
11.1 Linear Systems

Recall that a linear equation is any equation of the form

a1x1 + a2x2 + · · · + an xn � b

where x1 , x2 , . . . , xn are variables and a1 , a2 , . . . , an and b are constants. A linear
system is a system of linear equations, i.e. a collection of linear equations involving the
same variables. For example,

5x + 3y − 4z � 15

4x − 8y + 5z � 18

is a linear system. Specifically, this is a 2 × 3 system, meaning that it involves 2 equationsHere 2 × 3 is pronounced “two-by-three”.
and 3 variables.

A solution to a linear system is an assignment of values to the variables that makes
all of the equations true. For example, x � 4, y � 1, z � 2 is a solution to the 2 × 3
system above, since substituting these values in for the variables makes both equations
true. We can think of this solution as an ordered triple (4, 1, 2), i.e. a point in R3.

The set of all possible solutions to a linear system is called its solution set. For a
linear system with n variables, the solution set is a set of points in Rn . For example, the
solution set for the 2 × 3 linear system above is a line in R3.

2 × 2 Systems
For a linear system in two variables, each equation represents a line in R2. Thus a 2 × 2

a Figure 1: A 2 × 2 system consists of two
lines in R2.

system such as
x + 4y � 11

2x − 3y � 0

represents two lines in R2, as shown in Figure 1. There is only one solution to this
system, namely the point (3, 2), since this is the only point that lies on both of the lines.
This behavior is typical: a 2 × 2 system usually has exactly one solution.

There are exceptions to this rule. For example, the system

a Figure 2: A 2 × 2 system has no solution
if the lines are parallel.

x + 2y � 1
2x + 4y � 5

has no solutions, for multiplying the first equation through by 2 gives 2x + 4y � 2,
which contradicts the second equation. Geometrically, these two equations correspond
to parallel lines in R2, as shown in Figure 2.

Let’s see what happens if we try to solve the system in the usual way. Solving for x
in the first equation gives

x � 1 − 2y

and plugging this into the second equation gives

2(1 − 2y) + 4y � 5.

The y terms on the left side cancel, leaving the contradictory equation 2 � 5, which
indicates the contradiction in the original linear system.
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3 × 2 Systems
Now consider a 3 × 2 system such as

a Figure 3: A 3 × 2 system consists of
three lines in R2.

x + 4y � 16
3x − 4y � 0
6x + 2y � 16

This system corresponds to three lines in R2, as shown in Figure 3. Because there aren’t
any points that lie on all three lines, this system has no solutions at all! Again, this
behavior is typical: a 3 × 2 system usually has no solutions.

Of course, it is possible for a 3× 2 system to have a solution, if all three lines happen
to go through the same point. For example, if we change the equation 6x + 2y � 11
to 6x + 2y � 30, then all three lines go through the point (4, 3), as shown in Figure 4.
Thus the 3 × 2 system

a Figure 4: A 3 × 2 system has a solution
when all three lines go through a single
point.

x + 4y � 16
3x − 4y � 0
6x + 2y � 30

has exactly one solution, namely the point (4, 3).
In general, the easiest way to check whether a 3 × 2 system has a solution is to find

the intersection point of the first two lines, and then check whether this point also lies
in the third line. If it does, then the point is a solution to the system. If it doesn’t, then
the system has no solutions.

EXAMPLE 1

Determine whether the following 3 × 2 system has a solution:

5x + 2y � 18
3x − 4y � 16
2x + 3y � 9

SOLUTION The first two equations form a 2 × 2 system:

5x + 2y � 18
3x − 4y � 16

Solving this system in the usual way, we find that x � 4 and y � −1. Plugging this into the
third equation gives

2(4) + 3(−1) � 9,

which isn’t true, so this system doesn’t have a solution.

Linear Systems in R3

For a linear system with three variables, each linear equation represents a plane in R3.
Thus a 3 × 3 system such as

x + 9y − z � 27

11x − 5z � 12

2x + y + 15z � 37
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corresponds to three planes in R3, as shown in Figure 5. There is only one point that
lies on all three planes, namely (2, 3, 2), and this is the unique solution to the system.
Again, this behavior is typical: a 3 × 3 system usually has exactly one solution, since
three planes in R3 typically intersect at a single point.

a Figure 5: A 3 × 3 system consists of
three planes in R3.

As with the two-variable case, a three-variable system with extra equations usually
has no solution. For example, a 4 × 3 system usually doesn’t have a solution, since
four planes in R3 typically don’t have a point in common. Of course, it is possible for a
4 × 3 system to have a solution, if the fourth plane happens to go through the point of
intersection of the first three planes.

Finally, something interesting happens if we have fewer than three equations. For

a Figure 6: A 2 × 3 system consists of two
planes in R3.

example, the 2 × 3 system

x + 9y − z � 27

11x − 5z � 12

consists of two planes in R3, as shown in Figure 6. These two planes intersect along a
line, and every point on this line is a solution to the system. In general, a 2 × 3 system
usually has infinitely many solutions, since two planes in R3 typically intersect along
a line. Of course, this doesn’t happen when the two planes are parallel, in which case
the system has no solutions.

Linear Systems in Rn

In applications of mathematics, linear systems often have a very large number of
variables. For example, the PageRank algorithm, which is used by Google to order
search engine results, involves a system of linear equations with tens of billions of
variables. One of the primary goals of linear algebra is to understand the behavior of
such large systems and to develop feasible methods for solving them.

Here is an example of a 4 × 6 linear system:

−x1 + 4x2 − 7x3 + 3x4 − 9x5 + 2x6 � 3

−4x1 + 3x2 + 5x3 + x4 − 8x5 − 9x6 � 12

x1 − 3x2 − 9x4 + 6x5 + 8x6 � −47

7x1 + 9x2 − 7x3 − x4 − 4x5 + 2x6 � 11

Here the variables are x1, x2, x3, x4, x5, and x6. To increase readability, we have aligned
the terms of the equations into columns, with one column on the left for each variable,
and a final column on the right for the constant terms.

In general, each linear equation in n variables defines a hyperplane in Rn , i.e. a
flat of dimension n − 1. For example, a linear equation in six variables defines a
hyperplane in R6, which is a five-dimensional flat. The solution set to a linear system is
the intersection of all of the corresponding hyperplanes.

Certain features of linear systems that we have observed for two and three variables
carry over to the general case.

Number of Solutions to a Linear System
A linear system always has either

1. No solutions,

2. One solution, or

3. Infinitely many solutions.
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The number of solutions is usually determined by the number of equations.

Types of Linear Systems

1. A linear system with fewer equations than variables is called underdetermined.
Such a system usually has infinitely many different solutions.

2. A linear system with the same number of equations as variables is called square.
Such a system usually has exactly one solution.

3. A linear system with more equations than variables is called overdetermined.
Such a system usually has no solutions.

EXERCISES

1–4 Determine whether the given linear system has no solutions, one solution, or
infinitely many solutions.

1. 4x + 6y � 5
6x + 9y � 8

2. 2x − 3y � 1
3x − 4y � 3

3. 3x + 2y − 4z � 5
2x − 3y + 5z � 8

4. x + 2y − 3z � 4
2x + 4y − 6z � 5

5. For what value of a does the following linear system have a solution?

2x + 3y � 11
x + 4y � 8

3x − 2y � a

6. For what value of a does the following linear system have no solutions?

3x + 2y + 4z � 7
6x + 4y + az � 3



11.2 Row Reduction

In this section, we will learn a method called row reduction that can be used to solve
linear systems.

Augmented Matrices
Before discussing row reduction, we need to introduce a new way of representing
linear systems. When we write a linear system such as

−x1 + 4x2 − 7x3 + 3x4 − 9x5 + 2x6 � 3

−4x1 + 3x2 + 5x3 + x4 − 8x5 − 9x6 � 12

x1 − 3x2 − 9x4 + 6x5 + 8x6 � −47

7x1 + 9x2 − 7x3 − x4 − 4x5 + 2x6 � 11

it’s only the numbers that are really important for specifying the system. As long
as we know what variables are being used, it isn’t really necessary to write them in
each equation. For this reason, it is common to specify a linear system by putting the
coefficients and constant terms into a augmented matrix, i.e.



−1 4 −7 3 −9 2 3

−4 3 5 1 −8 −9 12

1 −3 0 −9 6 8 −47

7 9 −7 −1 −4 2 11


Here “augmented” means that this matrix has two parts, separated by a vertical line.
The coefficients of the linear system appear to the left of the line, and the constant
terms are on the right.

From now on, we will almost always use augmented matrices for writing linear
systems. In particular, row reduction involves manipulating a system of equations
using certain operations, and we will be keeping our equations in matrix form during
these manipulations.

Elementary Row Operations
The method of row reduction involves simplifying a linear system using three “moves”
known as elementary row operations.

Elementary Row Operations
1. Switch two rows of a matrix.

2. Multiply a row of a matrix by a nonzero scalar.

3. Add a scalar multiple of one row of a matrix to another row.

The important thing about these three operations is that none of them changes the
solution set to a linear system. In general, two linear systems are said to be equivalent
if they have the same solution sets. Given a linear system, the idea of row reduction is
to use these three row operations to find an equivalent linear system that is simpler
than the original.

We now discuss each of the three operations individually.
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1. Switch two rows of a matrix.
In the following example, we switch the second and third rows of a matrix:



3 4 7 2
5 8 6 9
2 4 3 1


→



3 4 7 2
2 4 3 1
5 8 6 9



Switching two rows has very little effect on the corresponding linear system.
Indeed, all we have done is switch the order in which the second and third
equations are listed:

3x + 4y + 7z � 2

5x + 8y + 6z � 9

2x + 4y + 3z � 1

→

3x + 4y + 7z � 2

2x + 4y + 3z � 1

5x + 8y + 6z � 9

Clearly we can use this operation whenever we like without affecting the solutions
to a linear system.

2. Multiply a row of a matrix by a nonzero scalar.
In the following example, we multiply the third row of a matrix by 2:



3 4 7 2
5 8 6 9
2 4 3 1


→



3 4 7 2
5 8 6 9
4 8 6 2



This corresponds to multiplying both sides of the third equation by 2:

2x + 4y + 3z � 1 → 4x + 8y + 6z � 2

Since these two equations are equivalent, this operation does not affect the
solution set of the linear system.

Incidentally, when performing row reduction, it is much more common to
divide a row by a nonzero scalar. For example, we might divide the first row of a
matrix by 3: [

3 9 6
2 7 4

]
→

[
1 3 2
2 7 4

]

This is a valid row operation, since it is the same as multiplying the first row
by 1/3.

3. Add a multiple of one row of a matrix to another.
In the following example, we add 2 times the third row of a matrix to the first
row:



3 1 2 4
9 5 7 6
2 4 3 1


→



7 9 8 6
9 5 7 6
2 4 3 1


Note that the new first equation follows from the original equations, since

7x + 9y + 8z � (3x + y + 2z) + 2(2x + 4y + 3z) � 4 + 2(1) � 6.

Note also that this operation is reversible, since we can change the new matrix
back to the original matrix by adding −2 times the third row to the first row. That
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is, the original first equation follows from the new first equation and the third
equation:

3x + y + 2z � (7x + 9y + 8z) − 2(2x + 4y + 3z) � 6 − 2(1) � 4.

Since each equation in the new matrix follows from the equations of the old
matrix and vice-versa, the two linear systems must have the same solution set.

Gaussian Elimination
The idea of row reduction is to use elementary row operations to simplify a linear
system until its solutions become apparent. Here is a simple example of this method:

[
1 3 5
2 7 11

]
→

[
1 3 5
0 1 1

]
→

[
1 0 2
0 1 1

]

Starting with the matrix on the left, we first add −2 times the first row to the second
row, resulting in the matrix in the middle. We then add −3 times the second row to the
first row, which yields the matrix on the right. The rightmost matrix corresponds to
the system of equations

1x + 0y � 2

0x + 1y � 1
i.e.

x � 2

y � 1

Thus we have solved the given linear system by performing two row operations.
In general, the goal of row reduction is to put a matrix into a reduced echelon form

such as
The word echelon is a military term that
refers to certain diagonal formations of
troops, ships, or aircraft. Here the 1’s
form an “echelon” across the diagonal of
the matrix.

[
1 0 5
0 1 7

]
or



1 0 0 8
0 1 0 1
0 0 1 5


Though any row operations are allowed, there is a certain method called Gaussian
elimination that will reliably put a matrix into reduced form. The following example
illustrates Gaussian elimination for a 2 × 2 system.

EXAMPLE 1

Use row reduction to solve the following linear system:

3x − 3y � 9

2x − 3y � 2

SOLUTION The matrix form for this system is



3 −3 9
2 −3 2


The first step in Gaussian elimination is to obtain a 1 in the upper-left position. In this case,
we can make a 1 by multiplying the first row through by 1/3



3 −3 9
2 −3 2


→



1 −1 3
2 −3 2


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This 1 is called a pivot. Now that we have a pivot, we can use it to make the other numbers in
the same column into 0’s. In this case, we can make the 2 below the pivot into a 0 by adding
−2 times the first row to the second row:



1 −1 3
2 −3 2


→



1 −1 3
0 −1 −4


Next we want a pivot for the second column, which we can obtain by multiplying the second
row by −1:



1 −1 3
0 −1 −4


→



1 −1 3
0 1 4


Again, we can use the pivot to clear the other numbers in the same column. Specifically, we
can add the second row to the first row to make a 0 above the new pivot:



1 −1 3
0 1 4


→



1 0 7
0 1 4


This matrix is now in reduced form, and the solution is (x , y) � (7, 4).

The main steps of Gaussian elimination are:

1. Make a pivot. This should be in the upper-left position for the first pivot, and
otherwise should be one step down and to the right of the previous pivot.

2. Use the pivot to make the rest of the numbers in the same column into 0’s.

These steps are repeated until the matrix is in reduced form.

EXAMPLE 2

Use row reduction to solve the following linear system:

2x − 8y + 6z � 2

−3x + 16y − 5z � −7

−3x + 15y − 9z � −12

SOLUTION Here are the nine row operations necessary to solve this linear system. The
explanations for the steps are on the left.Step 1. We multiply the first row by 1/2

to create a pivot in the upper left.

Steps 2–3. We clear the other numbers
in the first column by adding
3 times the first row to both the
second and third rows.

Step 4. We multiply the second row
by 1/4 to create a second pivot.

Steps 5–6. We clear the other numbers
in the second column. This
involves adding 4 times the
second row to the first row, and
adding −3 times the second row
to the third row.

Step 7. We multiply the third row
by −1/3 to create a third pivot.

Steps 8–9. We clear the other numbers
in the third column, adding −7
times the third row to the first row
and −1 times the third row to the
second row.



2 −8 6 2
−3 16 −5 −7
−3 15 −9 −12



1©
−−−→



1 −4 3 1
−3 16 −5 −7
−3 15 −9 −12



2©
−−−→



1 −4 3 1
0 4 4 −4
−3 15 −9 −12



3©
−−−→



1 −4 3 1
0 4 4 −4
0 3 0 −9



4©
−−−→



1 −4 3 1
0 1 1 −1
0 3 0 −9



5©
−−−→



1 0 7 −3
0 1 1 −1
0 3 0 −9



6©
−−−→



1 0 7 −3
0 1 1 −1
0 0 −3 −6



7©
−−−→



1 0 7 −3
0 1 1 −1
0 0 1 2



8©
−−−→



1 0 0 −17
0 1 1 −1
0 0 1 2



9©
−−−→



1 0 0 −17
0 1 0 −3
0 0 1 2


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The final matrix corresponds to the linear system x � −17, y � −3, z � 2, so the solution
is (−17,−3, 2).

Finally, one complication that sometimes arises during Gaussian elimination is that
a matrix has a 0 in a position that we would like to place a pivot. For example, the
matrix [

0 −3 3
−2 −8 4

]

has a 0 in the upper-left, which interferes with putting a pivot in this position. When
this happens, the solution is to switch the problematic row with a later row. For the
matrix above, we would switch the first row with the second row and then continue
the row reduction:

[
0 −3 3
−2 −8 4

]
→

[
−2 −8 4

0 −3 3

]
→

[
1 4 −2
0 −3 3

]

→

[
1 4 −2
0 1 −1

]
→

[
1 0 2
0 1 −1

]

This complication can also arise in the middle of larger row reductions.

EXAMPLE 3

Use row reduction to solve the following linear system:

2x − 6y − 6z � −8

x − 3y − 6z � 8

−x + 2y + 2z � 6

SOLUTION Here are the first few steps of the row reduction:



2 −6 −6 −8
1 −3 −6 8
−1 2 2 6


→



1 −3 −3 −4
1 −3 −6 8
−1 2 2 6



→



1 −3 −3 −4
0 0 −3 12
−1 2 2 6


→



1 −3 −3 −4
0 0 −3 12
0 −1 −1 2



As you can see, there is a 0 in the spot where we would like our next pivot. We can fix this by
switching the second and third row, and then continuing the row reduction as usual:



1 −3 −3 −4
0 0 −3 12
0 −1 −1 2


→



1 −3 −3 −4
0 −1 −1 2
0 0 −3 12


→



1 −3 −3 −4
0 1 1 −2
0 0 −3 12



→



1 0 0 −10
0 1 1 −2
0 0 −3 12


→



1 0 0 −10
0 1 1 −2
0 0 1 −4


→



1 0 0 −10
0 1 0 2
0 0 1 −4


Thus the solution is (−10, 2,−4).
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EXERCISES

1–2 Write the matrix that corresponds to the given linear system.

1. y + z � 5

2z − x � 3

3y − 2x � 1

2. x3 + x5 � 1

x1 − x2 + x3 � 2

x4 � 3

−x1 + 3x4 � 0

3–5 Use row reduction to solve the given linear system.

3. −2x − 6y � −2

4x + 15y � −2

4. −3x − 6y + 6z � 3

x + 4y − 4z � 3

3x + 8y − 7z � 4

5. x1 − 4x2 − 3x3 + 3x4 � 1

−2x1 + 7x2 + 3x3 − 6x4 � 0

−x1 + 6x2 + 6x3 + 3x4 � 1

−2x1 + 7x2 + 5x3 − 11x4 � −5

6–9 Row reduce the given matrix.

6.


2 6 8

2 4 7


7.



0 4 8

3 6 −3



8.



2 8 2 0

0 2 8 −8

−2 −10 −11 8



9.



1 4 3 2

2 8 5 8

1 5 0 4





11.3 No Solutions

Linear systems sometimes have no solutions at all. For example, the system

2x + 4y � 10

3x + 6y � 17

has no solution, since the corresponding lines are parallel in R2. Algebraically, if
2x + 4y � 10, then 3x + 6y must be 15, not 17.A system of equations with no solutions

is sometimes said to be inconsistent. Here are the first few steps of the row reduction for the above system:
[

2 4 10
3 6 17

]
→

[
1 2 5
3 6 17

]
→

[
1 2 5
0 0 2

]

At this point, the equation corresponding to the second row is

0x + 0y � 2

or more succinctly
0 � 2

which is a contradiction.
In general, a row whose coefficients are all zero but whose constant term is

nonzero indicates a contradiction. If such a row arises during a row reduction, it
means that the original linear system had no solutions.

3 × 3 Systems with No Solutions
It is easy to see when a 2 × 2 system has no solutions, since the two lines must be

a Figure 1: Three planes that do not
intersect at a common point.

parallel. For a 3 × 3 system, though, a contradiction can be much less obvious, and
can involve all three of the equations. Geometrically, this corresponds to the situation
shown in Figure 1. The three planes in this figure have no point in common, even
though no two of the planes are parallel.

An example of this phenomenon is the system

2x + 4y + 4z � 2

3x + 4y + 2z � 5

5x + 8y + 6z � 4

Even though no two of these planes are parallel, this 3× 3 system has no solutions. The
reason is that the sum of the first two equations is

5x + 8y + 6z � 7

which contradicts the third equation.
More generally, a 3×3 system will have no solutions if the third equation contradicts

any linear combination of the first two. For example, the linear system

2x + 6y − 4z � 2

x − 5y + 5z � 5

7x − 3y + 7z � 6

has no solutions, and the reason is that two times the first equation plus three times the
second equation is

7x − 3y + 7z � 19
which contradicts the third equation.
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The following example illustrates how to use row reduction to detect a contradiction
in a 3 × 3 system.

EXAMPLE 1

Solve the following linear system.

2x + 4y + 4z � 2

3x + 4y + 2z � 5

5x + 8y + 6z � 4

SOLUTION We row reduce the matrix in the usual way:



2 4 4 2
3 4 2 5
5 8 6 4


→



1 2 2 1
3 4 2 5
5 8 6 4


→



1 2 2 1
0 −2 −4 2
5 8 6 4



→



1 2 2 1
0 −2 −4 2
0 −2 −4 −1


→



1 2 2 1
0 1 2 −1
0 −2 −4 −1


→



1 2 2 1
0 1 2 −1
0 0 0 −3



We can stop the row reduction at this point, since the last row is a contradiction (0 � −3). This

Arguably the contradiction was clear
after the third row operation, since we
had obtained the equations −2y − 4z � 2
and −2y − 4z � −1. means that the original linear system had no solutions.

Overdetermined Systems
As we have seen, a linear system with more equations than unknowns usually has no
solutions. Again, the reason is always a contradiction in the original equations. For
example, the system

x + 3y � 2

2x + 3y � 1

5x + 9y � 3

has no solution, and the reason is that the first equation plus twice the second equation is

5x + 9y � 4

which contradicts the third equation. This contradiction can easily be detected using
row reduction:

The first step of this row reduction is
actually two row operations. Specifically,
we add −2 times the first row to the
second row, and we add −5 times the first
row to the third row.



1 3 2
2 3 1
5 9 3


→



1 3 2
0 −3 −3
0 −6 −7


→



1 3 2
0 1 1
0 −6 −7


→



1 3 2
0 1 1
0 0 −1


The third row is now the equation 0 � −1, which is a contradiction.

Of course, it’s possible for an overdetermined system to have a solution. For
example, the linear system

x + 3y � 2

2x + 3y � 1

5x + 9y � 4
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has (−1, 1) as a solution. In this case, the third equation is a consequence of the first two
equations. Specifically, the third equation is equal to the first equation plus twice the
second equation.

Here is the corresponding row reduction:

Again, the first and third steps of this row
reduction each consist of two row
operations. From now on, we will always
skip steps like this during row reduction.



1 3 2
2 3 1
5 9 4


→



1 3 2
0 −3 −3
0 −6 −6


→



1 3 2
0 1 1
0 −6 −6


→



1 0 −1
0 1 1
0 0 0



This time there is no contradiction in the third row, since the third equation is 0 � 0.
In general, a row of zeroes obtained during row reduction indicates that one of the
original equations was a consequence of the others. If such a row arises during a
row reduction, the proper procedure is to move it to the bottom of the matrix and
ignore it for the rest of the reduction.

EXERCISES

1–2 Use row reduction to solve the given linear system.

1. x + 2y + 3z � 4

2x + y + 9z � 8

x + 4y + z � 10

2. 3x + 12y � 6

5x + 11y � 1

7x + 10y � −4

3–8 Solve the linear system corresponding to the given matrix.

3.



1 3 5
4 8 8
1 7 9


4.



2 −4 10
−3 7 −9

1 −2 5
2 −5 4



5.



2 −6 4
−3 9 −6

2 −4 −2
−5 11 2

4 −9 −1



6.



−2 −6 8 4
−2 −8 8 8
−1 −7 7 13
−2 −7 4 6





11.4 Infinitely Many Solutions

Linear systems sometimes have infinitely many different solutions. For example, a
2 × 3 system such as

a Figure 1: This 2 × 3 system has infinitely
many solutions.

2x + 2y + 6z � 14

2x − y + 3z � 5

represents two planes in R3. Two planes usually intersect along a line, as shown in
Figure 1, and each point on this line is a solution to the linear system.

When a linear system has infinitely many solutions, it is possible to solve for some
of the variables in terms of the others. For example, in the 2 × 3 system above, it is
possible to solve for x and y in terms of z:

x � 4 − 2z and y � 3 − z.

In this case, we say that z is a free variable, meaning that it is free to take any valueOf course it would also be possible to
solve for x and z in terms of y, or for y
and z in terms of x. Thus, it is our choice
which of the three variables serves as a
free variable.

at all in a solution. Once the value of z is chosen, the two formulas above determine
the values of x and y. For example, if z � 0, then x � 4 and y � 3, which gives
the solution (4, 3, 0). Similarly, if z � 1, then x � 2 and y � 2, which gives the
solution (2, 2, 1).

We can use the free variable z to give a parametric equation for the solution set:



x
y
z


�



4 − 2t
3 − t

t


Since z is a free variable, we can set it equal to the parameter t and then give the
corresponding formulas for x and y. The result is a parametric equation for the line of
intersection of the two planes.

All of this depends on being able to solve for some of the variables in terms of
others. Fortunately, this is exactly what row reduction does for a system with infinitely
many solutions.

EXAMPLE 1

Find a parametric description of the solutions to the following linear system.

2x + 2y + 6z � 14

2x − y + 3z � 5

SOLUTION Here are the steps for row reducing the corresponding matrix:



2 2 6 14
2 −1 3 5


→



1 1 3 7
2 −1 3 5


→



1 1 3 7
0 −3 −3 −9



→



1 1 3 7
0 1 1 3


→



1 0 2 4
0 1 1 3


Note that there isn’t space for a third pivot, so this is as far as this matrix can be reduced. The
system of equations is now

x + 2z � 4 and y + z � 3

which we can write as
x � 4 − 2z and y � 3 − z.
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Thus the solution is


x
y
z


�



4 − 2t
3 − t

t


.

Multiple Free Variables
It is possible for a linear system to have more than one free variable. For example,
consider the 2 × 4 system

x1 + 3x2 − 4x3 + 4x4 � 4

x1 + 4x2 − 7x3 + 6x4 � 3

We row reduce the corresponding matrix:
[

1 3 −4 4 4
1 4 −7 6 3

]
→

[
1 3 −4 4 4
0 1 −3 2 −1

]
→

[
1 0 5 −2 7
0 1 −3 2 −1

]

This gives the equations

x1 + 5x3 − 2x4 � 7, x2 − 3x3 + 2x4 � −1.

Essentially we have solved for x1 and x2 in terms of x3 and x4. Indeed, we can rewriteEach column without a pivot in the
reduced matrix corresponds to a free
variable.

these equations as

x1 � 7 − 5x3 + 2x4 , x2 � −1 + 3x3 − 2x4.

The result is that both x3 and x4 are free variables. If we want to parameterize the
solution set, we need two parameters, with one for x3 and one for x4:

We always need one parameter for each
free variable. 

x1

x2

x3

x4



�



7 − 5s + 2t
−1 + 3s − 2t

s
t



.

Geometrically, this solution set is a plane in R4.
In general, the number of free variables in a linear system is usually equal to the

number of variables minus the number of equations. In this case, four variables and
two equations led to two free variables.

EXAMPLE 2

Find a parametric description of the solutions to the following linear system.

−2x1 + 2x2 − 6x3 + 8x4 − 8x5 � −2

−4x1 + x2 − 15x3 + 13x4 − 13x5 � 2
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SOLUTION This system has five variables and two equations, so we are expecting three free
variables. We row reduce the corresponding matrix:



−2 2 −6 8 −8 −2
−4 1 −15 13 −13 2


→



1 −1 3 −4 4 1
−4 1 −15 13 −13 2



→



1 −1 3 −4 2 1
0 −3 −3 −3 3 6


→



1 −1 3 −4 2 1
0 1 1 1 −1 −2



→



1 0 4 −3 1 −1
0 1 1 1 −1 −2


This gives us the equations

x1 + 4x3 − 3x4 + x5 � −1, x2 + x3 + x4 − x5 � −2.

As you can see, we have solved for x1 and x2 in terms of x3, x4, and x5. Thus the generalHere x3, x4, and x5 are free variables.
solution is

This solution set is a three-dimensional
flat in R5.



x1
x2
x3
x4
x5



�



−1 − 4s + 3t − u
−2 − s − t + u

s
t
u



.

Redundant Equations
A linear system can have more free variables than expected if one of the equations is a
consequence of the others. For example, consider the 3 × 3 system

x + 9y − z � 27

x − 8y + 16z � 10

2x + y + 15z � 37

Though a 3 × 3 system usually has a unique solution, in this system the third equation

a Figure 2: It is possible for three planes
to intersect along a line.

is a consequence of the first two. Specifically, the third equation here is simply the
sum of the first two equations. As a result, any solution to the first two equations is
also a solution to the third equation, so there is a whole line of solutions, as shown in
Figure 2.

Redundant equations lead to rows of zeroes during row reduction. For example,
here is what happens if we row reduce the matrix for the 3 × 3 system above:

The first and third steps here each consist
of two row operations.



1 9 −1 27
1 −8 16 10
2 1 15 37


→



1 9 −1 27
0 −17 17 −17
0 −17 17 −17



→



1 9 −1 27
0 1 −1 1
0 −17 17 −17


→



1 0 8 18
0 1 −1 1
0 0 0 0


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Because of the row of zeroes, only the first two columns have pivots, and therefore z is
a free variable. In fact, we have the equations

x + 8z � 18, y − z � 1

and thus


x
y
z


�



18 − 8t
1 + t

t


.

In general, a redundant equation in a linear system is an equation that is a consequence
of the previous equations. A linear system with redundant equations behaves as
though the extra equations weren’t there. For example, the 3 × 3 system above has one
redundant equation, so it behaves more like a 2 × 3 system, with one free variable and
a line of solutions.

Columns Without Pivots
When row reducing a matrix, it is sometimes not possible to create a pivot in a certain
column. For example, consider the following linear system:

x + 3y + 2z � 5

x + 3y + 3z � 7

This system should have one free variable, so we are expecting to be able to solve for x
and y in terms of z. However, we quickly run into trouble if we try to row reduce:

[
1 3 2 5
1 3 3 7

]
→

[
1 3 2 5
0 0 1 2

]

With a 0 in the desired position and no later rows to switch with, there is no way to
obtain a pivot immediately down and to the right of the first pivot.

The problem is that there is no way to solve these equations for x and y in terms
of z. Indeed, it follows from the original equations that z � 2, so z can’t play the role of
a free variable for this system.

The standard solution to this problem is to treat the 1 in the third column as a pivot:
[

1 3 2 5
0 0 1 2

]
→

[
1 3 0 1
0 0 1 2

]

This matrix is now considered reduced, and the corresponding equations are

x + 3y � 1, z � 2.

Now y is the free variable, with x � 1 − 3y, so the solution is



x
y
z


�



1 − 3t
t
2


.

As a general rule, if it is not possible to obtain a pivot in a certain column, simply
move on to the next column. After the row reduction is complete, whichever columns
don’t have pivots can serve as free variables for the resulting parametrization.
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EXAMPLE 3

Find a parametric description of the solutions to the following linear system.

−2x1 + 4x2 + 2x3 − 8x4 + 4x5 � −8

3x1 − 6x2 − 2x3 + 11x4 − 7x5 � 13

x1 − 2x2 − 5x3 + 8x4 + x5 � −3

SOLUTION Here are the step in row reducing the associated matrix. Both the second and
fourth columns present problems during the reduction, so we end up with pivots in the first,
third, and fifth columns:



−2 4 2 −8 4 −8
3 −6 −1 10 −8 14
1 −2 −5 8 1 −3



→



1 −2 −1 4 −2 4
3 −6 −1 10 −8 14
1 −2 −5 8 1 −3


→



1 −2 −1 4 −2 4
0 0 2 −2 −2 2
0 0 −4 4 3 −7



→



1 −2 −1 4 −2 4
0 0 1 −1 −1 1
0 0 −4 4 3 −7


→



1 −2 0 3 −3 5
0 0 1 −1 −1 1
0 0 0 0 −1 −3



→



1 −2 0 3 −3 5
0 0 1 −1 −1 1
0 0 0 0 1 3


→



1 −2 0 3 0 14
0 0 1 −1 0 4
0 0 0 0 1 3



The free variables are x2 and x4, since these are the columns without pivots, and we have the
equations

x1 − 2x2 + 3x4 � 14, x3 − x4 � 4, x5 � 3.

Thus the solution is

In this case, the solution set is a plane
in R5.



x1
x2
x3
x4
x5



�



14 + 2s − 3t
s

4 + t
t
3



.

EXERCISES

1–6 For each of the following reduced matrices, state which variables are free, and
find a parametric equation for the solution set to the corresponding linear system.

1.
[

1 0 4 0
0 1 1 3

]
2.

[
1 0 2 1 4
0 1 −1 0 2

]
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3.
[

1 0 0 −3 1 0
0 1 2 0 0 5

]
4.



1 0 0 −2 0 3
0 1 0 0 1 5
0 0 1 1 −3 0



5.
[

1 3 0 −2 8
0 0 1 4 5

]
6.



1 −1 2 0 −4 0 0
0 0 0 1 3 0 −1
0 0 0 0 0 1 3



7. Find a 2 × 4 linear system whose solution set is the plane



x1

x2

x3

x4



�



2 − s + 3t
s

1 − 4t
t



8. Find a parametric equation for the solution set to the following linear system:

2x + 6y − 2z � 6

−2x − 3y + 8z � −15

9. The planes x + 3y + 6z � 5 and 3x + 2y + 4z � 8 intersect along a line L. Find a
parametric equation for L.

10. Describe the solution set to the following linear system:

−3x + 3y − 6z � −6

−x + 3y + 2z � 4

−3x + 7y + 2z � 6

11. The hyperplanes

x1 + x2 + 2x3 − 3x4 + x5 � 4 and x1 + 2x2 + 2x3 − 6x4 + 3x5 � 8

intersect along a three-dimensional flat in R5. Find a parametric equation for this
flat.

12–13 Row reduce the given matrix, skipping over columns without pivots, and find
a parametric equation for the solution set to the corresponding linear system.

12.
[
−1 4 2 −1 −2

2 −8 −7 −4 7

]
13.



1 2 2 3 2
2 4 4 6 4
3 6 6 7 4


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