem (B–Bleak–Matucci 2020, Salo 2021arXiv)
For n ≥ 2, every right angled Artin group

A = ⟨x1 , . . . , xd | [xi1 , xj1] = · · · = [xim , xjm] = 1⟩
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Example: Brin–Thompson groups

The subgroup structure of the nV ’s seems to be very rich.

Theorem (B–Bleak–Matucci 2020, Salo 2021arXiv)
For n ≥ 2, every right angled Artin group

A = ⟨x1 , . . . , xd | [xi1 , xj1] = · · · = [xim , xjm] = 1⟩

embeds into nV.

Corollary
For n ≥ 2, the following groups embed into nV:

1. All finitely generated Coxeter groups.
2. Many hyperbolic groups.
3. Many fundamental groups of 3-manifolds.
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Finding More Examples

How can we find more étale groupoids G for which [[G]] is simple?

Theorem (Matui 2015)
If G is minimal and purely infinite, then the commutator subgroup
[[G]]′ is simple.

Here a groupoid of germs G over a Cantor space X is:

1. Minimal if every G-orbit is dense in X .

2. Purely infinite if for every clopen E ⊊ X , there exist
g, h ∈ [[G]] so that g(E) and h(E) are disjoint subsets of E.
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Example: Scott’s Groups

Let’s make a finitely presented simple group that contains GLn(Z).

1. We need a Cantor space, so consider GLn(Z)↷ Zn
(2).

2. This action isn’t minimal, so use Aff(Zn) = Zn ⋊ GLn(Z).

3. This isn’t purely infinite, so throw in the germs for v ↦→ 2v.

Let G be the groupoid generated by germs of elements of Aff(Zn)
and v ↦→ 2v.

Theorem (Scott 1984)
The group [[G]] is finitely presented, simple, and contains GLn(Z).

In particular, Boone–Higman holds for groups of polynomial growth.
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Example: Röver’s Group

The Grigorchuk group is a certain finitely generated group of
automorphisms of an infinite rooted binary tree T2.

It is famous because:

1. (Grigorchuk 1980) It is a concrete example of a Burnside group
(infinite, finitely generated, torsion).

2. (Grigorchuk 1983) It was the first known example of a group of
intermediate growth.

3. (Grigorchuk 1983) It was the first known example of an
amenable group which is not elementary amenable.
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Example: Röver’s Group

The Grigorchuk group is a certain finitely generated group of
automorphisms of an infinite rooted binary tree T2.

It acts by homeomorphisms on the Cantor space 𝜕T2 = {0, 1}𝜔.

Problem: The action is measure-preserving.
Solution: Throw in the germs of the shift map 𝜎.

Theorem (Röver 1999)
If G is the resulting étale groupoid, then [[G]] is a finitely presented
simple group.

This was later generalized by Nekrashevych (2004) to a class of
self-similar groups.
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Hyperbolic Groups

Gromov (1987) defined a finitely generated group to be hyperbolic
if its Cayley graph satisfies the 𝛿-thin triangles condition.

For example, the fundamental group of any compact hyperbolic
manifold is a hyperbolic group.

In a certain precise sense, almost every finitely presented group is
hyperbolic (Ol’Shanskii 1991).

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.



Outline of the Proof

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.

Let G be a hyperbolic group.

1. Find a Cantor space on which G acts by homeomorphisms,
and let G be the étale groupoid of germs.

2. Prove that the topological full group [[G]] is finitely presented.

3. If [[G]] is not simple, embed it into a larger finitely presented
simple group.
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Step 1: Making a Cantor Space

Every connected graph � has a horofunction boundary 𝜕h�,
which is compact, totally disconnected, and metrizable.

A vector field on � is any assignment of orientations to some of the
edges of �. Every vertex v determines a principal vector field.

The space Vec(�) of vector fields on � is a Cantor space, and
principal vector fields determine an injection V (�) → Vec(�).

The horofunction boundary of � is the set of accumulation points
of V (�) in vec(�).
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Cantor space, and G acts faithfully on 𝜕hG.
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Step 1: Making a Cantor Space

For “most” hyperbolic groups G, the horofunction boundary 𝜕hG is a
Cantor space, and G acts faithfully on 𝜕hG.

If not, replacing G by G ∗ Z fixes the problem.
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Step 2: Proving Finite Presentability

Let G be the étale groupoid of germs of elements of G acting
on 𝜕hG.

We wish to prove that [[G]] is finitely presented.

−→

Strategy: Show that the action is rational.
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Step 2: Proving Finite Presentability

Let h be a homeomorphism of C = {0, 1}𝜔, let 𝛼C be a cone, and
let 𝛽C be the smallest cone that contains h(𝛼C).

The injection C → C determined by the mapping 𝛼C → 𝛽C called
the local action of h on 𝛼C.

The homeomorphism h is rational if it has only finitely many
different local actions.

Theorem (Grigorchuk–Nekrashevych–Sushchanskĭı 2000)
The group of rational homeomorphisms of C is a topological full
group [[R2]].
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Step 2: Proving Finite Presentability

Let G be a group of rational homeomorphisms of C = {0, 1}𝜔.

A local action C → C lies in the nucleus for G if it appears infinitely
often in some g ∈ G.

G is contracting if its nucleus of local actions is finite.

Theorem (Nekrashevych 2017, BBMZ 2023)
If G is a groupoid of rational germs that contains G2 and [[G]] is
contracting, then [[G]] is finitely presented.

Note: This theorem continues to hold if we replace C by an
irreducible SFT.



Step 2: Proving Finite Presentability

Theorem (B–Bleak–Matucci–Zaremsky)
Let G be a hyperbolic group with 𝜕hG a Cantor space. Then there
exists an irreducible SFT X and a homeomorphism 𝜕hG → X that
conjugates [[G]] to a contracting group of rational homeomorphisms.

This proves that [[G]] is finitely presented.
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Even though G embeds in [[G]], we only know that [[G]]′ is simple.

−→



Step 3: Embedding in a Larger Group

Let G be a hyperbolic group with 𝜕hG a Cantor space.

Even though G embeds in [[G]], we only know that [[G]]′ is simple.



Step 3: Embedding in a Larger Group

Let G be a hyperbolic group with 𝜕hG a Cantor space.

Even though G embeds in [[G]], we only know that [[G]]′ is simple.

Theorem (B–Zaremsky 2022)
Under mild hypotheses, if [[G]] is any finitely presented topological
full group, then [[G]] embeds in a finitely presented simple group.



Step 3: Embedding in a Larger Group

Let G be a hyperbolic group with 𝜕hG a Cantor space.

Even though G embeds in [[G]], we only know that [[G]]′ is simple.

Theorem (B–Zaremsky 2022)
Under mild hypotheses, if [[G]] is any finitely presented topological
full group, then [[G]] embeds in a finitely presented simple group.

This uses twisted Brin–Thompson groups.
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Step 3: Embedding in a Larger Group

Recall that nV = [[G2 × · · · × G2]] is the Brin–Thompson group,
which acts on Cn = C × · · · × C.

If H ≤ Sn, then H acts on Cn by permutation of coordinates.

Let G be the groupoid generated by G2 × · · · × G2 and the germs of
elements of H. Then [[G]] is a twisted Brin–Thompson group.

Theorem (B–Zaremsky 2022)
Twisted Brin–Thompson groups are always simple.

Note: There’s no reason n needs to be finite. All of this still works if
H is a group of permutations of a countably infinite set.



Step 3: Embedding in a Larger Group

Theorem (B–Zaremsky 2022, Zaremsky 2023)
Let H be a group of permutations of a countable set A, and
suppose:

1. H is finitely presented.

2. Stabilizers of finite sets in A are finitely generated, and

3. H has finitely many orbits on Ak for all k ≥ 1.
Then the corresponding twisted Brin–Thompson group is finitely
presented.

In the case where H is a topological full group and A is an orbit,
these conditions are almost always satisfied.



Outline of the Proof

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.

Let G be a hyperbolic group.

1. Find a Cantor space on which G acts by homeomorphisms,
and let G be the étale groupoid of germs.

2. Prove that the topological full group [[G]] is finitely presented.

3. If [[G]] is not simple, embed it into a larger finitely presented
simple group.



Open Questions

Which of the following embed into finitely presented simple groups?

▶ Braid groups Bn.

▶ Mapping class groups.

▶ Aut(Fn) and Out(Fn).
▶ Finitely presented metabelian groups.

▶ (Non-solvable) Baumslag–Solitar groups.

▶ GLn(Q).
▶ Automatic groups.

▶ CAT(0) groups.

▶ Finitely presented residually finite groups.
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