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Topological Polynomials

In the 1980’s, Bill Thurston began to study complex polynomials
from a topological viewpoint.



Topological Polynomials

In the 1980’s, Bill Thurston began to study complex polynomials
from a topological viewpoint.

A topological polynomial is
any orientation-preserving
branched cover

f : C→ C

with finitely many branch points.

In analogy with polynomials, we refer to the branch points as
critical points, and their images as critical values.
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Marked Points

We can mark a topological polynomial by choosing a finite
set M ⊂ C, where

1. f (M) ⊂ M, and

2. M contains the critical values of f .

The pair (f ,M) is a marked topological polynomial.

Thurston’s Question: Is (f ,M) “topologically equivalent” to a
polynomial?



Examples

We can specify (f ,M) up to isotopy by drawing

1. Any tree T containing M,

2. Its preimage f−1(T ), and the mapping f−1(T ) → T .
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Definition of Topological Equivalence

Two marked topological polynomials are topologically equivalent
if there is a homeomorphism conjugating one to the other.

f−→

g
−→



Definition of Topological Equivalence

Two marked topological polynomials are topologically equivalent
if there is a homeomorphism conjugating one to the other.

(C,M) f //

h

��

(C,M)

h

��

(C,N)
g

// (C,N)
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Thurston’s Theorems

Thurston Rigidity (1982)
Suppose that (f ,M) and (g,N) are topologically equivalent:

(C,M) f //

h
��

(C,M)

h
��

(C,N) g
// (C,N)

If f and g are complex polynomials, then h has the form

h(z) � az + b.
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Thurston’s Theorems

Thurston proved both of these theorems by analyzing the dynamics
of the pullback map on Teichmüller space.



Algorithmic Question

So given a marked topological polynomial (f ,M), exactly one of the
following holds:

1. (f ,M) is topologically equivalent to a complex polynomial,
unique up to affine conjugacy.

2. (f ,M) has a Thurston obstruction.



Algorithmic Question

So given a marked topological polynomial (f ,M), exactly one of the
following holds:

1. (f ,M) is topologically equivalent to a complex polynomial,
unique up to affine conjugacy.

2. (f ,M) has a Thurston obstruction.

Question: How can we distinguish between these two cases?
How do we actually find the complex polynomial (in case 1) or
Thurston obstruction (in case 2)?
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The Twisted Rabbit Problem

Hubbard (1983) observed that this is difficult even for deg(f ) � 2
and |M | � 3. This is the twisted rabbit problem.

This case was solved by Bartholdi and Nekrashevych in 2006 using
iterated monodromy groups.

Unfortunately, Bartholdi and Nekrashevych’s methods are difficult to
apply for deg(f ) ≥ 3 or |M | ≥ 4.



Main Result

We have developed a simple geometric algorithm (the tree lifting
algorithm) that answers these questions much more generally.

Given an (f ,M), the algorithm produces either

1. The Hubbard tree for a polynomial equivalent to (f ,M), or

2. The canonical Thurston obstruction for (f ,M).



Some Complex Dynamics



Julia Sets

Every complex polynomial f (z) of degree ≥ 2 has a filled Julia set.

This is the unique maximal compact, f -invariant subset of C.



Julia Sets

For example, the filled Julia set for f (z) � z2 is the closed unit disk.
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The Hubbard Tree

Any map that’s topologically equivalent to a polynomial has a
topological Hubbard tree.

equivalence
−−−−−−−−−−−→

Idea: Use topology to find the topological Hubbard tree.

Note: The polynomial f (z) is determined by H and the mapping

f−1(H) −→ H.
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Lifting Trees

The preimage f−1(T ) of an allowed tree is not an allowed tree.

Tree T preimage f−1(T ) Lift λf (T )

The lift of T is the subtree of f−1(T ) spanned by M.
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Lifting Trees

For a given M, lifting under f defines a function

λf : allowed trees→ allowed trees

Fact: The (topological) Hubbard tree is a fixed point for λf .

This is because the Hubbard tree H satisfies

H ⊂ f−1(H).

Basic Algorithm: Iterate λf and hope to hit the Hubbard tree.
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Iterated Lifting for the Airplane
Let f (z) ≈ z2 − 1.755 be the airplane polynomial.

second lift T2

third lift T3



Iterated Lifting for the Airplane
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A Complication

Unfortunately, you don’t always hit the Hubbard tree.

Theorem (BLMW 2019)
Every marked polynomial has a finite nucleus of trees that are
periodic under λf . Iterated lifting always lands in the nucleus.

So the algorithm must include a resolution procedure to find the
Hubbard tree once we land in the nucleus.
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Collapsing Subforests

Let T be an allowed tree, and let e be an edge of T whose
endpoints do not both lie in M.

tree T T/e

Then collapsing e to a point yields another allowed tree T/e.

More generally, we can collapse any forest in T as long as no pair
of marked points are identified.



The Tree Complex

The tree complex for M has:

I One vertex for each allowed tree, and

I A directed edge T → T ′ for each forest collapse.
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Lifting Forest Collapses

Any forest collapse T → T ′ lifts to f−1(T ).

preimage f−1(T ′)

−→

collapsed tree T ′

It follows that either

λf (T ) → λf (T ′) or λf (T ) � λf (T ′).
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Since the Hubbard tree H is fixed and λf is non-expanding, each
ball in the complex centered at H maps into itself. Such a ball has
finitely many trees. �
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The Tree Complex

So λf induces a non-expanding map on the tree complex. This is
the lifting map.

Theorem (BLMW 2019)
If f is a polynomial, then every allowed tree is either periodic or
pre-periodic under λf .

The set of all periodic trees is the nucleus for λf .

Theorem (BLMW 2019)
The nucleus for λf lies within the 2-ball centered at H.



Example: The Rabbit Nucleus

The nucleus for the rabbit is the 1-neighborhood of the Hubbard
tree.
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The tree complex is actually the spine of a certain simplicial
subdivision of Teichmüller space (discovered by Penner).



What’s Going On?

Each tree corresponds to an open simplex. Different points in the
simplex correspond to different metrics on the tree.



What’s Going On?

The lifting map λf seems to be a combinatorial version of
Thurston’s pullback map.



Finding the
Hubbard Tree



The Story So Far

So far: We can iterate lifting until we find a periodic tree.

This gets us within 2 steps of the Hubbard tree.

Questions
1. How do we get to the Hubbard tree itself?

2. How would we even recognize the Hubbard tree if we found it?
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Invariant Trees

An allowed tree T is invariant if λf (T ) � T . Up to isotopy, such a
tree satisfies

T ⊂ f−1(T ).

Note that periodic trees are invariant for f k .

Question
How do we tell whether an invariant tree T is the Hubbard tree?

Answer
It suffices for there to exist any polynomial with Hubbard tree T that
induces the same mapping f−1(T ) → T .



Poirier’s Conditions

Alfredo Poirier completely classified possible Hubbard trees in 1993.

Theorem (Poirier’s Conditions)
An invariant tree T for (f ,M) is a topological Hubbard tree if and
only if the following conditions are satisfied:

1. (Angle Condition) T has an invariant angle assignment.

2. (Expanding Condition) Every forward-invariant subforest of T
contains a critical point.



The Angle Condition

Here is an angle assignment for a tree T .

T



The Angle Condition

We can lift the angle assignment to λf (T ).

T

f−1(T )

λf (T )
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The Expanding Condition

Let T be an invariant tree for (f ,M).

A subforest S ⊂ T is forward invariant if f (S) ⊂ S. The tree T
satisfies the expanding condition if every such S contains a
critical point.

Theorem (BLMW 2019)
Every invariant tree that satisfies the angle condition is adjacent to
the Hubbard tree.

Proof.
Collapse the unique maximal invariant forest that contains no
critical points. �



The Algorithm

So given an (f ,M), the algorithm is as follows:

1. Start with any allowed tree and iterate lifting until you find a
periodic tree T .

2. Check if T satisfies the angle condition. If it doesn’t, move to
an adjacent tree T ′ that does.

3. Check if T ′ satisfies the expanding condition. If it doesn’t,
move to an adjacent tree T ′′ that does.

Then T ′′ is the topological Hubbard tree.
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The Canonical Obstruction

Every obstructed (f ,M) has a special collection of curves called the
canonical obstruction.

These are the curves whose hyperbolic lengths go to zero.

Pilgrim (2001) proved that the canonical obstruction is fully invariant
under f , and is a Thurston obstruction.
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The Canonical Obstruction

Every obstructed (f ,M) has a special collection of curves called the
canonical obstruction.

We call this the Hubbard bubble tree for the obstructed map.

When (f ,M) is obstructed, we can use the tree lifting algorithm to
find the Hubbard bubble tree.
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Finding the Hubbard Bubble Tree

In general, a bubble tree consists of:

1. Finitely many essential curves in (C,M) with disjoint interiors.

2. A tree on the exterior of these curves.

Bubble trees can be obtained from trees by collapsing subforests.
This defines the augmented tree complex.

Theorem (BLMW 2019)
For an obstructed (f ,M), the sequence of lifts eventually lands in
the 2-neighborhood of the Hubbard bubble tree in the augmented
complex.



The End
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