
12.1 Matrices

A matrix is any rectangular array of numbers. For example



3 0 −2 5
2 −1 6 −4
8 13 3 −2


is 3 × 4 matrix, i.e. a rectangular array of numbers with three rows and four columns.
We usually use capital letters for matrices, e.g. A, B, and C, with lowercase letters
reserved for scalars.

A vector is actually a special type of matrix, namely a matrix with only one column.
In particular, a vector from Rn is the same thing as an n × 1 matrix.

Multiplying a Matrix and a Vector
To multiply a matrix and a vector, we take the dot product of each row of the matrix
with the vector. For example,

[
3 1 2 5
1 4 3 7

]


2
3
1
2



�

[
21
31

]

Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of
(1, 4, 3, 7) with (2, 3, 1, 2).

Note that a matrix A can only be multiplied by a vector v if each row of A has the
same size as v. For example, we can only multiply a 5 × 8 matrix with a vector from R8,
and the resulting product will be a vector in R5.

In general, the product of an m × n matrix
with a vector from Rn is a vector in Rm .

Multiplying Matrices
There is an operation called matrix multiplication that generalizes the product of a
matrix and a vector. Given two matrices A and B, the product AB is the matrix obtained
by taking the dot product of each row of A with each column of B. For example, if A
and B are 2 × 2 matrices, then there are four dot products to compute:

[
7 1
5 2

] [
2 3
0 1

]
�

[
14

] [
7 1
5 2

] [
2 3
0 1

]
�

[
14 22

]

[
7 1
5 2

] [
2 3
0 1

]
�

[
14 22
10

] [
7 1
5 2

] [
2 3
0 1

]
�

[
14 22
10 17

]

This product only makes sense if the rows of A and the columns of B have the same
size. The result always has one row for each row of A and one column for each column
of B.

EXAMPLE 1

Compute AB if A �



7 5 2 2
3 1 1 0
1 6 3 0


and B �



0 3
2 2
2 4
1 0



.
Here A is a 3 × 4 matrix and B is 4 × 2
matrix, so AB will be a 3 × 2 matrix.
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SOLUTION We must take the dot product of each row of A with each column of B.



7 5 2 2
3 1 1 0
1 6 3 0





0 3
2 2
2 4
1 0



�



16 



7 5 2 2
3 1 1 0
1 6 3 0





0 3
2 2
2 4
1 0



�



16 39 



7 5 2 2
3 1 1 0
1 6 3 0





0 3
2 2
2 4
1 0



�



16 39
4





7 5 2 2
3 1 1 0
1 6 3 0





0 3
2 2
2 4
1 0



�



16 39
4 15





7 5 2 2
3 1 1 0
1 6 3 0





0 3
2 2
2 4
1 0



�



16 39
4 15
18





7 5 2 2
3 1 1 0
1 6 3 0





0 3
2 2
2 4
1 0



�



16 39
4 15
18 27



Unlike multiplication of scalars, matrix multiplication is not commutative. That is,
AB and BA are not necessarily the same. For example,

[
3 1
2 2

] [
7 1
1 2

]
�

[
22 5
16 6

]
and

[
7 1
1 2

] [
3 1
2 2

]
�

[
23 9
7 4

]

However, matrix multiplication is associative. That is,

A(BC) � (AB)C

for any matrices A, B, and C.

Addition and Scalar Multiplication
There are two more basic operations involving matrices: addition and scalar multipli-
cation. Matrix addition works just like vector addition, with corresponding entries of
the two matrices added together:Matrix subtraction is defined in a similar

way. [
2 1 1
2 1 5

]
+

[
3 5 1
5 2 2

]
�

[
5 6 2
7 3 7

]

Only two matrices of the same size can be added. Matrix multiplication distributes
over addition from both the left and the right, i.e.

A(B + C) � AB + AC and (A + B)C � AC + BC

Scalar multiplication for matrices is also quite similar to scalar multiplication for
vectors:

2
[

4 3 1
4 2 3

]
�

[
8 6 2
8 4 6

]

This has a variety of obvious properties, e.g.

k(A + B) � kA + kB and k(AB) � (kA)B � A(kB)

for any scalar k and matrices A and B.



MATRICES 3

Square Matrices
A matrix is called square if it has the same number of rows and columns. For example,
2 × 2 matrices are square, as are 3 × 3 matrices, and more generally n × n matrices.

We can take the determinant of any square matrix A, which we write as det(A). For
example, if

A �

[
5 2
3 4

]

then det(A) � 14.
The product of two square matrices of the same size is another square matrix of

that size. For example,



3 1 0
0 1 1
2 1 2





1 2 1
2 0 3
1 1 0


�



5 6 6
3 1 3
6 6 5



The determinant of a matrix product is equal to the product of the determinants:

det(AB) � det(A) det(B).

A square matrix is called diagonal if all of its nonzero entries lie along the diagonal
that goes from the upper left to the lower right. For example,

[
2 0
0 5

]
and



3 0 0
0 7 0
0 0 4



are diagonal matrices. The determinant of a diagonal matrix is equal to the product if
the entries along the diagonal:

Note that we use square brackets for
matrices and vertical lines for
determinants.

�����
a 0
0 b

�����
� ab , and

��������

a 0 0
0 b 0
0 0 c

��������
� abc.

Inverse Matrices
A diagonal matrix with ones along the diagonal is called an identity matrix:

We usually use the letter I to denote an
identity matrix.

[
1 0
0 1

] 

1 0 0
0 1 0
0 0 1


· · ·

Multiplying by an identity matrix has no effect:
[

1 0
0 1

] [
3
5

]
�

[
3
5

]
and

[
1 0
0 1

] [
2 7
8 4

]
�

[
2 7
8 4

]

Two square matrices are called inverses if their product is the identity matrix. For
example [

3 0
2 5

]
and

[
5 0
−2 3

]
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are inverses, since [
3 0
2 5

] [
5 0
−2 3

]
�

[
1 0
0 1

]

A matrix can have only one inverse. If A is a square matrix, its inverse is denoted A−1.
There is a simple formula for the inverse of a 2 × 2 matrix:

There is no simple analog of this formula
for 3 × 3 or larger matrices.

Inverse of a 2 × 2 Matrix

[
a b
c d

]−1

�
1

ad − bc

[
d −b
−c a

]

Note that ad − bc is the determinant of
[

a b
c d

]
.

EXAMPLE 2

Find the inverse of the matrix


4 6
1 2


.

SOLUTION The determinant of this matrix is 2, so the inverse is

1
2



2 −6
−1 4


This simplifies to



1 −3
−1/2 2



A square matrix is called invertible if it has an inverse. From the formula above,
we see that a 2 × 2 matrix is invertible as long as its determinant is not zero. This rule
works for matrices of any size:

A square matrix A is invertible if and only if det(A) , 0.

Representing Linear Systems
We can use matrices to write any linear system as a single vector equation of the form

Ax � b

where A is the coefficient matrix, x is the vector of unknowns, and b is the vector of
constant terms. For example, the linear system

2x + 5y � 11
3x + 4y � 13

can be written in vector form as
[

2 5
3 4

] [
x
y

]
�

[
11
13

]
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We can use inverse matrices to solve n × n linear systems. Given a linear system of the
form

Ax � b

where A is an invertible square matrix, we can multiply both sides of the equation by
A−1 to get

x � A−1b

EXAMPLE 3

Use an inverse matrix to solve the system

3x + 2y � 7

x + 4y � 5

SOLUTION We can write this system as



3 2
1 4





x
y


�



7
5


But



3 2
1 4



−1

�
1
10



4 −2
−1 3


�



0.4 −0.2
−0.1 0.3


so 

x
y


�



0.4 −0.2
−0.1 0.3





7
5


�



1.8
0.8


Thus x � 1.8 and y � 0.8.

EXERCISES

1–4 Multiply.

1.



−9 3 1
2 9 −3
3 0 8





−3
1
1


2.



−5 1
1 7
9 0
−1 1



[
5
−2

]

3.



1 7 2 2
2 8 2 1
0 1 1 2
6 9 2 2





0
1
0
0



4.



0 1 0
0 6 0
0 5 3
0 1 0





4
0
2



5. Find the values of x and y for which
[

x 1
4 −2

] [
y
2

]
�

[
8
0

]
.
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6–9 Multiply.

6.
[

6 3
4 −1

] [
−1 2

8 1

]
7.

[
1 3 9 1
9 1 −2 −2

]


−1 −4
0 −1
2 2
−6 0



8.
[

1 3
0 −8

] [
1 3 2
3 0 2

]
9.

[
1 7

] [
3 −4
1 −1

]

10–13 Compute the inverse of the given matrix.

10.
[

4 5
1 2

]
11.

[
5 2
3 1

]

12.
[

3 0
0 2

]
13.

[
1 2
3 6

]

14. Does the matrix



1 0 2
1 1 1
2 1 3


have an inverse? Explain.

15. Compute 5A + 6A−1 if A �

[
2 1
2 2

]
.

16. (a) Write the linear system
2x − 3y � 5

3x + 4y � 2

as an equation of the form Ax � b.

(b) Use an inverse matrix to solve your equation from part (a).

17. Given that the matrices



2 −5 3 −2
−1 2 −1 2

1 −3 2 1
3 −8 6 1



and



−7 −9 3 1
−2 −2 −1 1

1 2 −3 1
−1 −1 1 0



are inverses, solve the following linear system:

2x1 − 5x2 + 3x3 − 2x4 � 3

−x1 + 2x2 − x3 + 2x4 � 2

x1 − 3x2 + 2x3 + x4 � 0

3x1 − 8x2 + 6x3 + x4 � 2



12.2 Linear Transformations

As we have seen, we can rotate any point in the plane 90◦ counterclockwise around the
origin by switching the two coordinates and negating the first one:

(5, 2) 7−→ (−2, 5).

This transformation is shown in Figure 1.

a Figure 1: A 90◦ counterclockwise
rotation.

This transformation is equivalent to multiplying by the matrix

A �

[
0 1
−1 0

]

For example, [
0 1
−1 0

] [
5
2

]
�

[
−2

5

]

and more generally [
0 1
−1 0

] [
x
y

]
�

[
−y

x

]

This is a simple example of a linear transformation.

Linear Transformations
A transformation of the plane is called a linear transformation if it corresponds to
multiplying each point (x , y) by some 2 × 2 matrix A, i.e.

[
x
y

]
7−→ A

[
x
y

]
.

It turns out that many geometric transformations of the plane are linear transforma-
tions, including:

1. Rotation of the plane by any angle around the origin.

2. Reflection of the plane across any line that goes through the origin.

EXAMPLE 1

Describe the linear transformation of the plane corresponding to the matrix


−1 0
0 1


.

SOLUTION We have 

−1 0
0 1





x
y


�



−x
y


so this matrix negates the x-coordinate of each point of the plane. Geometrically, this
corresponds to reflection across the y-axis , as shown in Figure 2.

a Figure 2: Reflection across the y-axis.
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Finding the Matrix
There is a nice trick that can be used to find the matrix for a given transformation.

Column Trick
If A is a 2 × 2 matrix, then

A
[

1
0

]
and A

[
0
1

]

are the first and second columns of A, respectively.

For example,
[

1 2
3 4

] [
1
0

]
�

[
1
3

]
and

[
1 2
3 4

] [
0
1

]
�

[
2
4

]

The following example shows how to use this trick to find the matrix for a linear
transformation.

EXAMPLE 2

Find the matrix for a 45◦ counterclockwise rotation of the plane about the origin.

SOLUTION This transformation is shown in Figure 3. Note that (1, 0) maps to
(

1
√

2
, 1
√

2

)
and

a Figure 3: A 45◦ rotation of the plane.

(0, 1) maps to
(
−

1
√

2
, 1
√

2

)
. If A is the matrix for this transformation, it follows that

A


1
0


�



1
√

2
1
√

2


and A



0
1


�



−
1
√

2
1
√

2



so these vectors are the columns of A. We conclude that

A �



1
√

2
−

1
√

2
1
√

2
1
√

2



The previous example is a special case of a more general formula.

2 × 2 Rotation Matrices
The matrix [

cos θ −sin θ
sin θ cos θ

]

rotates the plane counterclockwise around the origin by an angle of θ.

The justification for this formula is shown in Figure 4. If A is the matrix for this

a Figure 4: A rotation of the plane by an
angle of θ.

transformation, then

A
[

1
0

]
�

[
cos θ
sin θ

]
and A

[
0
1

]
�

[
−sin θ
cos θ

]

so these vectors are the columns of A.
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We can use 3 × 3 matrices to describe certain transformations in three dimensions, such as
rotation around a line through the origin, or reflection across a plane through the origin. Such
a transformation is called a linear transformation of R3.

For example, consider the 90◦ rotation of R3 about the x-axis shown in Figure 5. How can

a Figure 5: A 90◦ rotation around the
x-axis.

we find a 3 × 3 matrix A for this transformation? Well, it is obvious from the figure that

A



1
0
0


�



1
0
0


A



0
1
0


�



0
0
1


A



0
0
1


�



0
−1

0


.

Then these three vectors must be the three columns of A. We conclude that

A �



1 0 0
0 0 −1
0 1 0



A Closer Look Transformations of R3

EXERCISES

1–4 Give a geometric description of the linear transformation corresponding to the
given matrix.

1.
[

1 0
0 2

]
2.

[
0 1
−1 0

]

3–4 Find the matrix for the reflection of R2 across the given line.

3. the line y � x 4. the x-axis

5–6 Find the matrix for the given rotation of R2 around the origin.

5. 135◦ counterclockwise 6. 30◦ clockwise

7. The following figure shows a rectangle in the plane.

Find the new coordinates of the four vertices if this rectangle is rotated 45◦ counter-
clockwise around the origin.



12.3 Eigenvectors and Eigenvalues

Eigenvectors are certain special vectors that are associated to a square matrix. A vectorThe German word eigen can be translated
into English as “characteristic”, “special”,
or “peculiar”. Hence an eigenvector is a
“special vector”.

v is called an eigenvector for a matrix A if the product Av is a scalar multiple of v. For
example, if

A �

[
3 1
4 3

]
and v �

[
1
2

]

then v is an eigenvector for A since

Av �

[
3 1
4 3

] [
1
2

]
�

[
5
10

]
� 5v

The scalar 5 is called the eigenvalue associated to the eigenvector (1, 2).

Here λ is the lowercase Greek letter
lambda, which is traditionally used to
represent eigenvalues.

Definition: Eigenvectors and Eigenvalues
Let A be an n × n matrix. A nonzero vector v in Rn is called an eigenvector for A if

Av � λv

for some scalar λ. This scalar λ is the associated eigenvalue

Note that an eigenvector v is required to be nonzero. It is true that

A0 � λ0

for any matrix A and any scalar λ, but we do not count 0 as an eigenvector or λ as an
eigenvalue in this case.

A 2 × 2 matrix typically has two different eigenvalues. More generally, an n × n
matrix typically has n different eigenvalues.

In general, the eigenvalues of a diagonal
matrix are the numbers along the
diagonal, and the eigenvectors are the
standard basis vectors.

EXAMPLE 1

Consider the matrix A �

[
7 0
0 4

]
. Because this matrix is diagonal, each of the standard basis

vectors is an eigenvector for A. In particular,
[

7 0
0 4

] [
1
0

]
�

[
7
0

]
� 7

[
1
0

]
and

[
7 0
0 4

] [
0
1

]
�

[
0
4

]
� 4

[
0
1

]

so (1, 0) is an eigenvector with eigenvalue 7, and (0, 1) is an eigenvector with eigenvalue 4.

If A is a matrix and v is an eigenvector for A, then any nonzero multiple of v will
also be an eigenvector for A. For example, since

[
7 0
0 4

] [
1
0

]
� 7

[
1
0

]

it is also true that [
7 0
0 4

] [
2
0

]
� 7

[
2
0

]
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EXAMPLE 2

Consider the matrix A �

[
2 1
1 2

]
. This matrix has (1, 1) as an eigenvector with eigenvalue 3:

[
2 1
1 2

] [
1
1

]
�

[
3
3

]
� 3

[
1
1

]

It also has (−1, 1) as an eigenvector with eigenvalue 1:
[

2 1
1 2

] [
1
−1

]
�

[
1
−1

]
� 1

[
1
−1

]

More generally, any nonzero multiple of (1, 1) is an eigenvector with eigenvalue 3, and any
nonzero multiple of (1,−1) is an eigenvector with eigenvalue 1, as shown in Figure 1.

a Figure 1: Lines of eigenvectors for the

matrix
[

2 1
1 2

]
.

Finding the Eigenvalues
There is a simple equation that lets you find the eigenvalues of a matrix:

The Characteristic Equation
Given an n × n matrix A, the characteristic equation for A is

det(A − λI) � 0

where I denotes the n×n identity matrix. The solutions to this equation are precisely
the eigenvalues of A.

The reason this works is that the equation

Av � λv

is the same as the equationTo derive this equation from the previous
one, we first subtract λv from both sides:

Av − λv � 0

But λv � λIv, so we have

Av − λIv � 0

and factoring out a v gives

(A − λI)v � 0.

(A − λI)v � 0.

If A − λI is invertible, then the only solution to this equation will be v � 0. Thus there
will only be nonzero solutions in the case where A − λI has determinant zero.

EXAMPLE 3

Find the eigenvalues of the matrix A �

[
3 1
2 4

]
.

SOLUTION We have

Note that A − λI can be obtained from A
by subtracting λ from each entry on the
main diagonal.

A − λI �

[
3 1
2 4

]
− λ

[
1 0
0 1

]
�

[
3 − λ 1

2 4 − λ

]

so

det(A − λI) �

�����
3 − λ 1

2 4 − λ

�����
� (3 − λ)(4 − λ) − (1)(2) � λ2

− 7λ + 10

Thus the characteristic equation for A is λ2
− 7λ + 10 � 0. The solutions to this equation are

λ � 2 and λ � 5 .
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Finding the Eigenvectors
Once the eigenvalues of a matrix are known, it is fairly straightforward to find the
eigenvectors. In particular, for a given scalar λ, the equation

Av � λv

is simply a linear system whose nonzero solutions are the eigenvectors.

EXAMPLE 4

Find an eigenvector for the matrix
[

3 1
2 4

]
corresponding to the eigenvalue λ � 5.

SOLUTION We wish to solve the equation
[

3 1
2 4

] [
x
y

]
� 5

[
x
y

]

This gives us the linear system
3x + y � 5x

2x + 4y � 5y

Both of these equations simplify to y � 2x, so the points on this line are eigenvectors for λ � 5.
In particular, (1, 2) is an eigenvector:

[
3 1
2 4

] [
1
2

]
�

[
5
10

]
� 5

[
1
2

]

Incidentally, a similar calculation reveals that the eigenvectors for λ � 2 lie on the line y � −x.
Figure 2 shows the eigenvalues and eigenvectors for this matrix.

a Figure 2: Lines of eigenvectors for the

matrix
[

3 1
2 4

]
.

EXERCISES

1–2 Find the eigenvalues of the given matrix.

1.
[

5 3
2 4

]
2.

[
−8 5
−4 1

]

3–4 Find the eigenvalues of the given matrix, and then find one eigenvector corre-
sponding to each eigenvalue.

3.
[

5 −3
1 1

]
4.

[
4 5
−2 −3

]

5. Find an eigenvector for the matrix
[

1 1/4
3 2

]
corresponding to the eigenvalue

λ � 5/2.
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