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Postcritically Finite Polynomials

Let f : C→ C be a polynomial function of degree ≥ 2.

Then f has a finite set Cf of critical points.

We say that f is postcritically finite if every critical point of f is
either periodic or pre-periodic under iteration.
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Let f : C→ C be a polynomial function of degree ≥ 2.

Then f has a finite set Cf of critical points.

We say that f is postcritically finite if every critical point of f is
either periodic or pre-periodic under iteration.

That is, f is postcritically finite if the postcritical set

Pf �

⋃
n≥1

fn(Cf )

is a finite set.



Postcritically Finite Polynomials

Example
The polynomial f (z) � z2 − 1 is postcritically finite.

Here Pf � {0,−1}.



Postcritically Finite Polynomials

Example
The polynomial f (z) � z2 + i is postcritically finite.

Here Pf � {i , −1 + i , −i}.



Ramification Portrait

Every postcritically finite polynomial has a ramification portrait
that describes the forward orbits of the critical points.

Here’s the portrait for z2 − 1:

And here’s the portrait for z2 + i:



Ramification Portrait

Every postcritically finite polynomial has a ramification portrait
that describes the forward orbits of the critical points.

Here’s a portrait for a polynomial of degree six:



Affine Conjugacy

If f (z) is a postcritically finite polynomial and

A(z) � cz + d (c , 0)

is an affine function, then

g � A ◦ f ◦ A−1

is an affine conjugate of f . Affine conjugate polynomials have
essentially the same dynamics.

Question
What can we say about the affine conjugacy classes of postcritically
finite polynomials with a given portrait?



Period Two Quadratics

Example
Up to affine conjugacy, z2 − 1 is the only polynomial realizing

To see this, observe that any quadratic polynomial is affine
conjugate to one of the form

f (z) � z2 + c.

For such a polynomial to realize the above scheme, we need

(02 + c)2 + c � 0

so c � 0 or c � −1.



Period Three Quadratics

Example
Up to affine conjugacy, there are three polynomials that realize

These are the quadratics f (z) � z2 + c, where c is a nonzero
solution to

((02 + c)2 + c)2 + c � 0.

The solutions are:

The Rabbit: c ≈ −0.1226 + 0.7449 i

The Corabbit: c ≈ −0.1226 − 0.7449 i

The Airplane: c ≈ −1.754878



Period Three Quadratics

rabbit corabbit

airplane



Period Three Quadratics

rabbit corabbit

airplane



Finiteness Theorem
There are at most finitely many affine conjugacy classes of
polynomials realizing any given ramification portrait.

For quadratics with periodic critical point, the number of possibilities
grows exponentially as the period increases.

period 1 2 3 4 5 6 7 · · ·
# of c-values 1 1 3 6 15 27 63 · · ·

Period 3: Roots of c3 + 2c2 + c + 1.

Period 4: Roots of c6 + 3c5 + 3c4 + 3c3 + 2c2 + 1.

...



Period Four Quadratics



Thurston’s Theorem
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Thurston’s Theorem

Bill Thurston introduced a purely topological viewpoint towards
affine conjugacy classes of postcritically finite polynomials.

Thurston defined a topological polynomial to be any
orientation-preserving branched cover F : C→ C of finite degree.

The points at which F is not
locally a homeomorphism
are called critical points.

F is postcritically finite if
every critical point is periodic
or pre-periodic.
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Thurston’s Theorem

Two postcritically finite topological polynomials are Thurston
equivalent if they are isotopic.

Precise Definition
That is, two postcritically finite topological polynomials

F0 : C→ C and F1 : C→ C

with the same ramification portrait are Thurston equivalent if there
exists a homotopy

Ft : C→ C (0 ≤ t ≤ 1)

such that each Ft is a postcritically finite topological polynomial with
the same portrait as F0 and F1.
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only if they are conjugate by an affine function.
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Let F : C→ C be a topological polynomial. If every critical point of
F is periodic, then F is Thurston equivalent to a polynomial.
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Two postcritically finite topological polynomials are Thurston
equivalent if they are isotopic.

Thurston Rigidity
Two postcritically finite polynomials are Thurston equivalent if and
only if they are conjugate by an affine function.

Thurston’s Theorem
Let F : C→ C be a topological polynomial. If every critical point of
F is periodic, then F is Thurston equivalent to a polynomial.

Note 1: If F has pre-periodic critical points then it may be
obstructed (i.e. not Thurston equivalent to a polynomial).



Thurston’s Theorem

Two postcritically finite topological polynomials are Thurston
equivalent if they are isotopic.

Thurston Rigidity
Two postcritically finite polynomials are Thurston equivalent if and
only if they are conjugate by an affine function.

Thurston’s Theorem
Let F : C→ C be a topological polynomial. If every critical point of
F is periodic, then F is Thurston equivalent to a polynomial.

Note 2: These are special cases of Thurston’s general theorem,
which involves postcritically finite branched covers of a sphere.



Thurston’s Theorem

The proof involves the Teichmüller space T of marked complex
structures on a plane with n punctures.

Thurston finds conditions under which the pullback map
σF : T → T induced by F has a unique fixed point in T .



Twisted Rabbits



Twisted Rabbits

John Hubbard observed that Thurston’s proof isn’t algorithmic.

Question (Hubbard 1983)
Given a topological polynomial F : C→ C with periodic critical
points, how do we determine which polynomial f is Thurston
equivalent to F?



Twisted Rabbits

For example, suppose that F : C→ C is a topological polynomial
with portrait

By Thurston’s theorem, F is Thurston equivalent to exactly one of
I The rabbit,
I The corabbit, or
I The airplane.

How do we tell which one?

Hubbard gave a very specific example of this question.



Twisted Rabbits

Recall that a Dehn twist is the following homeomorphism of an
annulus.
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Twisted Rabbits

Recall that a Dehn twist is the following homeomorphism of an
annulus.

Note that this homeomorphism is the identity on both boundary
circles (and outside the annulus).



Twisted Rabbits

Let f (z) � z2 + c be the rabbit polynomial, and let h : C→ C be a
Dehn twist around an annulus that surrounds the points in the ears:

Then F � h ◦ f is a topological quadratic whose critical point has
period 3.

Twisted Rabbit Problem: Is F Thurston equivalent to the rabbit,
the corabbit, or the airplane?



Twisted Rabbits

Let f (z) � z2 + c be the rabbit polynomial, and let h : C→ C be a
Dehn twist around an annulus that surrounds the points in the ears:

Then F � h ◦ f is a topological quadratic whose critical point has
period 3.

Twisted Rabbit Problem: Is F Thurston equivalent to the rabbit,
the corabbit, or the airplane? What about Fk � hk ◦ f?



Twisted Rabbits

The twisted rabbit problem was solved by Laurent Bartholdi and
Volodomyr Nekrashevych in 2006 using methods from group theory.

Specifically, their solution uses iterated monodromy groups,
which are certain synchronous automata groups that can be
associated to critically periodic topological quadratics.



Twisted Rabbits

The twisted rabbit problem was solved by Laurent Bartholdi and
Volodomyr Nekrashevych in 2006 using methods from group theory.

Unfortunately, the algebra gets quite complicated, so their methods
can be difficult to apply when the portrait involves 4 or more points.



Twisted Rabbits

We give an entirely geometric solution to the twisted rabbit problem
using a lifting procedure on trees.

The procedure is quite fast and does not appear to increase in
complexity significantly when the portrait gets more complicated.



Lifting Trees
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Let F : C→ C be a postcritically finite topological polynomial.

An allowed tree for F is a finite tree T ⊂ C such that:

1. T contains the postcritical set Pf , and

2. Every leaf of T lies in Pf .

Isotopic trees are considered the same.
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Lifting Trees

Let F : C→ C be a postcritically finite topological polynomial.

An allowed tree for F is a finite tree T ⊂ C such that:

1. T contains the postcritical set Pf , and

2. Every leaf of T lies in Pf .

Isotopic trees are considered the same.



Lifting Trees

If T is an allowed tree for F , then F−1(T ) is a tree, and the map

F : F−1(T ) → T

determines F up to homotopy.

preimage F−1(T )

−→

allowed tree T



Lifting Trees

Note: The preimage F−1(T ) of an allowed tree is not usually an
allowed tree, since not all of its leaves are in P.
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The lift of an allowed tree T is the (unique) allowed subtree
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Lifting Trees

Note: The preimage F−1(T ) of an allowed tree is not usually an
allowed tree, since not all of its leaves are in P.

preimage F−1(T ) Lift of T

The lift of an allowed tree T is the (unique) allowed subtree
of F−1(T ).

Idea: Iterate this lifting procedure to obtain information about F .
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Iterated Lifting for the Airplane
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Iterated Lifting for the Airplane
Let f : C→ C be the airplane polynomial.

second lift T2
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Iterated Lifting for the Airplane
Let f : C→ C be the airplane polynomial.

second lift T2

preimage f−1(T2)



Iterated Lifting for the Airplane
Let f : C→ C be the airplane polynomial.

second lift T2

third lift T3



Iterated Lifting for the Airplane



Iterated Lifting for the Airplane

The tree above is known as the Hubbard Tree THub for the airplane
polynomial.

Airplane Theorem (BLMW 2018)
For any allowed tree T0, the sequence {Tn} of lifts under the
airplane polynomial arrives at THub after finitely many steps.
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Theorem (Hubbard and Douady, 1981)
For any postcritically finite polynomial f (z), there exists an allowed
tree T for which f (T ) ⊆ T.
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Theorem (Hubbard and Douady, 1981)
For any postcritically finite polynomial f (z), there exists an allowed
tree T for which f (T ) ⊆ T.

This is the Hubbard tree
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Hubbard tree is a fixed point of
the lifting operation.



Hubbard Trees

Theorem (Hubbard and Douady, 1981)
For any postcritically finite polynomial f (z), there exists an allowed
tree T for which f (T ) ⊆ T.

This is the Hubbard tree
for f (z).

Note that T ⊆ f−1(T ), so the
Hubbard tree is a fixed point of
the lifting operation.

However, iterated lifting does
not always find the Hubbard
tree.



Iterated Lifting for the Rabbit

The Hubbard tree for the rabbit polynomial frabbit is a tripod.



Iterated Lifting for the Rabbit

But there is also a 3-cycle of allowed trees.



Iterated Lifting for the Rabbit

Let THub be the Hubbard tree for frabbit and let Tc1 , Tc2 , Tc3 be the
trees in the 3-cycle.

We call the set {THub , Tc1 , Tc2 , Tc3} the nucleus for the rabbit.

Rabbit Theorem (BLMW 2018)
For any allowed tree T0, the sequence {Tn} of lifts under frabbit
reaches the nucleus after finitely many steps.

Note: The situation for the corabbit is similar.



Recognition Algorithm

Given: A topological quadratic F : C→ C whose critical point has
period 3.

Procedure: Start with any T0, and compute the iterated lifts {Tn}
until the sequence begins to repeat.

1. If we find a fixed path of length two, then F is Thurston
equivalent to the airplane.

2. If we find a fixed tripod or a 3-cycle of paths, then F is Thurston
equivalent to the rabbit or corabbit.
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Example: A Twisted Rabbit

Let F � h ◦ frabbit, where h is the full twist around the ears.



Example: A Twisted Rabbit

Let F � h ◦ frabbit, where h is the full twist around the ears.

It’s an airplane!



Methods of Proof



Sketch of Proof

Airplane Theorem (BLMW 2018)
For any allowed tree T0, the sequence {Tn} of lifts under fairplane
arrives at THub after finitely many steps.

Rabbit Theorem (BLMW 2018)
For any allowed tree T0, the sequence {Tn} of lifts under frabbit
reaches the nucleus after finitely many steps.



Contracting Trees

Let T be an allowed tree, and let e be an edge of T whose
endpoints do not both lie in P.
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Contracting Trees

Let T be an allowed tree, and let e be an edge of T whose
endpoints do not both lie in P.

allowed tree T contraction T/e

Then the contraction T/e obtained by contracting e is again an
allowed tree.

More generally, a contraction of an allowed tree T is obtained by
contracting any suitable collection of edges in T .



The Tree Complex

Given a critically periodic F , the associated tree complex has:

I One vertex for each allowed tree T , and

I A directed edge T → T ′ whenever T ′ is a contraction of T .



The Tree Complex
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Lifting Contractions

If T ′ is a contraction of T , then F−1(T ′) is a contraction of F−1(T ).

preimage F−1(T ′)

−→

contraction T ′

It follows that the lift of T ′ is either:

I A contraction of the lift of T , or

I The same as the lift of T .



The Tree Complex

So lifting of trees defines a non-expanding map on the tree
complex. This is the lifting map.



Proof of the Airplane Theorem

Both allowed trees adjacent to THub in the tree complex lift to THub.

It follows that the lift of an allowed tree is always at least one step
closer to THub in the tree complex.



Proof of the Rabbit Theorem

For the rabbit, the 2-neighborhood of THub maps into the
1-neighborhood after three iterations.
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What’s Going On?

Each allowed tree corresponds to an open simplex. Different points
in the simplex correspond to different metrics on the tree.



What’s Going On?

The lifting map seems to be a combinatorial version of Thurston’s
pullback map σF : T → T .
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The Nucleus

Let f : C→ C be a postcritically finite polynomial.

Theorem (BLMW 2018)
Every allowed tree for f is periodic or pre-periodic under lifting.

The nucleus Nf is the set of all periodic trees. This includes the
Hubbard tree, and is a connected subset of the tree complex.

Conjecture
The nucleus Nf is always finite set.

Note: Whenever Nf is finite, we get an algorithmic solution to the
corresponding twisted rabbit problem.



Progress So Far

For the following theorem, a polynomial f (z) is unicritical if it has
only one critical point. Up to affine conjugacy, such a polynomial
has the form

f (z) � zd + c.

Theorem (BLMW 2018)
Let f : C→ C be a unicritical polynomial whose critical point is
periodic. Then the nucleus Nf is finite.

Indeed, Nf is contained in the 2-neighborhood of THub.

Theorem (BLMW 2018)
If c is real, then Nf � {THub}.



Questions

Question
Is the nucleus Nf always finite?

Question
How does iterated tree lifting behave for obstructed topological
polynomials? Can we use it to recover a Levy cycle?

Question
What exactly is the relationship between the tree lifting map and
Thurston’s pullback map σF?

Question
How can we extend our methods to rational maps? The preimage of
a tree is not always a tree!



The End
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