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Strategy: Let G be a group of permutations of a set S.
We construct a simple group SVG and an embedding

G→ SVG.

If G is f.g. and acts transitively on S, then SVG is f.g. and the
embedding is quasi-isometric.

Note: In fact, SVG is generated by two elements of finite order, one
of which has order two.
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Main Result

Theorem (B.–Zaremsky 2020)
Every finitely generated group embeds quasi-isometrically as a
subgroup of a finitely generated simple group.

Prior Work:

1. Hall (1974): Every f.g. group embeds into a f.g. simple group.

2. Goryushkin (1974), Schupp (1976): Every f.g. group embeds
into a two-generated simple group.

3. Bridson (1998): Every f.g. group quasi-isometrically embeds
into a f.g. group with no proper finite-index subgroups.
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Theorem (B.–Zaremsky 2020)
There exists a simple group of type F∞ that has all of the following
as subgroups:
1. All right-angled Artin groups,

2. All finitely-generated Coxeter groups,

3. All surface groups,

4. All graph braid groups,

5. All one-relator groups with torsion, and

6. All fundamental groups of finite-volume hyperbolic 3-manifolds.
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Finiteness Results

We also construct some “very large” simple groups with good
finiteness properties.

Also, for each n ∈ N we construct a simple group of type Fn−1 but
not of type Fn.

Skipper, Witzel, and Zaremsky found the first such family in 2019.

Such groups must be pairwise non-quasi-isometric, reproving a
2009 result of Caprace and Réemy.
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Thompson’s Groups

In the 1960’s, Richard J. Thompson defined three infinite groups.

F acts on the interval.
finitely presented

T acts on the circle.
finitely presented, simple

V acts on the Cantor set.
finitely presented, simple
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The Cantor set C is the infinite product space {0, 1}ω.

A dyadic subdivision of C is any subdivision obtained by
repeatedly cutting pieces in half.



Definition of V

A dyadic rearrangement of C is a homeomorphism that maps
“linearly” between the pieces of two dyadic subdivisions.

The group of all such homeomorphisms is Thompson’s group V .
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Brin–Thompson Groups

The Brin–Thompson groups sV were defined by Matt Brin
in 2004.

V 2V 3V

· · ·

They are “higher-dimensional” versions of Thompson’s group V .
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Brin’s group 2V acts on the Cantor Square C × C.

This is a dyadic subdivision of C × C.



Definition of sV

Homeomorphisms act piecewise by prefix pair replacements:

−→

(0ψ, 1ω) 7→ (ψ, 1ω) (1ψ, 1ω) 7→ (1ψ, 0ω)

(0ψ, 0ω) 7→ (0ψ, 01ω) (1ψ, 0ω) 7→ (0ψ, 00ω)



Definition of sV

This is the pattern pair for the same element.

−→

(0ψ, 1ω) 7→ (ψ, 1ω) (1ψ, 1ω) 7→ (1ψ, 0ω)

(0ψ, 0ω) 7→ (0ψ, 01ω) (1ψ, 0ω) 7→ (0ψ, 00ω)



Definition of sV

In general, sV acts by homeomorphisms on Cs.

−→

There is also an ωV that acts by homeomorphisms on Cω, but it
isn’t finitely generated.



Properties of sV

For s finite, the groups sV

I Are finitely presented and simple,
(Brin 2005 and 2010)

I Are non-isomorphic for different values of s,
(Bleak, Lanoue 2010)

I Have type F∞,
(Kochloukova et al. 2013 and Fluch et al. 2013)

I Have the Haagerup property and Serre’s property FA, and
(Kato 2015)

I Have unsolvable torsion problem for s ≥ 2.
(Belk, Bleak 2017)



Properties of sV

Theorem (B.–Bleak–Matucci 2018)
The group ωV has all of the following as subgroups:

1. All right-angled Artin groups,

2. All finitely-generated Coxeter groups,

3. All surface groups,

4. All graph braid groups,

5. All one-relator groups with torsion, and

6. All fundamental groups of finite-volume hyperbolic 3-manifolds.



Adding Twists



The Diagonal Flip

The Cantor square has a diagonal flip that switches the two
coordinates.

−→

(ψ, ω) 7→ (ω, ψ)



Twisted 2V

Twisted 2V is similar to 2V , except rectangles are allowed to
diagonally flip.

−→

(0ψ, 1ω) 7→ (ω, 1ψ) (1ψ, 1ω) 7→ (1ω, 0ψ)

(0ψ, 0ω) 7→ (0ψ, 01ω) (1ψ, 0ω) 7→ (0ω, 00ψ)



Twisted 3V ’s

A twist of the Cantor cube C3 is any permutation of the three
coordinates.

Each nontrivial subgroup G ≤ Σ3 determines a twisted group 3VG.



General Construction

Any set S has a Brin–Thompson group SV that acts on CS.
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General Construction

Any set S has a Brin–Thompson group SV that acts on CS.

Any group G of permutations of S determines a twisted
Brin–Thompson group SVG.

Example
Consider the action of Z on itself by translation (so G � S � Z).
This defines a twisted group

SVG y CZ

This group contains ωV but is finitely generated!
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Finite Generation

Theorem (B.-Zarmesky 2020)
If G is finitely generated and has finitely many orbits on S then SVG
is finitely generated.

Sketch of Proof.

Let Ghalf be the copy of G supported on any one half of CS.

Lemma
SVG is generated by SV and Ghalf.

Problem: SV isn’t finitely generated.
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copies of 2V generate SV.

Proof.
This uses the work of Hennig and Matucci (2012). �
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Generating SV

Each pair of elements of S defines a copy of 2V in SV .

Lemma
For any connected graph with vertex set S, the corresponding
copies of 2V generate SV.

Proof.
This uses the work of Hennig and Matucci (2012). �

If S � Z, then SV is generated by the following copies of 2V :
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Conclusion: If G � S � Z, then SVG is generated by Ghalf, G, and
one copy of 2V .



Generating SV

But conjugation by twists permutes the copies of 2V .

Conclusion: If G � S � Z, then SVG is generated by Ghalf, G, and
one copy of 2V .

Theorem (B.–Zaremsky 2020)
If G is finitely generated and has finitely many orbits in S, then SVG
is generated by Ghalf, G, and finitely many copies of 2V.
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Simplicity

Previous results:

I Thompson proved that T and V are simple. These were the
first known examples of infinite, finitely-presented simple
groups.

I F is not simple, but its commutator subgroup [F , F] is.

I Brin proved that 2V is simple in 2004, and extended this result
to all sV ’s in 2010.

I Many other Thompson-like groups have been considered, and
typically they at least have simple commutator subgroup.

Matui (2015) and Bleak–Elliott–Hyde (2020) have both developed
good technology for proving such things.



Bleak–Elliott-Hyde

Let H ≤ Homeo(C) be finitely generated. We say that H is:

1. Vigorous if for all nonempty, disjoint clopen sets A,B1 ,B2 ⊂ C
there exists an h ∈ A with h|A � id and h(B1) ⊂ B2.

2. Generated by elements of small support if H is generated by
its elements that are supported on proper clopen subsets of C.

3. Perfect if [H ,H] � H.

Theorem (Bleak–Elliott–Hyde 2020)
Suppose H satisfies (1), (2), and (3) above. Then

1. H is simple, and

2. There exist h1 , h2 ∈ H with |h1 | � 2 and |h2 | < ∞ such that
〈h1 , h2〉 � H.



Bleak–Elliott-Hyde

Let H ≤ Homeo(C) be finitely generated. We say that H is:

1. Vigorous if for all nonempty, disjoint clopen sets A,B1 ,B2 ⊂ C
there exists an h ∈ A with h|A � id and h(B1) ⊂ B2.

2. Generated by elements of small support if H is generated by
its elements that are supported on proper clopen subsets of C.

3. Perfect if [H ,H] � H.

Since CS ≈ C, we can apply this to SVG. We have:

I SVG satisfies (1) since SV does.

I SVG satisfies (2) since it is generated by SV and Ghalf.

I SVG satisfies (3) since SV � [SV ,SV] and Ghalf ≤ [SVG ,SVG].



Conclusion

If we use S � G, we get an embedding

G −→ SVG

of any finitely-generated group G into a two-generated simple group.

This recovers the theorems of Hall (1974) and Goryushkin (1974),
and part of the results of Schupp (1976).
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associated Cayley graph.

The word metric on G is defined by

d(g, h) � length of the shortest path in Γ(G,X) from g to h



Word Length

Let G be a group with finite generating set X , and Γ(G,X) be the
associated Cayley graph.

The word metric on G is defined by

d(g, h) � length of the shortest path in Γ(G,X) from g to h

Note: Two different generating sets X1 ,X2 give two different word
metrics d1 , d2, but

1
C

d1(g, h) ≤ d2(g, h) ≤ C d1(g, h)

for some constant C.
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Quasi-Isometrically Embedded Subgroups

Let H ≤ G be finitely-generated groups.

The inclusion H → G is a quasi-isometric embedding if

dH(h1 , h2) ≤ C dG(h1 , h2)

for some constant C (and all h1 , h2 ∈ H).

Theorem (B.–Zaremsky 2020)
If G is finitely-generated, the inclusion

G→ SVG

is a quasi-isometric embedding.



Quasi-Retracting

Let G be a group with finite generating set X .

Let H ≤ G be finitely generated.

Proposition
Suppose there exists a function r : G→ H such that r |H � id and

dH
(
r(xg), r(g)

)
≤ C

for some constant C and all g ∈ G and x ∈ X. Then the inclusion
H → G is a quasi-isometric embedding.

Such a function r is an example of a quasi-retraction, and H is a
quasi-retract of G.



Quasi-Retracting SVG Onto G

Theorem (B.–Zaremsky 2020)
If G is finitely-generated, the inclusion G→ SVG is a
quasi-isometric embedding.

Sketch of Proof.
Fix a point p ∈ CS. Define r : SVG → G by

r(f ) � the twist of f near p.

Since SVG is generated by G, Ghalf, and copies of 2V , we have

dG
(
r(xf ), r(f )

)
≤ 1

for every f ∈ SVG and every generator x of SVG. �
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Finiteness Properties

Let G be a group.

A K(G, 1)-complex is a connected CW complex X such that:

1. π1(X) � G, and

2. The universal cover X̃ is contractible.

We say that G has type Fn if there exists a K (G, 1)-complex whose
n-skeleton has finitely many cells.

type F1 � finitely generated
type F2 � finitely presented

...

We say that G has type F∞ if it has type Fn for all n.



Finiteness Properties

In 1983, Brown and Geoghegan proved that Thompson’s group F is
of type F∞.

Kenneth Brown Ross Geoghegan

Brown later generalized this to T and V (1987), using a method
now known as Brown’s criterion.



Type Fn Using Actions

Proposition
Let G be a group acting rigidly on a CW complex X, and let n ≥ 1.
Suppose that:

1. X is (n − 1)-connected and has finitely many orbits of cells.

2. For each 0 ≤ k ≤ n, the stabilizer of each k-cell in X is of
type Fn−k .

Then G has type Fn.

The trouble is finding a complex X that satisfies (1). How do we
ensure that X is (n − 1)-connected?

Contractible complexes are (n − 1)-connected, but they usually
have infinitely many orbits of cells.



Brown’s Criterion

Brown’s idea is to use a chain of complexes:

X1 ⊂ X2 ⊂ X3 ⊂ · · ·

We make sure that:
1. Each Xn has finitely many orbits of cells, and
2. The union X �

⋃∞
k�1 Xk is contractible.

Since the Xk are “converging” to a contractible space, they ought to
be (n − 1)-connected for large k. We just need to show that the
induced homomorphisms

πi(Xk) → πi(Xk+1)

are isomorphisms for large k (and 0 ≤ i ≤ n − 1).



Discrete Morse Theory

In 1996, Bestvina and Brady introduced powerful methods for
analysing the homomorphisms πi(Xk) → πi(Xk+1).

Mladen Bestvina Noel Brady

They showed how to understand such homomorphisms by
considering the connectivity of the descending links.



Finiteness Properties

The combination of Brown’s criterion and Bestvina–Brady discrete
Morse theory has become standard in the study of finiteness
properties.

Fluch, Marschler, Witzel, and Zaremsky used this combination to
prove the following.

Theorem (FMWZ 2013)
For s finite, the Brin–Thompson group sV has type F∞.

Their chain of CW complexes X1 ⊂ X2 ⊂ · · · was obtained from a
filtration of a deformation retraction of the simplicial realization of a
certain poset derived from a natural groupoid that contains sV .



Finiteness Properties

We use similar methods to analyse the finiteness properties of
the SVG’s, though the descending link analysis is much more
difficult.

Theorem (B.-Zaremsky 2020)
Let n ≥ 1, and suppose that:
1. For each k ≥ 1, the action of G on Sk has finitely many orbits.
2. The group G has type Fn, and
3. The stabilizer in G of any finite subset of S has type Fn.

Then SVG has type Fn.

Condition (1) says that G is oligomorphic.



Consequences

Theorem (B.-Zaremsky 2020)
If G and S are finite, then SVG is a simple group of type F∞.

It would be interesting to classify such groups up to isomorphism.
They are not isomorphic to the sV ’s by the work of Bleak and
Lanoue (2010).

Theorem (B.-Zaremsky 2020)
If G is Thompson’s group F and S is the set of dyadic rationals
in (0, 1), then SVG is a simple group of type F∞ that contains ωV.



Examples

Alonso (1994) proved that a quasi-retract of a group of type Fn must
have type Fn. Thus:

G is not Fn ⇒ SVG is not Fn.

Theorem (B.-Zaremsky 2020)
If G is Houghton’s group Hn and S � {1, . . . , n} ×N, then SVG is a
simple group of type Fn−1 but not of type Fn.



Questions

1. Does every hyperbolic group embed in a type F∞ simple
group? (B.–Bleak–Matucci–Zaresmky conjecture yes.)

2. (Higman) Does every finitely presented group with solvable
word problem embed (quasi-isometrically?) in a finitely
presented simple group?

3. Can braid groups be embedded in finitely presented simple
groups? Mapping class groups? Out(Fn)?

4. (Leary) Does every finitely presented group embed in a
type F∞ group?



The End


