
2 Growth, Decay,
and Oscillation

b The city of Suzhou in Jiangsu Province,
China. Suzhou is the fastest growing city in
the world, with an annual population growth
of 6.5% between the years 2000 and 2014.1

As we have discussed, differential equations are commonly used in science to model
the behavior of dynamical systems. In this chapter, we consider some of the simplest
possible behaviors for a dynamical system: growth, decay, and oscillation.

Of course, the simplest model for growth is linear growth, for which a variable y
that increases at a constant rate. This corresponds to the differential equation

dy
dt

� r,

1 Photo by Mudaxiong, cropped from original, licensed under CC BY-SA 3.0, via Wikimedia Commons
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where r is the (constant) growth rate. The solutions to this equation are linear functions

y � y0 + rt .

Note that the growth rate r is the slope of the linear function, and the constant term
y0 � y(0) is the initial value of y. We assume that the reader is quite familiar with
linear growth, and we will not discuss it further.

The second simplest model for growth is exponential growth, which corresponds
to the differential equationSince we are interested in applications,

we use t as the independent variable
throughout this chapter. If we were
using x, this equation could be written

y′ � k y.

.

dy
dt

� k y.

The solutions to this equation are exponential functions of the form

y � y0 ekt .

Such a function only grows over time when k > 0; when k < 0, the function decreases
asymptotically to zero, which is known as exponential decay. Both exponential growth
and exponential decay are quite common in science, and we will discuss several
applications of these in Sections 2.1 and 2.2.

Excluding growth and decay, the next simplest type of behavior for a dynamical
system is oscillation. The simplest model for oscillation is harmonic oscillation, which
corresponds to the second-order differential equation

Again, this is the same as the equation

y′′ � −r y

except that we are using t instead of x.

d2 y
dt2 � −r y (r > 0).

The solutions to this equation are sinusoidal functions of the form

y � C cos(ωt) + D sin(ωt)

where C and D are constants and ω �
√

r. This solution can also be written as

y � A cos(ωt + φ)

where A and φ are constants. We will discuss several examples of harmonic oscillation
in Sections 2.3 and 2.4
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2.1 Exponential Growth

In this section we discuss the differential equation

dy
dt

� k y ,

where k is a positive constant. In words, this equation says that the rate at which the
variable y changes is proportional to the value of y; thus the larger y becomes, the
more quickly it increases. The result is that y grows, slowly at first and then very
quickly, a phenomenon known as exponential growth.

The Exponential Growth Equation
The exponential growth equation is the differential equation

dy
dt

� k y (k > 0).

Its solutions are exponential functions of the form

y � y0 ekt

where y0 � y(0) is the initial value of y.

Figure 1 shows the graph of a typical exponential function, assuming y0 > 0
and k > 0. Because of the factor of e t , an exponential function increases quite quickly

a Figure 1: Exponential growth.

as t increases, as illustrated in Figure 2.

t e t

1 2.72
2 7.39
5 148.41
10 22,026.47
20 485,165,195.41

a Figure 2: The exponential function e t

grows very quickly as t increases.

EXAMPLE 1

Solve the following initial value problem.

dy
dt

� 3y , y(0) � 4.

SOLUTION According to the formulas above, the solution is y(t) � 4e3t .

EXAMPLE 2

Solve the following initial value problem.

dy
dt

� 3y , y(2) � 8.

SOLUTION This time the initial value is at t � 2 instead of t � 0, so we have some work to do.
We know that y has the form

y(t) � y0 e3t

for some constant y0. Plugging in y(2) � 8 gives

8 � y0 e6 ,

so y0 � 8e−6. Then
y(t) �

(
8e−6) e3t

� 8e3t−6.



4 EXPONENTIAL GROWTH

The Growth Constant
The constant k in the equations

dy
dt

� k y and y � y0 ekt

is called the growth constant or exponential growth rate. It controls how rapidly the
exponential function grows—higher values of k correspond to faster growth, while
lower values of k correspond to more gradual growth.

No matter what the units are for y, the units for k are always inverse time. For
example, k could be something like 0.27/sec, which is the same as 16.2/hour. Note
then that the product kt is always a dimensionless number, which is why it makes
sense to compute ekt .

In general, ex only makes sense if x is a
pure number. If x is a quantity with units,
then ex is meaningless.

EXAMPLE 3

A variable y is growing exponentially. Initially y has a value of 200. Three hours later, it has
grown to 500. What is the growth constant for y?

SOLUTION Since y(0) � 200, we know that

y(t) � 200ekt

for some constant k. Substituting in y(3) � 500 gives the equation

500 � 200e3k .

Solving for k yields

To solve for k here, we first divide by 200
to get

e3k
� 2.5.

Then 3k � ln(2.5), so k � ln(2.5)/3. k �
ln(2.5)

3
≈ 0.305/hour .

Note that we needed two pieces of information about y in the last example to
determine the value of k. Even though the exponential growth equation is a first-order
equation, it is common in applications to not know the value of k beforehand. The
result is that the solution

y � y0 ekt

has two unknown constants, so we need two pieces of information about y to determine
y0 and k.

EXAMPLE 4

A variable y is growing exponentially. Given that y(0) � 5 and y′(0) � 8, compute y(2).

SOLUTION Since y(0) � 5, we know that

y(t) � 5ekt

for some constant k. To substitute in y′(0) � 8, we take the derivative of this equation:

y′(t) � 5k ekt .

Substituting 0 for t and 8 for y′(t) yields8 � 5k, so k � 8/5 � 1.6. Then

A different way to find k in this example
is to substitute both y(0) � 5 and
y′(0) � 8 directly into the differential
equation

dy
dt

� k y.

This gives 8 � 5k, so k � 1.6.

y(2) � 5e (1.6)(2)
≈ 122.66
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Other Measures of Growth
In many applications, it makes sense to consider the reciprocal of the growth constant k:

τ �
1
k

Using τ instead of k, the exponential growth equation and its solution can be written as

dy
dt

�
y
τ

and y � y0 e t/τ .

The main advantage of τ over k is that it has units of time, which makes it a much more
intuitive measure of the growth rate. Indeed, since y(τ) � e, we can interpret τ as the
amount of time that it takes for the function y to grow by a factor of e, as shown in
Figure 3. For this reason, τ is known as the e-folding time for the exponential function.

a Figure 3: The e-folding time τ is the
amount of time it takes for y to grow by a
factor of e.

Another related measure of the exponential growth rate is the doubling time Td .
This is the amount of time that it takes for the exponential function to double in value,
as shown in Figure 4. We can find a formula for the doubling time by solving the

a Figure 4: The doubling time Td is the
amount of time it takes for y to double in
value.

equation
ekTd � 2

for Td . The result is

Td �
ln 2

k
� τ ln 2

Note that ln 2 ≈ 0.6931, so the doubling time is approximately 69% of the e-folding
time.

Population Growth
Exponential growth is often used to model the growth of populations of organisms
in a resource-rich environment. Here “resource-rich” means that there is plenty of
food and other resources necessary for the population to grow. For example, the initial
growth of a bacteria colony in a petri dish is often modeled as exponential.

The justification for this model is that the rate at which a population of organisms
grows should be proportional to the number of organisms, assuming that the organisms
reproduce at a constant rate. For example, if you double the size of a population, then
this should precisely double the rate at which the population bears offspring, and
should therefore double the rate at which the size of the population increases.

a A colony of Paenibacillus dendritiformis
bacteria.2

What this means is that the population P of a given organism in a resource-rich
environment should satisfy the differential equation

dP
dt

� kP,

where k is some constant that depends on the rate of reproduction. Thus the population
grows exponentially:

P � P0 ekt .

Of course, this model predicts that the population P will grow indefinitely, which
cannot be true in any real situation. Eventually any population will run out of resources
such as food or space to grow. However, the exponential model often gives fairly
accurate results in cases where the short-term growth of a population is not inhibited
by limited resources.

2Photo from the laboratory of Dr. Eshel Ben Jacob, licensed under CC BY-SA 3.0, via Wikimedia Commons

http://star.tau.ac.il/~eshel/
http://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File%3APaenibacillus_dendritiformis_colony_(Chiral_morphotype).jpg
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EXAMPLE 5

During a biology experiment, a certain culture of cells grows exponentially with a growth
constant of 0.04/minute. If there are 5,000 cells at the beginning of the experiment, how large
will the culture be one hour later?

SOLUTION The population P(t) is given by the equation

P(t) � 5,000e0.04t .

We are measuring t in minutes, so one hour later corresponds to t � 60. Since

P(60) � 5,000e0.04(60)
≈ 55,115.9,

the population after one hour will be approximately 55,000 cells.

EXAMPLE 6

A population of bacteria initially consists of 20,000 cells. Twenty minutes later, the population
has grown to 50,000 cells. How quickly is the population increasing at that time?

SOLUTION Assuming constant relative growth rate, the population P(t) is given by the
equation

P(t) � 20,000ert . (1)

for some constant r. Plugging in P(20) � 50,000 gives the equation

50,000 � 20,000ek(20) .

and solving for k yields

To solve the equation

20,000e20k
� 50,000

for k, we first divide by 20,000 to get

e20k
� 2.5,

and then we take the natural logarithm of
both sides, which yields

20k � ln(2.5).

We can now divide through by 20 to
obtain the value of k.

k �
ln 2.5

20
≈ 0.045815.

To find the rate of increase at t � 20 min, we must compute P′(20). Taking the derivative of
equation (1) gives

P′(t) � 20,000k ekt

so
P′(20) � 20,000(0.045815) e (0.045815)(20)

≈ 2290.73.

Thus the population is increasing at a rate of roughly 2,300 cells/min.

EXERCISES

1. Solve the following initial value problem:

dy
dt

� 3y , y(ln 2) � 40.

2. At the beginning of an experiment, a culture of E. coli contains 15,000 cells. Two
hours later, the population has grown to a size of 80,000 cells. Assuming exponential
growth, what is the e-folding time τ?

3. During a nuclear chain reaction, the number N of free neutrons in a sample of
fissile material obeys the differential equation

dN
dt

� kN,

where k a constant known as the neutron multiplication factor.
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(a) Suppose the sample initially contains 100 free neutrons. If the neutron multi-
plication factor is 7.0/µs, how many free neutrons will there be 2.0 µs later?

(b) How quickly will the number of free neutrons be increasing at that time?

4. The population of the United States is currently 320 million, and is increasing at a
rate of 2.4 million/year. Assuming exponential growth, what is the doubling time
of the population?

5. A cell culture is growing exponentially with a doubling time of 3.00 hours. If
there are 11,500 cells initially, how long will it take for the cell culture to grow to
30,000 cells?
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2.2 Exponential Decay

When the growth constant k is negative, the function

y � y0 ekt

does not actually grow. Instead, the value of y approaches zero as t → ∞. This is
known as exponential decay.

When discussing exponential decay, it is common in applications to write k � −r,
where r is a positive constant known as the decay constant. In this case, the differential
equation takes the following form.

The Exponential Decay Equation
The exponential decay equation is the differential equation

This is just the exponential growth
equation with −r substituted in for k.

dy
dt

� −r y

where r is a positive constant. Its solutions have the form

y � y0 e−rt

where y0 � y(0) is the initial value of y.

Figure 5 shows the graph of a typical exponential decay. As with exponential

a Figure 5: Exponential decay.

growth, there are two alternatives to using the decay constant r when describing
exponential decay:

1. The time constant (or e-folding time) of y is the quantity τ � 1/r, and represents
the amount of time that it takes for the value of y to be divided by e.

2. The half-life of y is the amount of time that it takes for the value of y to be cut in
half. It can be found by solving the equation e−rt � 1/2 for t.

As we shall see, exponential decay can be used to model such diverse phenomena as
radioactive decay, electric circuits, and chemical reactions.

Radioactive Decay
A substance whose atoms are inherently unstable is called radioactive. For such aSee the EPA website for a list of

radioisotopes commonly used in industry. substance, a certain fixed proportion of the atoms decay during each time interval. If N
is the number of atoms in a sample of the substance, then N will satisfy the differential
equation

dN
dt

� −rN.

Here r is the decay constant, which represents the rate at which individual atoms tend
to decay. For example, if r � 0.003/hour, it means that about 0.3% of the atoms will
decay each hour.

The number of atoms in a radioactive sample decays exponentially with time:

N � N0 e−rt ,

where N0 is the number of atoms int the sample at time t � 0 (see Figure 6). Equivalently,
a Figure 6: Exponential decay of a
radioactive sample.

the total mass M of atoms in a sample will decay exponentially:

M � M0 e−rt .

http://www.epa.gov/radiation/source-reduction-management/radionuclides.html
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EXAMPLE 7

Cesium-137 has a half-life of approximately 30.17 years. If a 0.300-mole sample of 137Cs is left
in a storage closet, how much 137Cs will be left after four years?

a Figure 7: A sample of cesium-137

SOLUTION The amount N (t) of 137Cs will obey an equation of the form

N (t) � 0.30e−rt ,

where r is a constant. Since the half-life is 30.17 years, we know that

e−r(30.17)
�

1
2
.

Solving for r gives r ≈ 0.022975/year. Then

N (4) � 0.300e−(0.022975)(4)
� 0.273659,

so there should be 0.274 moles left after four years.

EXAMPLE 8

A radiochemist prepares a cobalt sample containing 0.100 moles of 58Co. According to
readings from a Geiger counter, the atoms of 58Co in the sample appear to be decaying at a
rate of 6.79 × 10−7 moles/min. Based on this information, what is the half-life of 58Co?

SOLUTION The amount N (t) of 58Co will obey an equation of the form

N (t) � 0.100e−rt ,

where r is a constant. Then
N′(t) � −0.100r e−rt .

We are given that N′(0) � −6.79 × 10−7 moles/min, which gives us the equation N′(0) is negative since N is decreasing.

−6.79 × 10−7
� −0.100r.

Solving for r gives r � 6.79 × 10−6/min. The half-life is the value of t for which

e−rt
�

1
2
.

Plugging in r and solving for t yields a half life of 102,084 minutes, which is about 70.9 days.

RC Circuits
Figure 8 shows a simple kind of electric circuit known as an RC circuit. This circuit

capacitor

resistor

a Figure 8: An RC circuit.

has two components:

• A resistor is any circuit component—such as a light bulb—that resists the flow of
electric charge. Applying voltage to a resistor will force current through it, with
the amount of current given by Ohm’s law

I �
V
R
. (1)

Here V is the applied voltage, I is the resulting current, and R is a constant called
the resistance of the resistor.
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• A capacitor is a circuit component that stores electric charge. A charged capacitor
can supply voltage to a circuit, with the amount of voltage given by the equation

V �
Q
C
. (2)

Here Q is the charge stored in the capacitor and C is a constant called the
capacitance of the capacitor.

In an RC circuit, the voltage produced by a capacitor is applied directly across a resistor.

This application assumes you are familiar
with the basics of electric circuits, as well
as the SI units corresponding to various
circuit-related quantities. Here is a
summary:

• Electric charge is a basic property
of matter, inherent to charged
particles such as electrons and
protons. It is measured in
coulombs (C).

• Voltage is a difference in electric
potential that causes charge to
move through a circuit. It is
measured in volts (V).

• Electric current is the rate at
which electric charge flows
through a circuit. It is measured
in amps (A), where 1 A � 1 C/sec.

• Resistance is a property of
resistors. It is measured in
ohms (Ω), where 1 Ω � 1 V/A.

• Capacitance is a property of
capacitors. It is measured in
farads (F), where 1 F � 1 C/V.

Substituting equation (2) into equation (1) yields a formula for the resulting current:

I �
Q

RC
. (3)

This current represents the flow of charge out of the capacitor, with

dQ
dt

� −I .

Substituting equation (3) into this equation yields the differential equation

dQ
dt

� −
Q

RC
.

Thus the charge Q will decay exponentially, with decay constant

r �
1

RC

In the case where the resistor is a light bulb, the result is that the bulb lights up at first,

Equivalently, the time constant for the RC
circuit is

τ � RC.

but becomes dimmer and dimmer over time as the capacitor discharges.

EXAMPLE 9

A 0.25 F capacitor holding a charge of 2.0 C is attached to a 1.6 Ω resistor. How long will it
take for the capacitor to expend 1.5 C of its initial charge?

SOLUTION The charge on the capacitor will decay exponentially according to the formula

Q � Q0 e−rt ,

where Q0 � 2.0 C and

r �
1

RC
�

1
(1.6 Ω)(0.25 F)

� 2.5/sec.

If the capacitor expends 1.5 C of its charge, it will have 0.5 C left. Plugging this into the

Since seconds are the SI unit of time, the
units for r must be number per second.

formula for Q gives
0.5 � 2.0e−(2.5)t ,

and solving for t yields t � 0.5545. Thus the capacitor will expend 1.5 C of charge in
approximately 0.55 seconds.
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EXERCISES

1. A sample of an unknown radioactive isotope initially weighs 5.00 g. One year later
the mass has decreased to 4.27 g.
(a) How quickly is the mass of the isotope decreasing at that time?
(b) What is the half life of the isotope?

2. During a certain chemical reaction, the concentration [C4H9Cl] of butyl chloride
obeys the rate equation

d[C4H9Cl]
dt

� −r [C4H9Cl],

where r � 0.1223/sec is the rate constant for the reaction. How long will it take for
this reaction to consume 90% of the initial butyl chloride?

3. A capacitor with a capacitance of 5.0 F holds an initial charge of 350 C. The
capacitor is attached to a resistor with a resistance of 9.0 Ω.
(a) How quickly will the charge held by the capacitor initially decrease?
(b) How quickly will the charge be decreasing after 20 seconds?

4. An LR circuit consists of a resistor attached to an electrical component called an
inductor, which supplies voltage to the resistor according to the formula

V � −L
dI
dt
.

Here L is a constant called the inductance of the inductor.
(a) Combine the equation above with Ohm’s law to obtain a differential equation

for the current I(t) that involves the constants L and R.
(b) The current I(t) in an LR circuit decays exponentially. Find a formula for the

decay constant in terms of L and R.

5. For a planetary atmosphere of ideal gas of uniform temperature T, the atmospheric
pressure P(h) and density ρ(h) at a height h above the ground are related by the
equations

P � ρRT and
dP
dh

� −ρg ,

where R is the specific gas constant and g is the acceleration due to gravity.

The first of these equations is the molar
form of the ideal gas law, while the
second is the equation for hydrostatic
pressure.

(a) Combine the given equations to obtain a single differential equation for P
involving the constants g, R, and T.

(b) The atmospheric pressure in such an atmosphere varies with height according
to the formula P(h) � P0 e−rh , where P0 is the pressure at ground level. Find a
formula for the decay constant r in terms of g, R, and T.
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2.3 Oscillation

So far, we have used differential equations to describe functions that grow or decay
over time. The next most common behavior for a function is to oscillate, meaning that
it increases and decreases in a repeating pattern. There is a simple differential equation
that leads to this behavior.

The Harmonic Oscillator Equation
The harmonic oscillator equation is the differential equation

d2 y
dt2 � −r y (r > 0).

Its solutions have the form

y � C cos(ωt) + D sin(ωt),

where C and D are constants, and ω �
√

r.

As we will see shortly, the formula y � C cos(ωt) + D sin(ωt) actually describes

This is the Cartesian form of the solution.
There is also a polar form that we will
describe in a short while.

simple sinusoidal oscillation, also known as harmonic oscillation. The constant
ω �
√

r is called the angular frequency of the oscillation. The square root comes from
The angular frequency ω has units of
radians per unit time, e.g. rad/sec.

taking the second derivative; for if

y � C cos(ωt) + D sin(ωt)

then taking the second derivative gives

d2y
dt2 � −ω2C cos(ωt) − ω2D sin(ωt)

and thus y satisfies the equation

d2y
dt2 � −ω2 y.

We conclude that r � ω2, and hence ω �
√

r.

It would also work to let ω � −
√

r, but
this actually yields the same solutions as
ω �
√

r, so it is simpler to use a positive
value for ω.

EXAMPLE 10

Solve the following initial value problem.

d2 y
dt2 � −25y , y(0) � 3, y′(0) � 10.

SOLUTION We know that
y(t) � C cos(5t) + D sin(5t)

for some constants C and D, which means that

y′(t) � −5C sin(5t) + 5D cos(5t).

Plugging y(0) � 3 into the first equation and y′(0) � 10 into the second equation yields C � 3Remember that cos(0) � 1 and sin(0) � 0.
and D � 2, so the solution is

y(t) � 3 cos(5t) + 2 sin(5t).
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EXAMPLE 11

Solve the following boundary value problem.

d2 y
dt2 � −4y , y(0) � 1, y

(
π
8

)
� 3
√

2

SOLUTION We know that
y(t) � C cos(2t) + D sin(2t)

for some constants C and D. The two boundary values yield the equations

1 � C and 3
√

2 � C cos
(
π
4

)
+ D sin

(
π
4

)
.

Plugging C � 1 and cos(π/4) � sin(π/4) �
√

2
/
2 into the second equation and solving for D

gives D � 5, and hence
y(t) � cos(2t) + 5 sin(2t).

Cartesian and Polar Forms
Our general solution

y � C cos(ωt) + D sin(ωt)

to the harmonic oscillator equation is called the Cartesian form of the solution. For
many applications, it is more convenient to write the solution in the following polar
form.

Polar Form for the Solution
The solutions to the harmonic oscillator equation

d2 y
dt2 � −r y (r > 0).

can also be written as
y � A cos(ωt + φ)

where A and φ are constants.

Functions of the form

The constant A is called the amplitude,
and φ is the phase angle.

y � A cos(ωt + φ)

are sometimes called sinusoidal functions. The graph of such a function is a simple
sine wave, as shown in Figure 9. The solutions to the harmonic oscillator equation
are precisely the sinusoidal functions, and any variable y that obeys the harmonic
oscillator equation undergoes sinusoidal oscillation.

a Figure 9: The graph of a sinusoidal
function.

It is not obvious that the Cartesian and polar forms of a sinusoidal function are
equivalent. To see this, consider a sinusoidal function in polar form:

y � A cos(ωt + φ)

Using the sum of angle formula for cosine, we can expand the right side to get

Here we used the identity

cos(x + y) � cos x cos y − sin x sin y.

y � A cos(φ) cos(ωt) − A sin(φ) sin(ωt).

This has the form y � C cos(ωt) + D sin(ωt), where
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C � A cos(φ) and D � −A sin(φ)

Conversely, for any values of C and D it is always possible to find values for A and φ
that satisfy the above equations. In particular,

The algebra here is similar to the
conversion between rectangular and
polar coordinates, where
(x , y) � (C,−D) and (r, θ) � (A, φ).

A �

√
C2

+ D2 , cos(φ) �
C
A
, and sin(φ) � −

D
A

These formulas let us convert sinusoidal functions between Cartesian and polar forms.

EXAMPLE 12

Find the Cartesian form of the sinusoidal function y(t) � 4 cos
(
3t +

π
3

)
.

SOLUTION We have A � 4 and φ � π/3, so

C � 4 cos
(
π
3

)
� 2 and D � −4 sin

(
π
3

)
� −2

√

3

and therefore
y(t) � 2 cos(3t) − 2

√

3 sin(3t).

EXAMPLE 13

Find the polar form of the sinusoidal function y(t) � 6 cos(4t) + 6 sin(4t).

SOLUTION We have C � 6 and D � 6, so

A �

√
C2 + D2 �

√
62 + 62 � 6

√

2.

Then
cos(φ) �

6
6
√

2
�

1
√

2
and sin(φ) � −

6
6
√

2
� −

1
√

2
,

and hence φ � −π/4. We conclude thatHere we were able to just recognize the
angle φ from its cosine and sine, but in
general we can find φ using inverse
trigonometric functions. y(t) � 6

√

2 cos
(
4t −

π
4

)
.

Properties of Oscillation
The two most important properties of any oscillation are its amplitude and its period.
The amplitude of an oscillation is simply its maximium value A, as shown in Figure 10.
For a sinusoidal oscillation, this is the coefficient of the cosine when the function is
expressed in polar form. The period of an oscillation is the amount of time T that ita Figure 10: The amplitude of an

oscillation.
takes for the oscillation to go through one complete cycle, as shown in Figure 11. For a

a Figure 11: One period of an oscillation.

sinusoidal oscillation, the period is given by the formula

T �
2π
ω

where ω is the angular frequency.
Closely related to the period of an oscillation is its frequency, which is defined by

the formula
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f �
1
T

The frequency is measured in units of inverse time (i.e. number per unit time), and The SI unit for frequency is the
hertz (Hz), where 1 Hz � 1/sec.can be interpreted as the rate at which oscillations occur. For example, a sinusoidal

function with a frequency of 3/sec undergoes three full oscillations each second, while
a sinusoidal function with a frequency of 0.5/sec undergoes half of an oscillation each
second, or one full oscillation every two seconds.

Note that the frequency is not the same as the angular frequency. These are related
by the formula

ω � 2π f

Thus the angular frequency also measures the rate of oscillation, but it is much less
natural than either the period or the frequency. Indeed, angular frequency is only
really important because it appears in the formulas for sinusoidal oscillation.

EXAMPLE 14

A harmonic oscillator satisfies the differential equation

d2 y
dt2 � −0.34 y.

What is the period of oscillation?

SOLUTION The angular frequency is ω �
√

0.34 ≈ 0.5831, so T �
2π
ω
≈ 10.78.

Finally, every sinusoidal oscillation has a phase angle φ, which describes the state
of the oscillation when t � 0. A phase angle of φ � 0 corresponds to an oscillation that
starts at its maximum value at t � 0. Phase angles less than 0 correspond to starting
earlier in the cycle, and phase angles greater than 0 correspond to starting later in the
cycle, as shown in Figure 12.

b Figure 12: Sinusoidal oscillations with
four different phase angles φ.
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For ω > 0, we have stated without proof that the solutions to the equation

d2y
dt2 � −ω2 y

are the functions y � C cos(ωt) + D sin(ωt), where C and D can be any constants. It is easy
to see that these functions are indeed solutions, but how can we be sure that every solution
has this form?

We can prove this as follows. Suppose that y(t) is a solution to the above equation, and
define functions C(t) and D(t) by the formulasThese formulas for C(t) and D(t) were

obtained by solving the equations

y � C cos(ωt) + D sin(ωt)

y′ � −ωC sin(ωt) + ωD cos(ωt)

for C and D.

C(t) � y(t) cos(ωt) −
y′(t)
ω

sin(ωt), D(t) � y(t) sin(ωt) +
y′(t)
ω

cos(ωt).

Observe that
y(t) � C(t) cos(ωt) + D(t) sin(ωt).

We wish to show that C(t) and D(t) are constant functions. To prove this, we take the
derivative of each using the product rule. The derivative of C(t) is

C′(t) � y′(t) cos(ωt) − ωy(t) sin(ωt) −
y′′(t)
ω

sin(ωt) − y′(t) cos(ωt).

The first and last terms cancel, leaving

C′(t) � −ωy(t) sin(ωt) −
y′′(t)
ω

sin(ωt).

Substituting in y′′(t) � −ω2 y(t) causes the two remaining terms to cancel, giving us

C′(t) � 0.

Thus C(t) is a constant function. A similar computation shows that D(t) is a constant function,
and therefore y(t) has the desired form.

A Closer Look Solving the Harmonic Oscillator Equation

EXERCISES

1. Solve the following initial value problem:

d2y
dt2 � −5y , y(0) � 3, y′(0) � 10.

2. Solve the following boundary value problem:

d2y
dt2 � −y , y(0) � 4, y

( 2π
3

)
� 1.

3. Solve the following boundary value problem:

d2y
dt2 � −4y , y

(
−
π
6

)
� 4, y

(
π
6

)
� 16.

4. Express the sinusoidal function y(t) � 10 cos
(
6t +

π
4

)
in Cartesian form.



OSCILLATION 17

5. Express each of the following sinusoidal functions in polar form.
(a) y(t) � cos(3t) + sin(3t)
(b) y(t) � sin(5t)
(c) y(t) � −

√
2 cos t +

√
6 sin t

6. Find the amplitude of the following sinusoidal function:

y(t) � 12 cos(4t) − 5 sin(4t).

7. Find the phase angle of the following sinusoidal function:

y(t) � 3 cos(2t) + 4 sin(2t).

Express your answer in degrees.

8. Find the period of the following sinusoidal function:

y(t) � 7.2 cos(5.4t + 1.2)

9. A sinusoidal function y(t) satisfies the differential equation

d2y
dt2 � −5000y.

What is the frequency of the oscillation?

10. A sinusoidal function y(t) has phase angle π/3. Given that y(0) � 5, what is the
amplitude?
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2.4 Models of Oscillation

In this section we give three examples of oscillating physical systems that can be
modeled by the harmonic oscillator equation. Such models are ubiquitous in physics,
but are also used in chemistry, biology, and social science to model oscillatory behavior.

Mass-Spring Systems
Consider the simple mass-spring system shown in Figure 13, which consists of a block

frictionless table

block

spring

a Figure 13: A simple mass-spring
system.

with mass m attached to spring whose other end is fixed. According to Hooke’s Law,
the force that the spring exerts on the block is given by the equation

F � −kx.

Here k is the spring constant, and x is the horizontal position of the block, with x � 0
being the rest position.

Newton’s second law (F � ma) can be written as

F � m
d2x
dt2 ,

where x(t) is the horizontal position of the block. Assuming the spring is the onlyWe are neglecting friction in this
computation. Adding a frictional force to
the model would make this an example
of damped harmonic oscillations.

horizontal force affecting the block, this gives us the differential equation

−kx � m
d2x
dt2 ,

which we can rewrite as
d2x
dt2 � −

( k
m

)
x.

This is a form of the harmonic oscillator equation, with angular frequency
An object whose position oscillates
sinusoidally is said to undergo harmonic
motion. ω �

√
k
m

EXAMPLE 15

A 3.0 kg mass is attached to a spring with a spring constant of 4.0 kg/sec2. The spring is
stretched 0.80 m from its rest position and then the mass is released. What is the speed of the
mass 1.0 sec later?

SOLUTION The mass will undergo harmonic motion with an angular frequency of

ω �

√
k
m

�

√
4.0
3.0

� 1.1547 rad/sec.

The position x(t) of the mass obeys a formula of the form

x(t) � C cos(ωt) + D sin(ωt),

for some constants C and D. Taking the derivative gives

x′(t) � −ωC sin(ωt) + ωD cos(ωt)

We are given that x(0) � 0.80 and x′(0) � 0, and plugging these in gives C � 0.80 and D � 0,
so the speed of the mass at t � 1.0 sec is

x′(1.0) � −(1.1547)(0.80) sin(1.1547) � −0.84 m/sec.
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LC Circuits
Figure 14 shows a simple kind of electric circuit known as an LC circuit. This circuit

capacitor

inductor

a Figure 14: An LC circuit.

consists of a capacitor connected to a circuit component inductor, which is essentially
just a coil of wire. Unlike a resistor, which always resists the flow of current, an inductor
tends to oppose changes to the flow of electric current. That is, it’s difficult to start
pushing current through an inductor, but once the current gets going, it’s difficult to
make it stop.

The voltage drop V across an inductor is given by the formula

V � L
dI
dt

Here L is a constant called the inductance of the inductor. Note that the inductor has The SI unit of inductance is the
henry (H), where 1 H � 1 V · sec/A.positive voltage drop (like a resistor) when the current is increasing, but when the

current is decreasing the voltage drop is negative, meaning that the inductor actually
pulls current through it.

a An inductor is just a coil of wire. Its
electrical properties derive from the
magnetic field it creates when current flows
through it.

Combining the formula above with the equation V � Q/C for the capacitor yields

L
dI
dt

�
Q
C
.

As in an RC circuit, the electric current I is that same as the rate at which the capacitor
is discharging, so

I � −
dQ
dt

.

Substituting this into the previous equation yields the differential equation

−L
d2Q
dt2 �

Q
C
.

which we can rewrite as
d2Q
dt2 � −

( 1
LC

)
Q.

This equation describes sinusoidal oscillation with angular frequency

ω �
1
√

LC

Thus the charge held in the capacitor oscillates according to the formula

Q � A cos(ωt + φ),

where A is the amplitude of the oscillations (measured in coulombs, the SI unit of
charge), and φ is the initial phase of the circuit.

Roughly speaking, if we assume that the capacitor begins charged, then the capacitor
The capacitor is like the “spring” in an LC
circuit (with spring constant 1/C), while
the inductor is the “mass”.

begins by discharging through the inductor, slowly at first but picking up speed as the
inductor lets more current through. Once the capacitor is fully discharged, the inductor
continues pushing current through the circuit, which drains even more charge from
the capacitor, leaving it with a negative total charge. The capacitor then reverses the
flow of current to regain the lost charge, but the same thing happens again, with the
inductor continuing to push current through in the reverse direction until the capacitor
is back to its initial charged state. The cycle thus continues indefinitely.
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EXAMPLE 16

An LC circuit consists of a capacitor with a capacitance of 0.016 F and an inductor with an
inductance of 0.10 H. The capacitor starts with an initial charge of 0.12 C, and the initial
current is zero. What is the magnitude of the current in the circuit 0.10 seconds later?

SOLUTION The charge stored on the capacitor will oscillate harmonically with

ω �
1
√

LC
�

1
√

(0.016)(0.10)
� 25 rad/sec.

Then
Q(t) � D cos(25t) + E sin(25t)

for some constants D and E, with derivativeHere we use D and E for the constants,
since the letter C represents capacitance.

Q′(t) � −25D sin(25t) + 25E cos(25t).

We are given that Q(0) � 0.12 and Q′(0) � 0, and plugging these in gives D � 0.12 and E � 0.
Then

Q′(0.10) � −(25)(0.12) sin(2.5) � −1.7954.

Thus the current at time t � 0.10 sec is approximately 1.8 A.

Pendulums
A pendulum consists of a mass suspended from a rod that swings from a fixed pivot

pivot

rod

mass

a Figure 15: A pendulum.

point, as shown in Figure 15. If θ(t) denotes the angle of the string from the vertical,
then θ obeys the differential equation

d2θ

dt2 � −
g sin θ

L
, (1)

where g is the acceleration due to gravity (usually 9.8 m/sec2), and L is the length of
the string.

Unfortunately, equation (1) is not an instance of the harmonic oscillator equation,

a Figure 16: Anharmonic motion of a
pendulum with initial conditions
θ(0) � 0.99π and θ′(0) � 0. Note that the
graph is not actually a sine wave.

because the right side involves sin θ instead of θ. This means that a pendulum is
actually an anharmonic oscillator, meaning that the oscillation is not actually sinusoidal.
For example, Figure 16 shows the noticeably anharmonic motion of a pendulum that
starts from rest at θ(0) � 0.99π.

Though the motion of a pendulum is anharmonic, we can make a harmonic
approximation for the motion in the case where θ isn’t too large. This depends on the
linear approximation

sin θ ≈ θ,

which is quite accurate when θ is close to zero, as shown in Figure 17. Indeed, as

a Figure 17: The graphs of y � sin θ and
y � θ nearly coincide for θ close to zero.

long as θ stays between −14◦ and 14◦, this approximation is accurate to within 1%.
Replacing sin θ with θ in equation (1) gives us the approximate differential equation

d2θ

dt2 ≈ −

( g
L

)
θ.

This equation describes approximate harmonic motion, with angular frequency

ω ≈

√
g
L
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EXAMPLE 17

A swinging pendulum with a length of 2.0 m has an initial position of θ(0) � 0.10 rad and an
initial angular velocity of θ′(0) � −0.12 rad/sec. What will the position of the pendulum be
0.80 sec later?

SOLUTION The pendulum will move approximately harmonically with angular velocity

ω ≈

√
g
L

�

√
9.8
2.0

� 2.2136 rad/sec2.

Then

θ(t) ≈ C cos(ωt) + D sin(ωt) and θ′(t) ≈ −ωC sin(ωt) + ωD cos(ωt)

for some constants C and D. Plugging in the initial conditions gives C � 0.10 rad and
D � −0.05421 rad. Then

θ(0.50) ≈ (0.10) cos(1.77088) − (0.05421) sin(1.77088) � −0.0730036,

so the pendulum will be at an angle of approximately −0.073 rad.

EXERCISES

1. A pendulum with a length of 0.30 m starts from rest at an angle of 0.18 rad. How
quickly will the angle of the pendulum be changing 0.20 sec later?

2. A 2.0 µF capacitor is connected to an inductor. If the resulting system oscillates
with a frequency of 3.0 kHz (i.e. 3000/sec), what is the inductance of the inductor?

3. A 3.5 kg mass has been attached to a spring with a spring constant of 24 kg/sec2.
If the mass is oscillating with an amplitude of 1.6 m, what is the maximum speed
of the mass during the oscillation?

4. A charged capacitor with a capacitance of 3.0 F is attached to an inductor with an
inductance of 0.20 H. The initial current in the circuit is zero, but after 1.0 sec the
current has increased to 8.0 A. What was the initial charge on the capacitor?

5. When two masses m1 and m2 are connected by a spring, the length L of the spring
obeys the differential equation

m1m2
m1 + m2

d2L
dt2 � −kL,

where k is the spring constant.
(a) Suppose a 3.0 kg mass is attached to a 5.0 kg mass by a spring with a spring

constant of 12 kg/sec2. What is the period of the resulting oscillations?
(b) In a carbon monoxide (CO) molecule, the bond between the carbon and oxygen

atoms can be modeled as a spring with spring constant 1.13 × 1039 u/sec2.
Given that the carbon atom has a mass of 12.0 u and the oxygen atom has a
mass of 16.0 u, at what frequency will the molecule tend to vibrate?
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6. A pendulum with a length of 20.0 cm released from rest at an angle of 45.0◦.
(a) What period does the harmonic approximation predict for this pendulum?

Assume that the acceleration due to gravity is 9.81 m/sec2.
(b) The pendulum is measured to have an actual period of 0.933 seconds. What was

the percentage error in the period predicted by the harmonic approximation?
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