
1 Differential
Equations

b The strange attractor for a Sprott system
consisting of three quadratic differential
equations.1

A differential equation is any equation that involves a derivative. For example,
Newton’s second law

F � ma

is actually a differential equation, since the acceleration a is the second derivative of
position. We can make the differential nature of this equation more apparent by writing

1Based on the image Atractor Poisson Saturne by Nicolas Desprez, licensed under CC BY-SA 3.0.
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2 Differential Equations

the acceleration explicitly as a second derivative:

F � m
d2x
dt2

As you can see, differential equations are fundamental to physics, and our current
belief is that all of the laws of nature can be expressed as differential equations. For
example, Maxwell’s equations, which govern the behavior of electromagnetic fields,
are also differential equations, as is the Schrödinger equation

i~
∂Ψ
∂t

� H[Ψ],

which governs the evolution of the wavefunctionΨ of a system in quantum mechanics.
Among other applications, the Schrödinger equation can be used to predict the behavior
of electrons in atoms, making it vital to both physics and chemistry.

a The 4dz2 electron orbital. The shapes
of electron orbitals are governed by the
Schrödinger equation.

Applications of differential equations are not limited to physics. In general, a
dynamical system is any system that changes or evolves over time according to fixed
rules. Such systems appear throughout the natural and social sciences, and include
mechanical systems, electric circuits, ongoing chemical reactions, biomechanical
systems, populations of organisms and ecosystems, business and financial markets, and
social networks. Each of these system has its own rules for how it evolves, and typically
these rules can be described using one or more differential equations. The process
of discovering these rules is known as mathematical modeling, and the resulting
differential equations are a mathematical model of the given dynamical system.

For example, in chemistry the rate at which a chemical reaction occurs is governed

a The rate at which a chemical reaction
occurs is governed by a rate equation.

by a rate equation. For a simple chemical reaction with only one reactant (or only one
reactant in short supply), this equation takes the form

dC
dt

� kCn .

Here C denotes the concentration of the reactant, k is a constant called the rate constant,
and n is an integer called the order of the reaction. A more complicated chemical
reaction with more than one reactant would have one differential equation for the
concentration of each substance in the solution.

In biology, differential equations are often used to model populations of organisms in

a Differential equations are used to predict
fish populations in underwater ecosystems
and commercial fisheries.2

a given environment. For example, a population of animals growing in an environment
with abundant resources might follow the exponential growth equation

dP
dt

� kP.

Here P is the size of the population and k is a constant called the growth constant. If
instead food or space is limited, the population might grow according to the logistic
equation

dP
dt

� kP
(
1 −

P
Pmax

)
,

where Pmax represents the maximum stable population that the given resources can
support.

Finally, differential equations are often used in economics to model the behavior of
economies and markets. For example, the Solow growth model describes the growth
of economies over time using the differential equation

2Moofushi Kandu fish by Bruno de Giusti, licensed under CC BY-SA 2.5, via Wikimedia Commons.
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dk
dt

� s f (k) − (n + g + δ)k.

Here k is the ratio of capital to labor, f is the production function, and the constants
s , n , g , δ represent respectively the fraction of economic output devoted to investment,
the exponential growth rate of labor, the exponential growth rate of technology, and
the rate of depreciation of capital. A common choice for the production function f (k)
is a Cobb-Douglas production function f (k) � kα, where α is the elasticity of output
with respect to capital, in which case the differential equation takes the form

dk
dt

� skα − (n + g + δ)k.

1.1 The Study of Differential Equations

From a mathematical point of view, a differential equation is any equation that involves
the derivative of an unknown function. For example, the equation

f ′(x) � 3 f (x)

involves the derivative of the unknown function f (x). A solution to a differential
equation is any function f (x) that agrees with the given information. For example, the
function f (x) � e3x is a solution the equation above, since the derivative of e3x is equal
to 3e3x .

Unlike an algebraic equation, whose
solution is an unknown number, the
solution to a differential equation is an
unknown function.

In applications, the unknown function usually describes the way in which a
particular variable changes with time. For example, if P(t) describes the population of
a bacteria colony at time t, then P(t) might satisfy the differential equation

P′(t) � 3P(t).

This equation could also be written
In some disciplines, it is common to write
a dot above a variable instead of a prime
to indicate the derivative with respect to
time. Thus the equation to the left could
also be written

Ṗ(t) � 3P(t).

or simply
Ṗ � 3P.

dP
dt

� 3P,

where we have used the Leibniz notation for derivatives, and we have simply written P
for the population instead of P(t). Here a solution to the equation would be an explicit
formula for P in terms of t, such as P(t) � e3t .

When discussing differential equations abstractly, we usually use x for the indepen-
dent variable and y for the dependent variable, i.e. y � y(x). Thus the equation above
could be written

y′(x) � 3 y(x),

or simply
y′ � 3y ,

with y � e3x being a possible solution.

EXAMPLE 1

Which of the following functions is a solution to the equation x y′ � 3y?

(a) y � ex (b) y � x2 (c) y � x3 (d) y � 0

SOLUTION If y � ex , then y′ � ex as well. Substituting both of these into the equation

x y′ � 3y
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gives us
xex

� 3ex .

The two sides are not equal, so ex is not a solution to this equation.Of course, xex is the same as 3ex when
x � 3, but that doesn’t mean that y � ex

is a solution to the given equation. To be
a solution to a differential equation, a
function y(x) must satisfy the equation
for all values of x. That is, the two sides
of the differential equation must be equal
as functions.

If y � x2, then y′ � 2x, and the equation x y′ � 3y becomes

2x2
� 3x2.

Again, the two sides are not equal, so y � x2 is not a solution to this equation.
If y � x3, then y′ � 3x2, and the equation x y′ � 3y becomes

3x3
� 3x3.

This time the two sides of the equation are the same, and therefore y � x3 is a solution to the
equation x y′ � 3y.

Finally, if y � 0 (the constant zero function), then y′ � 0 as well, and both sides of the
equation x y′ � 3y are zero. Since the two sides of the equation are the same, it follows that
y � 0 is also a solution to the equation x y′ � 3y.

Order of an Equation
The order of a differential equation is the highest order of derivative that appears in
it. A first-order equation involves only the first derivative of the unknown function.
Most of the differential equations discussed so far have been first-order equations, and
such equations are prevalent in chemistry, biology, and the social sciences.

A second-order equation is a differential equation that involves a second derivative.
For example, Newton’s second law

F � m
d2x
dt2

is a second-order equation, since it involves the second derivative of position (i.e. the
acceleration). As a result, most of the differential equations that arise in classical
mechanics are second-order.

a Like most systems in Newtonian
mechanics, the motion of a spinning top is
goverend by second-order differential
equations.3

It is also possible to have third-order equations, fourth-order equations, and so
forth, but these rarely arise in applications. For the most part, we will concentrate on
first and second order equations.

Systems of Equations
A system of differential equations is a set of several such equations that involve the

a A system of two differential equations
can be used to model the populations of
interacting predator and prey species.4

same collection of variables. Typically there is one equation describing the rate of
change of each variable. For example, the motion of a satellite moving around the
Earth can be modeled by the system of differential equations

d2x
dt2 � −

MGx(
x2 + y2 + z2)3/2 ,

d2 y
dt2 � −

MGy(
x2 + y2 + z2)3/2 ,

d2z
dt2 � −

MGz(
x2 + y2 + z2)3/2 ,

3Physics in Sepia by Randen Pederson, licensed under CC BY 2.0, cropped from the original.
4Photo by NJR ZA via Wikimedia Commons, licensed under CC BY-SA 3.0

https://www.flickr.com/photos/chefranden/434196421/in/photostream/
https://www.flickr.com/photos/chefranden/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Leopard_kill_-_KNP_-_001.jpg
http://creativecommons.org/licenses/by-sa/3.0
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where M is the mass of the Earth, G is Newton’s gravitational constant, and (x , y , z)
denotes the position of the satellite in three-dimensional space. In general, any situation
that involves more than one variable will usually require a system of differential
equations to model it.

Ordinary vs. Partial Differential Equations
The two main types of differential equations are ordinary differential equations (ODE’s)

a Partial differential equations are required
to model the flow of heat in solid objects,
such as this pump casing.5

and partial differential equations (PDE’s). For an ordinary differential equation, the
unknown function is a function of a single variable, such as x or t. Most of the equations
discussed so far have been ordinary differential equations.

For a partial differential equation, the unknown function is a multivariable function
that takes several different inputs. For example, the unknown function might be the
temperature T (x , y , z , t) inside a solid body, which depends on the three coordinates
x , y , z that describe locations inside as well as the time t. A differential equation for
such a function involves its partial derivatives, e.g.

∂T
∂t

�
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 .

In general, partial differential equations are required to model spatial phenomena such
as heat flow or wave propagation, including wave functions in quantum mechanics.
Though partial differential equations are quite important in both mathematics and
science, their study requires significantly more calculus and analysis than the study
of ordinary differential equations, and for this reason we will concentrate exclusively
on ODE’s.

aWater waves can be modeled using
partial differential equations.6

5Image via Wikimedia Commons, licensed under CC BY-SA 3.0.
6Surface Waves by Roger McLassus via Wikimedia Commons, licensed under CC BY-SA 3.0.

https://commons.wikimedia.org/wiki/File:Elmer-pump-heatequation.png
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:2006-01-14_Surface_waves.jpg
https://commons.wikimedia.org/wiki/User:Roger_McLassus
http://creativecommons.org/licenses/by-sa/3.0/


6 INTEGRABLE EQUATIONS

1.2 Integrable Equations

There are a few differential equations that we already know how to solve. For example,
consider the equation

y′ � cos x.

A solution to this equation is any function y(x) whose derivative is cos x. Thus y is
given by the indefinite integral

y �

∫
cos x dx.

We conclude that
y � sin x + C.

Here C is an arbitrary constant, with different values of C corresponding to different
solutions. For example, C � 0, C � 1, and C � 2 correspond to the solutions y � sin x,
y � sin x + 1, and y � sin x + 2, respectively. Graphs of these solutions are shown in
Figure 1.

a Figure 1: Three curves of the form
y � sin x + C.

When studying differential equations, any one solution to a differential equation is
called a particular solution, while a general formula for all possible solutions is called
a general solution. In this case, the formula

y � sin x + C

is the general solution to the differential equation, with specific values of C giving
the particular solutions. Note that there are infinitely many possible values of C, and
therefore this differential equation has infinitely many different particular solutions.
Indeed, the graphs of all of the particular solutions completely fill the plane, as shown
in Figure 2

a Figure 2: The family of curves
y � sin x + C.

completely fills the plane.

Though integration often plays a role in the solution to a differential equation, most
differential equations cannot be solved simply by evaluating an indefinite integral. In
fact, this only works for differential equations of the specific form

y′ � f (x),

where f (x) can be any function of x.

Directly Integrable Equations
A differential equation is directly integrable if it has the form

y′ � f (x),

where f (x) is a function of x. In this case, the solutions are given by the indefinite
integral

y �

∫
f (x) dx.

We will assume that the reader is familiar with basic techniques for evaluating indefinite
integrals, including substitution and integration by parts. Table 1.1 shows several
common integrals that we will be using in examples and exercises.

Sometimes a differential equation is not directly integrable, but can be put into a
directly integrable form using a little algebra. The following examples illustrate this
procedure.
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b Table 1.1: Some common integrals that
arise when solving differential equations.

Common Integrals∫
k dx � kx + C

∫
ex dx � ex

+ C∫
xp dx �

xp+1

p + 1
+ C (p , −1)

∫
1
x

dx � ln |x | + C∫
cos x dx � sin x + C

∫
sin x dx � − cos x + C∫

sec2 x dx � tan x + C
∫

csc2 x dx � − cot x + C∫
sec x tan x dx � sec x + C

∫
csc x cot x dx � − csc x + C∫

1
1 + x2 dx � tan−1 x + C

∫
1

√

1 − x2
dx � sin−1 x + C

EXAMPLE 2

Find the general solution to the differential equation x2 y′ � x − y′.

SOLUTION First we must solve for y′. Adding y′ to both sides gives

x2 y′ + y′ � x.

We can now factor out a y′ (
x2

+ 1
)

y′ � x

and divide through by x2 + 1 to get

y′ �
x

x2 + 1
.

This equation is now directly integrable. The solutions are given by

y �

∫
x

x2 + 1
dx.

We can evaluate this integral using substitution. If we let u � x2 + 1, then du � 2x dx and∫
x

x2 + 1
dx �

1
2

∫
1
u

du �
1
2

ln |u | + C �
1
2

ln ��x2
+ 1�� + C.

Thus the general solution is
y � ln

(
x2

+ 1
)
+ C,

where we have dropped the absolute value around the x2 + 1 since x2 + 1 is always positive.
Figures 3 and 4 show the graphs of these solutions.

a Figure 3: Three curves of the form
y � ln

(
x2

+ 1
)
+ C.

a Figure 4: The family of curves
y � ln

(
x2

+ 1
)
+ C

completely fills the plane.
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EXAMPLE 3

Find the general solution to the differential equation e t dP
dt

� t.

SOLUTION We can put this equation into a directly integrable form by solving for
dP
dt

:

dP
dt

� te−t .

Then the solutions are given by

P �

∫
te−t dt .

This integral requires integration by parts, which is based on the formula∫
u dv � uv −

∫
v du.

In this case we let u � t and dv � e−t dt. Then du � dt and v � −e−t , so∫
te−t dt � −te−t

−

∫ (
−e−t ) dt � −te−t

− e−t
+ C.

Thus the general solution is
P(t) � −(t + 1)e−t

+ C.

Figure 5 shows the particular solutions corresponding to C � 0, C � 1, and C � 2, and Figure 6
shows how the solutions to this differential equation completely fill the plane.

a Figure 5: Three functions of the form
P(t) � −(t + 1)e−t

+ C.

a Figure 6: The graphs of the functions
P(t) � −(t + 1)e−t

+ C

completely fill the plane.

EXERCISES

1–6 Use integration to find the general solution to the given differential equation.

1. y′ � x
√

x2 + 1 2.
dr
dt

� t cos t

3. y′ + cos(3x) � 0 4. e t dM
dt

� 1

5. x y′ + 4x3
� 1 6. y′ � 1 − x2 y′
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1.3 Finding Solutions

As we have seen, some differential equations can be solved by directly integrating. For
example, to solve

y′ � x cos x

we need only compute the integral of x cos x. However, method doesn’t work for an
equation such as In general, only differential equations of

the form
y′ � f (x)

can be integrated directly, where f (x) is
any formula involving just x.

y′ � x2 y.

The trouble here is that the right side of the equation has a y in it. Instead of just giving
us a formula for y′ in terms of x, this differential equation expresses a relationship
between the derivative y′ and the original function y. This makes the equation much
more difficult to solve.

We begin with a simple example of such an equation. Pay careful attention to the
solution here, for we will be returning to this example again and again.

EXAMPLE 4

Consider the following differential equation:

y′ � y.

In words, this equation says that the function y is equal to its own derivative. What, then, are the
possibilities for y?

There are two possibilities that immediately present themselves, namely

y � 0 and y � ex .

The constant function y(x) � 0 is a solution the given equation, since the derivative of 0 is
again just 0. Similarly, the function y(x) � ex is a solution, since the derivative of ex is again
just ex .

It takes a little thought to come up with any other solutions. Based on our experience with
integrals, we might guess that

y � ex
+ C

would be a solution for any constant C, but this is not correct. For if we take the derivative of
ex + C, we just get ex , which is only the same as ex + C in the case where C is 0.

However, there is a general family of solutions to this equation. If C is any constant, then

y � Cex

is a solution to the given equation, since the derivative of Cex is again just Cex . The graphs of
these solutions are shown in Figure 7.

In the previous example, the solutions

y � 0 and y � ex

were particular solutions to the given differential equation. These were both special
cases of the more general formula

y � Cex .

Specifically, y � 0 corresponds to C � 0, and y � ex corresponds to C � 1. Indeed,
though it may not be obvious, it turns out that every solution to the equation y′ � y has
the form y � Cex for some constant C. For this reason, we refer to the formula y � Cex

as the general solution to the differential equation.
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(a) (b)

d Figure 7: (a) Five curves of the
form y � Cex . (b) The family of all such
curves completely fills the plane.

This behavior is all fairly typical. Most differential equations have an infinite family
of solutions, which can be written in the form of a single general solution. For a
first-order equation, this general solution is often a formula that involves a single
arbitrary constant C.

This suggests a procedure for solving first-order equations: first we try to guess a
particular solution to the differential equation, and then we try to guess how to include
a constant C in a way that makes the solution more general.

EXAMPLE 5

Find a general solution to the following differential equation.

y′ � −y2

SOLUTION To solve this equation, we must start by guessing a particular solution. Where
should we begin? Well, we have no idea what formula might work here, so it probably makes
sense to start with some very simple formulas:

y � sin x , y � ex , y �
√

x , y �
1
x
, y � x2 , y � ln x.

Do any of these work? Check them for yourself before continuing.
It turns out that y � 1/x is the right guess. If y � 1/x, then y′ � −1/x2, and the equation

becomes

−
1
x2 � −

( 1
x

)2
.

So y � 1/x is a particular solution to this differential equation.Later on, we will learn a method called
separation of variables that allows us to
solve this equation without any guessing.

Now, what about the general solution? We need to figure out how to include an arbitrary
constant C. Again, we just have to guess where in the formula the C might go:

y �
1
x

+ C, y �
C
x
, y �

1
Cx

, y �
1

x + C
, y �

1
xC

.

Do any of these work? Yes—it is easy to check that

y �
1

x + C

is always a solution.
But is it the general solution? Presumably it is, since it includes an arbitrary constant, but

it’s hard to be sure about such things. We would need to somehow know that every solution to
the given equation has this form.
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Though we have discussed how to find general solutions, we have mostly been ignoring the
question of how to tell whether a given solution is actually general. For example, consider the
differential equation

y′ � y.

We know that y � Cex is a solution for every constant C, but how do we know that these
are the only possible solutions? That is, how do we know that every solution to the given
equation has this form?

This is actually not too difficult to prove. Suppose that y(x) is any solution to the A proof is a mathematical argument that
establishes the truth of a given statement.differential equation, i.e. any function satisfying y′(x) � y(x). Then we can define a new

function C(x) by the formula
C(x) � y(x) e−x .

Note then that
y(x) � C(x) ex .

We wish to prove that C(x) is actually a constant. To do so, we simply take the derivative of
C(x) using the product rule:

C′(x) � y′(x) e−x
− y(x) e−x .

Since y′(x) � y(x), the two terms on the right cancel, and thus C′(x) � 0. We conclude that
C(x) is actually a constant function, and thus y(x) has the desired form.

A Closer Look Proving a Solution is General

In fact, this is not quite the general solution. It turns out that every solution has the above Intuitively, y � 0 is the solution that you
get when C � ∞, i.e. when you take the
limit as C →∞.

form, with the exception of the constant function y � 0. This is also a solution, but it does not
correspond to any value for C.

Sometimes it helps to make a sequence of educated guesses.

EXAMPLE 6

Find a particular solution to the following differential equation.

x y′ + 2y � 14x5

SOLUTION Again we should just start by guessing formulas for y. However, the right side
of this equation gives us a clue: maybe we should try something involving x5. If we just try
y � x5, we get

x(5x4) + 2(x5) � 14x5 ,

which isn’t quit right, since the left side is just 7x5.
Our guess of x5 came very close, but our left side was off by a factor of 2. Perhaps it would

work to insert a 2 somewhere in our guess? Indeed, if y � 2x5, then the left side will work The general solution here is more
complicated and would be hard to guess.
It turns out to be y � 2x5 + Cx−2, where
C is an arbitrary constant. The solution
we found corresponds to C � 0.

out correctly:
x(10x4) + 2(2x5) � 14x5.

Thus y � 2x5 is one solution to this differential equation.



12 FINDING SOLUTIONS

Although our goal is to understand how to solve differential equations, you can learn a lot by
trying to make up differential equations that have a certain solution. For example, suppose
we want a differential equation that has

y � x3

as a solution. The simplest possibility is

y′ � 3x2.

However, any differential equation that holds when you plug in y � x3 and y′ � 3x2 will
work. For example, since x(3x2) � 3x3, the equation

x y′ � 3y

has y � x3 as a solution. Some other differential equations with y � x3 as a solution include(
y′

)3
� 27y2 , x y′ + 4y � 7x3 , and y y′ � 3x5.

On your own, you could try making some differential equations that have y � x2 as a solution,
or perhaps y � sin x.

A Closer Look Making Up Differential Equations

EXERCISES

1–2 Use guess and check to find the general solution to the given differential
equation.

1. y′ + y tan x � 0 2.
(
y′

)2
� 4y

3–5 Use guess and check to find a particular solution to the given differential
equation.

3. y′ + y � 9e2x 4. y y′ � 4e8x

5. x2 y′ + e y
� 2x
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1.4 Initial Value Problems

As we have seen, most differential equations have more than one solution. For a
first-order equation, the general solution usually involves an arbitrary constant C, with
one particular solution corresponding to each value of C.

What this means is that knowing a differential equation that a function y(x) satisfies
is not enough information to determine y(x). To find the formula for y(x) precisely,
we need one more piece of information, usually called an initial condition.

For example, suppose we know that a function y(x) satisfies the differential equation

y′ � y.

It follows that
y(x) � Cex

for some constant C. If we want to determine C, we need at least one more piece of
information about the function y(x). For example, if we also know that

y(0) � 3,

the the value of C must be 3, and hence y(x) � 3ex .

Initial Value Problems
An initial value problem consists of

1. A first-order differential equation y′ � f (x , y), and

2. An initial condition of the form y(a) � b.

For example,
y′ � y , y(0) � 3

is an initial value problem, whose solution is

y � 3ex .

In general, we expect that every initial value problem has exactly one solution. We
can find this solution using the following procedure.

Solving Initial Value Problems
Given an initial value problem

y′ � f (x , y), y(a) � b ,

we can solve it using the following procedure:

1. Find the general solution to the given differential equation, involving an
arbitrary constant C.

2. Substitute x � a and y � b to get an equation for C.

3. Solve for C and then substitute the answer back into the formula for y.



14 INITIAL VALUE PROBLEMS

EXAMPLE 7

Find the solution to the following initial value problem:

y′ � −y2 , y(0) � 5.

SOLUTION We previously found the general solution to this differential equation:

y �
1

x + C
,

Plugging in x � 0 and y � 5 gives the equation

5 �
1

0 + C
.

Solving for C gives C � 1/5, so

y �
1

x + (1/5)
.

This simplifies to
In this last step we multiplied the
numerator and denominator by 5 to
simplify the fraction of fractions.

y �
5

5x + 1

EXAMPLE 8

Find the solution to the following initial value problem:

y′ � 2y , y(0) � 5.

SOLUTION The given differential equation isn’t very different from the equation

y′ � y.

In that case, the general solution was y � Cex . How can we modify this solution to account
for the extra 2?

A few moments of thought reveals the answer:
More generally, the solution to any
equation of the form y′ � k y (where k is
a constant) is y � Cekx .

y � Ce2x

So this is the general solution to the given equation. Plugging in x � 0 and y � 5 gives the
equation

5 � Ce0 ,

so C � 5 and the solution is
y � 5e2x

The Fundamental Theorem of ODE’s (Optional)
As a general rule, we expect any initial value problem of the form

y′ � f (x , y), y(a) � b

to have a unique solution. The following theorem gives specific conditions which
guarantee that this holds.
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Fundamental Theorem of ODE’s
Consider an initial value problem of the form

y′ � f (x , y), y(a) � b.

If the function f (x , y) is continuously differentiable for all values of x and y, then
this initial value problem has a unique solution.

Here continuously differentiable means
that both partial derivatives

∂ f
∂x

and
∂ f
∂y

exist and are continuous.

This theorem is also known as the existence and uniqueness theorem for first-
order ODE’s, since it guarantees both that the solution exists and that it is unique.

The hypothesis that the function f (x , y) is continuously differentiable is important
for the theorem. In fact, there are initial value problems that do not satisfy this
hypothesis that have more than one solution. For example, the initial value problem

y′ �
y
x
, y(0) � 0

has infinitely many different solutions, namely the lines y � Cx for all possible values
of C. The function f (x , y) in this case is y/x, which is not defined (and hence not
continuously differentiable) when x � 0.

There is a nice geometric interpretation of the fundamental theorem. As we have
seen, the solutions to a differential equation can be viewed as a family of solution
curves in the x y-plane. For example, Figure 8 shows the curves y � ln(x + C), which
are the solutions to the differential equation

y′ � e−y .

From a geometric point of view, an initial condition y(a) � b is the same as a point (a , b)
that the solution curve must pass through. Thus, saying that the initial value problem

y′ � f (x , y), y(a) � b

has a unique solution is the same as saying that the point (a , b) has exactly one solution
curve passing through it. This leads us to the following restatement of the fundamental
theorem of ODE’s.

(a) (b)

b Figure 8: (a) Three curves of the
form y � ln(x + C). (b) The family of all
such curves completely fills the plane.
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Fundamental Theorem of ODE’s (Geometric Version)
Consider a first-order differential equation of the form

y′ � f (x , y),

where the function f (x , y) is continuously differentiable. Then:

1. The solution curves for this differential equation completely fill the plane, and

2. Solution curves for different solutions do not intersect.

Here statement (1) is the same as saying that every point (a , b) lies on at least one
solution curve, i.e. every initial condition gives at least one solution. Statement (2) is
the same as saying that no point (a , b) lies on more than one solution curve, i.e. every
initial condition has at most one solution.

EXERCISES

1–2 Solve the given initial value problem.

1. y′ � xex , y(0) � 3 2. y′ � 3y, y(2) � 4
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1.5 Second-Order Equations

Recall that the second derivative of a function y is the derivative of the derivative.
This can be written

When using t (for time) instead of x, the
second derivative is sometimes written
with two dots, i.e. ÿ.

y′′ or
d2 y
dx2 .

A second-order equation is a differential equation that involves y′′, as well as perhaps
y′, y, and x.

Second-order equations are quite important in physics, since acceleration is the
second derivative of position. Indeed, virtually all important differential equations in
physics are second-order, whereas most important differential equations in biology,
chemistry, and economics are first-order. As we will see, second-order equations and
first-order equations behave quite differently.

EXAMPLE 9

Find the general solution to the following second-order equation.

y′′ � 12x2.

SOLUTION Integrating once gives a formula for y′:

y′ �
∫

12x2 dx � 4x3
+ C.

We can now integrate again to get a formula for y.

y �

∫ (
4x3

+ C
)

dx � x4
+ Cx + C2.

Here C2 represents a new constant of integration, which may be different from the original C.
Actually, it would make more sense to refer to the original C as C1:

y � x4
+ C1x + C2

This is the general solution to the given second-order equation.

In general, any second-order equation of
the form

y′′ � f (x)
can be solved by integrating twice.

The general solution we found in the last example involved two arbitrary constants
C1 and C2. This is typical for a second-order equation.

1. The general solution to a first-order equation usually involves one arbitrary
constant.

2. The general solution to a second-order equation usually involves two arbitrary
constants.

Incidentally, there are also third-order equations (involving the third derivative),
fourth-order equations, and so forth. As you would expect, the general solution to an
nth-order differential equation usually involves n arbitrary constants. However, we
will mostly restrict our attention to first and second order equations, since equations of
third order and higher are rare in both science and mathematics.
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EXAMPLE 10

Find the general solution to the following second-order equation.

y′′ � y.

SOLUTION Obviously y � ex is a solution, and more generally y � C1ex is a solution for any
constant C1. However, this is not the general solution—we are expecting one more arbitrary
constant.

So how can we find another solution to this differential equation? Think about this for
a minute—we want a function other than a multiple of ex that is equal to its own second
derivative.

The answer is quite clever: what about y � e−x? Though the derivative of e−x has an
extra minus sign, the second derivative is again e−x , so e−x is a solution to the above equation.
Indeed, anything of the form y � C2e−x is a solution, where C2 can be any constant.

But how can we combine the two solutions into a single formula? In this case, it turns out
that it works to just add them together:

y � C1ex
+ C2e−x

(The reader may want to check this by plugging this formula into the original equation.) This
formula includes two arbitrary constants, so it ought to be the general solution to the given
second-order equation.

Because the general solution to a second-order equation involves two arbitrary
constants, you need two additional pieces of information to determine a single solution.
One option is to give two different values for y, e.g. y(0) and y(1). This is called a
boundary value problem, and you can solve it using the following procedure.It is common in applications that the two

known values of y are at the boundary
points of the interval of possible x-values.
Hence the terminology “boundary value
problem”.

Solving Boundary-Value Problems

1. Find the general solution to the given second-order equation, involving constants
C1 and C2.

2. Plug in the first value for y to get an equation involving C1 and C2.
3. Plug in the second value for y′ to get another equation involving C1 and C2.
4. Solve the two equations for the unknown constants C1 and C2.

EXAMPLE 11

Find the solution to the following boundary-value problem

y′′ � 12x , y(−1) � 3, y(1) � 5.

SOLUTION We can integrate to get a formula for y′:

y′ �
∫

12x dx � 6x2
+ C1 ,

and then integrate again to get a formula for y:

y �

∫
(6x2

+ C1) dx � 2x3
+ C1x + C2 ,

All that remains is to find the values of C1 and C2.
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Plugging in x � −1 and y � 3 gives the equation

3 � −2 − C1 + C2 ,

and plugging in x � 1 and y � 5 gives the equation

5 � 2 + C1 + C2 ,

We can solve these two equations to get C1 � −1 and C2 � 4, so

y � 2x3
− x + 4

Instead of giving two pieces of information about y, another way of specifying a
single solution to a second-order differential equation is to give one piece of information
about y and one piece of information about y′. In particular, a second-order initial
value problem consists of the following information:

1. A second-order differential equation involving an unknown function y.

2. An initial condition for y, such as the value of y(0).

3. An initial condition for y′, such as the value of y′(0).

Such conditions are common in physics, where y(0) would represent the initial position
of an object, and y′(0) would represent the initial velocity of an object. We can solve
such a problem using the following procedure.

Solving Second-Order Initial Value Problems

1. Find the general solution to the given second-order equation, involving constants
C1 and C2.

2. Plug in the initial value for y to get an equation involving C1 and C2.
3. Take the derivative of the general formula for y to get a general formula for y′.
4. Plug in the initial value for y′ to get another equation involving C1 and C2.
5. Solve the two equations for the unknown constants C1 and C2.

EXAMPLE 12

Find the solution to the following initial value problem.

y′′ � y , y(0) � 7, y′(0) � 3.

SOLUTION As we saw in Example 10, the general solution to the given equation is

y � C1ex
+ C2e−x .

Therefore, we need only figure out the values of C1 and C2.
Plugging in y(0) � 7 gives the equation

7 � C1 + C2.

To plug in y′(0) � 3, we must start by taking the derivative of our general formula for y:

y′ � C1ex
− C2e−x .
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We can now plug in y′(0) � 3 to get the equation

3 � C1 − C2.

We now have two equations for C1 and C2:

C1 + C2 � 7 and C1 − C2 � 3.

Solving yields C1 � 5 and C2 � 2, so

y � 5ex
+ 2e−x

EXERCISES

1–2 Use integration to find the general solution to the given differential equation.

1. y′′ � 3√x 2. x3 y′′ � x + 2

3. Use guess and check to find a particular solution to the equation y′y′′ � 14y + 4x3.

4–5 Solve the given boundary value problem.

4. y′′ � sin x, y(0) � 4, y(π) � 6 5. y′′ � y, y(0) � 7, y(ln 2) � 8

6–7 Solve the given initial value problem.

6. y′′ � x2, y(1) � 1/2, y′(1) � 1/2 7. y′′ � 4y, y(0) � 5, y′(0) � 2
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