
10.1 Subspaces

A subspace is simply a flat that goes through the origin. For example, a one-dimensionalThe word “subspace” is used for several
different concepts in mathematics. For
clarity, the subpaces we discuss here are
sometimes called linear subspaces or
vector subspaces.

subspace is a line that goes through the origin, a two-dimensional subspace is a plane
that goes through the origin, and so forth. Subspaces are by far the most important flats
in linear algebra. As we shall see, they have several nice properties that distinguish
them from other flats.

Span of Vectors
Any subspace of Rn can be defined by a parametric equation of the form

(x1 , x2 , . . . , xn ) � 0 + t1v1 + t2v2 + · · · + tkvk .

where 0 � (0, 0, . . . , 0) is the origin. Since adding 0 has no effect, we can omit it from
the equation:

(x1 , x2 , . . . , xn ) � t1v1 + t2v2 + · · · + tkvk .

What this says is that the subspace consists of all possible linear combinations of the
vectors v1 , v2 , . . . , vk . This has a special name.

Span of Vectors
If v1 , v2 , . . . , vk are vectors in Rn , the span of these vectors, written

Span{v1 , v2 , . . . , vk }

is the subspace of Rn consisting of all possible linear combinations of v1 , v2 , . . . , vk .

Geometrically, Span{v1 , v2 , . . . , vk } is the flat through the origin in Rn that contains
the vectors v1 , v2 , . . . , vk .

EXAMPLE 1

If v is a nonzero vector in Rn , the span of v is simply the set of all scalar multiples of v. This is
the line defined by the parametric equation

(x1 , x2 , . . . , xn ) � t v.

This line is illustrated in Figure 1. Some specific examples include:

a Figure 1: The span of a single vector v
in R2.

• In two dimensions, Span
{
(1, 1)

}
is the line y � x, and Span

{
(1, 2)

}
is the line y � 2x.

• In three dimensions, Span{ i } is the x-axis, Span{ j } is the y-axis, and Span{k } is the
z-axis.

• Also in three dimensions, Span
{
(1, 1, 1)

}
is the line (x , y , z) � (t , t , t), which lies evenly

between the three axes.

• In four dimensions, Span
{
(0, 1, 0, 1)

}
is a line through the origin on the x2x4-plane that

makes a 45◦ angle with both the x2 and x4 axes.

Incidentally, there is one exception to the rule that the span of a single vector is a line.
Specifically, the only scalar multiple of the zero vector 0 � (0, 0, . . . , 0) is 0 itself, and therefore
Span{0 } is just the origin.
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d Figure 2: The span of two vectors v and
w is a plane. Points inside the
parallelograms can be obtained using linear
combinations with non-integer coefficients.

EXAMPLE 2

If v and w are vectors in Rn that point in two different directions, the span of v and w is the
plane through the origin that contains them both, as shown in Figure 3. This subspace is

a Figure 3: The span of a two vectors v
and w in R3.

defined by the parametric equation

(x1 , x2 , . . . , xn ) � s v + t w.

Figure 2 shows how the different linear combinations of v and w fill a plane.
Some specific examples of planes spanned by two vectors include:

• In three dimensions, Span{ i, j } is the x y-plane, Span{ i, k } is the xz-plane, and Span{ j, k }
is the yz-plane.

• Also in three dimensions, Span
{
(1, 0, 0), (0, 1, 1)

}
is the plane y � z, which is given by

the parametric equation
(x , y , z) � (s , t , t).

Geometrically, this plane contains the x-axis and makes 45◦ angles with both the y and
z axes.

• The x2x4-plane in R4 can be described as Span{e2 , e4}, where e2 � (0, 1, 0, 0) and
e4 � (0, 0, 0, 1) are the standard basis vectors.

• In two dimensions, Span{ i, j } is the entire plane R2. More generally, if v and w are any
two vectors in R2 that are not scalar multiples of one another, then Span{v,w} � R2.

Incidentally, it is not always true that the span of two vectors is a plane. If v and w are scalar
multiples of one another, then Span{v,w} will just be a line, namely the line of all scalar
multiples of v (or w).

EXAMPLE 3

Determine whether the vector (4,−1, 7) lies in the span of (1, 2, 1) and (2, 1, 3).

SOLUTION The question is whether (4,−1, 7) is a linear combination of these two vectors.
That is, we want to find values of s and t so that

s



1
2
1


+ t



2
1
3


�



4
−1

7


.
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This is equivalent to three equations involving s and t:

s + 2t � 4, 2s + t � −1, s + 3t � 7.

Solving the first two equations for s and t gives s � −2 and t � 3. This works in the third
equation also, and therefore (4,−1, 7) does lie in the span of these two vectors:

−2



1
2
1


+ 3



2
1
3


�



4
−1

7


.

Points and Parallel Vectors
As we have seen, every subspace of Rn can be described as the span of a set of vectors.
That is, every subspace can be defined by a parametric equation of the form

(x1 , x2 , . . . , xn ) � t1v1 + t2v2 + · · · + tnvn

Where v1 , v2 , . . . , vn are vectors parallel to the flat.
However, the vectors v1 , v2 , . . . , vn can also be viewed as points on the subspace.

For example, in the case of a two-dimensional subspace

(x1 , x2 , . . . , xn ) � sv + tw

the point v corresponds to s � 1 and t � 0, while the point w corresponds to s � 0
and t � 1. For a k-dimensional subspace

(x1 , x2 , . . . , xn ) � t1v1 + t2v2 + · · · + tnvn

each point vi can be obtained by substituting 1 for ti and 0 for all of the other parameters.
This identification between points and parallel vectors is always true for subspaces.

The points on a subspace are the same as the vectors parallel to the subspace.

That is, a point v lies on a given subspace if and only if the vector v is parallel to the
subspace.

This principle is illustrated in Figure 4. In this figure, v and w are two vectors

a Figure 4: Vectors v and w parallel to a
subspace and the associated points.

parallel to a subspace, which we have drawn as emanating from the origin 0. Then the
other endpoints of these arrows are the points v and w, so these points must lie on
the subspace. Conversely, if v and w are points on a subspace, then the corresponding
radial vectors v and w must be parallel to the subspace.

The identification between points and parallel vectors gives us a new interpretation
of the span:

The span of vectors v1 , v2 , . . . , vk is the smallest flat that goes through the points
v1 , v2 , . . . , vk and the origin.

For example, if v is a nonzero vector, then Span{v} can be thought of as the line that
goes through the point v and the origin, as shown in Figure 5. Similarly, if v, and w are

a Figure 5: The span of a single point v
in R2.

nonzero vectors, then Span{v,w} can be thought of as the plane that goes through the
points v and w as well as the origin, as shown in Figure 6.
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EXAMPLE 4

Find two vectors v,w in R3 whose span is the plane 3x − 2y + z � 0.

a Figure 6: The span of two points v,w
in R3.

SOLUTION All we need are two points v and w that lie on this plane. For example,

v � (1, 0,−3) and w � (0, 1, 2)

suffice. Note that these vectors are not scalar multiples of one another, so the span is indeed
the whole plane 3x − 2y + z � 0 as opposed to a line.

Properties of Subspaces
Because of the identification between points and parallel vectors, the points on a
subspace have certain fundamental properties.

Though it may not be obvious, these two
properties actually characterize
subspaces. That is, if S is a (nonempty)
set of points in Rn that have these two
properties, then S must be a subspace
of Rn .

Properties of Subspaces
Let S be a subspace of Rn .

1. For any points v,w on S, the sum v + w also lies on S.

2. For any point v on S and any scalar k, the point kv also lies on S.

It follows from these properties than any linear combination of points on a subspace
again lies on the subspace.

EXAMPLE 5

The equation
x + y + z � 0

defines a two-dimensional subspace of R3, i.e. a plane through the origin.

Algebraically, the reason that this plane
goes through the origin is that constant
term of the equation is zero. A linear
equation with this property is said to be
homogeneous. Because this is a subspace, any scalar multiple of a point on this plane again lies on the

plane. For example, (2,−1,−1) lies on this plane, and

3 (2,−1,−1) � (6,−3,−3),

so (6,−3,−3) also lies on this plane.
Similarly, the sum of any two points on this plane will always be another point on this

plane. For example, (2,−1,−1) and (2, 3,−5) both lie on this plane, and

(2,−1,−1) + (2, 3,−5) � (4, 2,−6)

so (4, 2,−6) also lies on this plane.
Indeed, any linear combination of points on this plane will again lie on this plane. For

example, the point
5 (2,−1,−1) + 7 (2, 3,−5) � (24, 16,−40)

also lies on this plane.
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EXERCISES

1. Which of the planes

x + y − z � 3, x + 3z � 1, and x − 2y + 7z � 0

is a subspace of R3?

2. Let L be the line in R2 that goes through the points (1, 3) and (2, 6). Is L is a
subspace of R2? Explain.

3. Find the point at which the line Span
{
(3, 2, 1)

}
intersects the plane x + y + z � 24.

4. Does the point (2, 1, 4) lie on the plane Span
{
(6, 3, 8), (4, 2, 5)

}
? Explain.

5. The span of the vectors (3, 1, 2) and (2,−1, 0) is a plane in R3. Find a Cartesian
equation for this plane.

6. (a) Is the span of the vectors (4,−6, 2,−4) and (−6, 9,−3, 6) a line or a plane in R4?
Explain.

(b) Is the span of the vectors (3, 1, 4, 2, 3) and (6, 2, 8, 4, 2) a line or a plane in R5?
Explain.

7. Suppose that S is a three-dimensional subspace of R5 that contains the points
(1, 2, 0, 0, 0) and (0, 0, 0, 1, 1). Must S contain the point (3, 6, 0, 4, 4)? Explain.

8–13 Determine whether the vector w is in Span{u, v}. Try to solve these problems
without writing anything down.

8. u �



1
1
0


, v �



0
0
1


, w �



2
2
7


9. u �



2
1
0


, v �



1
2
0


, w �



3
4
5



10. u �



1
1
0


, v �



1
1
1


, w �



0
3
0


11. u �



1
1
1


, v �



0
1
0


, w �



2
6
2



12. u �



1
2
3


, v �



2
4
6


, w �



5
10
10


13. u �



1
0
2


, v �



0
1
3


, w �



2
1
7



14–17 Try to solve the given geometry problem without writing anything down.

14. Find the point on the plane Span
{
(1, 0, 0), (0, 1, 0)

}
closest to the point (5, 7, 2).

15. Find the distance from the point (3, 0, 8) to the line Span
{
(0, 0, 1)

}
.

16. Find the point at which Span
{
(1, 1, 1)

}
intersects the line (x , y , z) � (3, 6 − t , t).

17. Find the point at which Span
{
(2, 1, 7)

}
intersects the plane 5x − 2y + 3z � 0.
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As we have seen, the span of one vector in Rn is usually a line, the span of two vectors
in Rn is usually a plane, and so forth. In general, the span of k vectors in Rn is usually
a k-dimensional subspace.

Sometimes, though, the dimension of a span is less than you would expect. For
example, the span of the two vectors

(1, 0, 0) and (2, 0, 0)

is just the x-axis in R3. The problem is that both of these vectors lie on the x-axis, which
is a 1-dimensional subspace, and therefore any linear combination of these vectors also
lies on the x-axis.

The same thing can happen with three vectors. For example, the span of the three
vectors

(0, 2, 1), (0, 1, 3), and (0,−1, 1)

is just the yz-plane inR3. Again, the problem is that all three vectors lie on the yz-plane,
so any linear combination of them also lies on this plane.

Linear Dependence
We say that k vectors v1 , v2 , . . . , vk are linearly dependent if they all lie on a common
subspace of dimension less than k.

Thus two vectors are linearly dependent if they lie on a common line through the
origin, and three vectors are linearly dependent if they lie on a common line or plane
through the origin, as shown in Figure 1.

a Figure 1: Three linearly dependent
vectors in R3.

The opposite of linear dependence is linear independence. We say that vectors
v1 , v2 , . . . , vk are linearly independent if the smallest subspace that contains them has
dimension k, i.e. if the span of the vectors is k-dimensional.

EXAMPLE 1

Determine whether the given vectors are linearly dependent or linearly independent.

(a)
[

1
2

]
,

[
3
6

]
(b)

[
1
−1

]
,

[
0
1

]
(c)



1
1
2


,



3
3
−1


,



0
0
2


(d)



1
1
0


,



1
−1

0


,



1
1
1



SOLUTION

(a) Both of these vectors lie on the line y � 2x, so they are linearly dependent .

(b) These vectors lie on different lines through the origin (namely y � −x and the y-axis),
so they are linearly independent .

(c) All three of these vectors lie on the plane x � y in R3 (which goes through the origin),
so they are linearly dependent .

(d) The first two vectors lie on the x y-plane, but the third does not, so there is no
plane through the origin that contains all three vectors. Thus these vectors are
linearly independent .
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By the way, since Rn is n-dimensional, we can have at most n linearly independent
vectors in Rn .

More than n vectors in Rn are always linearly dependent.

For example, the vectors (2, 1), (1, 3), and (1,−1) in R2 are linearly dependent since
they all lie in the same plane, namely R2 itself.

The Algebra of Linear Dependence
In most examples, it is not immediately obvious what the geometric relationship is
between vectors we are given. In this case, we must use algebra to check whether the
vectors are linearly independent or linearly dependent.

For two vectors this is quite easy.

Any collection of vectors that includes the
zero vector must be linearly dependent.

Linear Dependence for Two Vectors
Two vectors are linearly dependent if and only if

1. One of them is the zero vector, or

2. The two vectors are scalar multiples of one another.

For example, the vectors (4,−6, 2) and (−6, 9,−3) are linearly dependent since


−6
9
−3


� −

3
2



4
−6

2


.

It is more difficult to check whether three vectors are linearly independent.

Linear Dependence for Three Vectors
Three vectors u, v,w are linearly dependent if and only if either

1. u and v are linearly dependent, or

2. w is a linear combination of u and v.

Equivalently, three vectors u, v,w are linearly independent if and only if

1. u and v are linearly independent, and

2. w is not a linear combination of u and v.

The idea here is that Span{u, v} must be a plane if u and v are linearly independent.
If w is not a linear combination of u and v, then w does not lie on this plane, and
therefore Span{u, v,w} is three-dimensional.

EXAMPLE 2

Determine whether the vectors

u �



2
8
3


, v �



1
5
2


, w �



1
1
0


.

are linearly independent or linearly dependent.
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SOLUTION Clearly u and v are linearly independent. Thus the only question is whether w a
linear combination of u and v. The equation

s


2
8
3


+ t



1
5
2


�



1
1
0



yields the system of equations

2s + t � 1, 8s + 5t � 1, 3s + 2t � 0.

This has s � 2 and t � −3 as a solution. We conclude that w � 2u − 3v, i.e.



1
1
0


� 2



2
8
3


− 3



1
5
2


,

so these three vectors are linearly dependent .

We can generalize this test to more than three vectors as follows.

Of course, the order of the vectors is
arbitrary, so v1 , v2 , . . . , vk are linearly
dependent whenever one of them is a
linear combination of the others.

Linear Dependence for k Vectors
Vectors v1 , v2 , . . . , vk are linearly dependent if and only if

1. One of them is the zero vector, or

2. One of them is a linear combination of the previous vectors.

EXAMPLE 3

Determine whether the vectors

v1 �



1
0
0
0
0



, v2 �



0
1
1
0
0



, v3 �



1
2
3
0
0



, v4 �



4
5
2
0
2



are linearly independent or linearly dependent.

SOLUTION None of these is the zero vector, and clearly v2 is not a multiple of v1. This means
that Span{v1 , v2} is a plane. Moreover, v3 cannot be a linear combination of v1 and v2, since

sv1 + tv2 � (s , t , t , 0, 0)

and v3 is not of this form. Therefore Span{v1 , v2 , v3} is three-dimensional.
Finally, v4 cannot be a linear combination of v1, v2, and v3 since its last coordinate

is nonzero. Then Span{v1 , v2 , v3 , v4} must be four-dimensional, so the four vectors are
linearly independent .
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EXERCISES

1. Are the vectors


1
0
2


,


3
0
1


, and



−1
0
1


linearly dependent or linearly independent?

Explain.

2. Are the vectors
[

1
4

]
,
[

3
2

]
, and

[
5
1

]
linearly dependent or linearly independent?

Explain.

3. Which of the following pairs of vectors are linearly independent?



1
1
2


,



3
3
6





0
0
0


,



1
2
3





0
4
−8


,



0
−3

6





1
0
2


,



2
0
1



4–7 Determine whether the given vectors are linearly dependent or linearly inde-
pendent.

4.


4
5
1


,



3
7
2


,



9
8
1


5.



2
4
3


,



1
3
4


,



1
5
6



6.



1
1
0
1



,



1
2
0
0



,



0
1
1
0



,



7
8
−2

4



7.


3
1
0


,



2
4
5


,



1
1
2


,



1
0
4



8–11 Determine whether the span of the given vectors is a line, a plane, or a
hyperplane.

8.



3
−1

2
−1



,



6
−2
−4

2



9.



1
1
0
0



,



0
0
1
2



,



4
4
3
6



10.



2
4
0
2



,



3
6
0
3



,



4
8
0
4



11.



1
2
0
0



,



0
0
1
0



,



0
1
0
1



12. Are the following vectors linearly dependent or linearly independent? Explain.



1
0
0
1
0
0



,



0
1
1
0
0
0



,



0
0
0
1
1
0



,



1
0
0
2
1
0



,



0
1
1
2
2
1


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