
3 Algebraic Methods

b The first appearance of the equation
E � Mc2 in Einstein’s handwritten notes.1

So far, the only general class of differential equations that we know how to solve

are directly integrable equations, i.e. equations of the form

y′ � f (x).

In this chapter, we will learn two new algebraic methods for solving differential

equations, known as integrating factors and separation of variables. These methods

will allow us to solve a wide variety of first-order equations.

Both of these methods are based on the idea of implicit differentiation. Given any

equation involving x, y and a constant C, such as

x2

+ y2

� C,

we can differentiate both sides implicitly to obtain a differential equation involving x
and y:

2x + 2y y′ � 0.

1
Photo by Peat Bakke, licensed under CC BY 2.0.
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2 Algebraic Methods

By reversing this process, we can find the general solution to certain differential

equations. For example, the equation

3y2 y′ + e2x
� 0

integrable, since it is the derivative of the equation

y3

+
1

2

e2x
� C.

Solving for y now yields the general solution. Implicit differentiation and the solution

of integrable equations are discussed in Section 3.1.

Most differential equations are not integrable, but it is often possible to put a

differential equation into integrable form using algebraic manipulations. In some cases,

we can use algebra to separate the variables of a differential equation, putting it into

the form

f (y) y′ � g(x).

In this case, we can find a solution by integrating f (y) and g(x) separately. In other

cases, the right approach is to multiply through by a certain function of x known as an

integrating factor. This method can be used to solve any linear differential equation
of the form

f (x) y′ + g(x) y � h(x).

We will discuss separation of variables in Section 3.2, and integrating factors in

Section 3.3.

Finally, in Section 3.4 we discuss several applications of integrating factors and

separation of variables to science, including Newton’s law of cooling and rate equations

for chemical reactions.
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3.1 Integrating Both Sides

Implicit differentiation is a technique from calculus for taking the derivative of

expressions involving an unknown function y(x). The idea is to use the normal

algorithm for differentiation, and to simply write y′ whenever we would usually need

to take the derivative of y.

For example, to take the derivative of something like (sin x)3
, we would normally

use the power rule and the chain rule:

Here the cos x comes from the chain rule,

since cos x is the derivative of sin x.

d
dx

[
(sin x)3

]
� 3(sin x)2

cos x.

We use exactly the same procedure to take the derivative of something like y3
, except

that we write y′ whenever we need the derivative of y:

d
dx

[
y3

]
� 3y2 y′.

Here the 3y2
comes from the product rule, and we multiply by y′ because of the chain

rule.

EXAMPLE 1

Take the derivative of both sides of the following equation:

sin(y) + x2 y � x3.

SOLUTION We can use the chain rule to take the derivative of sin(y):

d
dx

[
sin(y)

]
� cos(y) y′.

The derivative of x2 y requires the product rule: In general, the product rule states that

d
dx

[
uv

]
� u′v + uv′.

In this case, u � x2
and v � y, so u′ � 2x

and v′ � y′.

d
dx

[
x2 y

]
� 2x y + x2 y′.

Thus the derivative is

y′cos(y) + 2x y + x2 y′ � 3x2.

We can use implicit differentiation to find a differential equation that has a given

general solution. For example, suppose we want to find a differential equation whose

general solution is

y � Cx2.

We start by solving for the constant C:

yx−2

� C.

If we now take the derivative of both sides, the C disappears: Since C is a constant, its derivative is zero.

y′x−2

− 2yx−3

� 0.

This is a differential equation whose general solution is y � Cx2
. We can simplify the

equation a bit by multiplying through by x3
:

x y′ − 2y � 0.
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EXAMPLE 2

Find a differential equation whose general solution is y � ln(x + C).

SOLUTION To solve this equation for C, we first take the exponential of both sides:

e y
� x + C.

Thus

e y
− x � C.

Taking the derivative of both sides gives

e y y′ − 1 � 0.

This is the differential equation we wanted. We can simplify it by solving for y′:

y′ � e−y .

Integrating Differential Equations
Now that we know how take derivatives implicitly, we can reverse the process to solve

differential equations. For example, given a differential equation like

2y y′ � 4x3

+ 2,

we can integrate both sides to get an equation involving x and y:Technically, there might be a constant on

both sides of the antiderivative, i.e.

y2
+ C1 � x4

+ 2x + C2

However, we can combine the two

constants by subtracting C1 from both

sides of this equation.

y2

� x4

+ 2x + C.

We can now solve for y to get the general solution to the given differential equation:

y � ±

√
x4 + 2x + C.

EXAMPLE 3

Find the general solution to the equation y2 y′ � e3x
.

SOLUTION We can integrate both sides to get

1

3

y3
�

1

3

e3x
+ C.

Solving for y gives

y �
3

√
e3x + 3C.

Since C is an arbitrary constant, 3C is actually itself an arbitrary constant. If we let A � 3C, we

can rewrite our general solution as

y �
3

√
e3x + A,

where A is an arbitrary constant.
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EXAMPLE 4

Solve the following initial value problem:

e4y y′ � x , y(0) � 1.

SOLUTION Integrating both sides yields In general, the antiderivative of f (y) y′ is∫
f (y) dy.

In this case, the antiderivative of e4y y′ is∫
e4y dy �

1

4

e4y
+ C.

1

4

e4y
�

1

2

x2
+ C.

Though we could solve for y at this point, it is easier to start by substituting in the initial

condition:

1

4

e4
� 0 + C.

Then C �
1

4

e4
, so the solution becomes

1

4

e4y
�

1

2

x2
+

1

4

e4.

Solving for y gives

y �
1

4

ln

(
2x2

+ e4

)
.

Sometimes it is possible to recognize one side of an equation as the result of the

product rule.

EXAMPLE 5

Find the general solution to the differential equation x3 y′ + 3xx2 y � 1.

SOLUTION The left side of this equation is the result of a product rule, with the two factors

being x3
and y. Integrating both sides gives

x3 y � x + C.

Solving for y yields the general solution:

y � x−2
+ Cx−3.

Sometimes after you integrate both sides of a differential equation it is not possible to

algebraically solve for y. For example, consider the equation(
3y2

+ e y ) y′ � x2.

Integrating both sides gives

y3
+ e y

�
1

3

x3
+ C.

Unfortunately, there is no way to solve this equation algebraically for y. This implicit solution
a Figure 1: Three curves of the form

y3
+ e y

�
1

3

x3
+ C.

still describes the solutions of the equation, in the sense that the corresponding curves in

the x y-plane are graphs of the solution functions (see Figure 1), but there is no way to write

explicit algebraic formulas for these solutions.

A Closer Look Implicit Solutions
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The method of integrating both sides can also be used on second-order equations, although

the antiderivatives are often much more difficult. For example, consider the equation

y y′′ + (y′)2
� 6x.

Though it may not be obvious, the left side is a result of the product rule: it is the derivative of

the product y y′. Integrating both sides gives

y y′ � 3x2
+ C.

We have now reduced to a first-order equation, and we can integrate both sides again to obtain

the general solution. Specifically, we get

1

2

y2
� x3

+ Cx + D ,

where D is an arbitrary constant. Multiplying by two and taking the square root gives

y � ±

√
2x3 + Ax + B,

where A � 2C and B � 2D are arbitrary constants.

A Closer Look Integrating Second-Order Equations

EXERCISES

1–2 Take the derivative of both sides of the given equation with respect to x.

1. x y + ln y � sin(2x) 2. e2y
− x y2

� 1

3–6 Find a differential equation whose general solution is the given formula.

3. y � C
√

x 4. y � ±
√

x + C

5. y � tan(x + C) 6. y � e2x
+ Ce−x

7–12 Find the general solution to the given differential equation by integrating both

sides.

7. y y′ � ex 8. y′e2y
� x3

9. y′
√

y � cos x 10. x4 y′ + 4x3 y � x4

11. e3x y′ + 3e3x y � e5x 12. y′ tan x + y sec
2 x � cos x

13–14 Solve the given initial value problem.

13. y′ cos y � e−x
, y(0) � 0 14. −y−2 y′ � 2x, y(0) � 3
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3.2 Separation of Variables

Sometimes we must manipulate an equation algebraically before we can integrate both

sides. For example, consider the equation

y′ �
cos x
3y2

.

The right side cannot be integrated, since it involves y but not y′. However, if we

multiply through by 3y2
, we get

3y2 y′ � cos x.

This equation can be integrated, yielding

y3

� sin x + C.

Solving for y gives y � (sin x + C)1/3
.

In general, if we can get a differential equation into the form

f (y) y′ � g(x)

for some functions f and g, then we can try to solve it by integrating both sides. This

technique is called separation of variables, since it involves moving all of the y’s to

one side of the equation and all of the x’s to the other side.

Separation of Variables
A differential equation is called separable if it can be put in the form

f (y) y′ � g(x),

for some functions f and g. In this case, the solutions are given by∫
f (y) dy �

∫
g(x) dx.

EXAMPLE 6

Find the general solution to the differential equation y′ � xe2y
.

SOLUTION We can divide through by e2y
to separate the variables:

e−2y y′ � x.

The solutions are given by ∫
e−2y dy �

∫
x dx.

Integrating yields

−
1

2

e−2y
�

1

2

x2
+ C.

We must now solve for y. We first multiply through by −2 to get

e−2y
� −x2

+ A,

where A � −2C. Taking the logarithm of both sides and dividing through by −2 yields

y � −
1

2

ln

(
A − x2

)
.
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Sometimes separation of variables misses certain constant solutions. For example, consider

the equation

y′ � 2x y2.

We can divide through by y2
to separate variables:

y−2 y′ � 2x

Integrating both sides yields

−y−1
� x2

+ C

so

y � −
1

x2 + C
.

It may seem that we have found the general solution, but we are actually missing the constant

solution y � 0. The culprit is the first step where we divided through by y2
, which is only

possible if y , 0.

A Closer Look Missing Solutions

EXAMPLE 7

Solve the following initial value problem:

x2 y′ � y2 , y(1) � 3.

SOLUTION To separate the variables, we must divide through by both x2
and y2

:

y−2 y′ � x−2.

Then the solutions are given by ∫
y−2 dy �

∫
x−2 dx.

Integrating yields

−y−1
� −x−1

+ C.

Instead of solving for y, we plug in the initial condition y(1) � 3 immediately, which tells usFor an initial value problem, it is usually

easiest to solve for C immediately after

integrating.

that C � 2/3. Thus we have the equation

−
1

y
� −

1

x
+

2

3

.

Solving for y and simplifying yields

y �
3x

3 − 2x
.
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Autonomous Equations
One common type of differential equation are those that involve y and y′ but not x,

i.e. differential equations of the form

y′ � f (y).

Such equations are known as autonomous equations. For an autonomous equation,
In the case where y depends on t,
autonomous equations are also known

as time-invariant equations.we can separate variables by dividing through by the entire right side f (y).

EXAMPLE 8

Find the general solution to the differential equation y′ � y2 + 1

SOLUTION Dividing through by y2 + 1 separates the variables:

1

y2 + 1

y′ � 1.

The solutions are given by ∫
1

y2 + 1

dy �

∫
1 dx.

Integrating gives Recall that∫
1

x2 + 1

dx � arctan(x) + C.
arctan y � x + C,

so

y � tan(x + C).

Note that the result of integrating an autonomous equation is always just x + C on

the right, and thus the general solution to an autonomous equation is always a formula

for y as a function of x + C.

There is a nice way of viewing separation of variables using differentials, which looks a little

bit different from our method. Given an equation like

−y′ � 3x2e y ,

we can write it as

−
dy
dx

� 3x2e y ,

To separate variables, we now divide through by e y
and multiply through by dx:

−e−y dy � 3x2 dx.

Here, the dx and dy by themselves are differentials, which represent small changes in the values Really the differentials dx and dy
represent infinitesimal changes in the

values of x and y. Infinitesimals are not

often used in mathematics, since they are

not part of the real number system, but

reasoning using infinitesimals is common

in the sciences.

of x and y as we travel along a solution curve. We can integrate both sides of this equation to

get the solution: ∫
−e−y dy �

∫
3x2 dx.

This method is presented in many textbooks, and you should feel free to use it if you prefer it.

It always yields the same results as our reverse implicit differentiation method.

A Closer Look Separation of Variables using Differentials
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EXERCISES

1–8 Use separation of variables to find the general solution to the given equation.

(Do not worry about missing solutions.)

1. e−2x y′ � 2y2 2. y′ � e y
ln x

3. y′ � x y2 4. y′ � y2

5. y′ � e2y 6. y′ � 3y2/3

7. y′ � ex+y 8. y′ − x y2

� x

9–12 Solve the given initial value problem.

9. ex y′ � x y2

, y(0) � −1 10. y′ � 2x sec y, y(0) �
π
6

11. ex y y′ � e3x
, y(0) � −2 12. y′ − 1 � y2

, y(0) � 1
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3.3 Integrating Factors

Consider the following differential equation:

x y′ + 3y � x4.

This equation cannot be integrated directly, and it is not possible to separate the

variables. Is there any good way to solve it?

There is actually a very clever trick we can use to make this equation integrable.

Consider what happens if we multiply through by x2
:

x3 y′ + 3x2 y � x6.

As you can see, the left side is now the result of a product rule (being the derivative

of x3 y), which makes it possible to integrate both sides. This yields

x3 y �
1

7

x7

+ C

and therefore

y �
1

7

x4

+ Cx−3.

The factor of x2
that we used here is called a integrating factor, since multiplying by

this factor makes the equation integrable.

First-Order Linear Equations
A differential equation of the form

f (x) y′ + g(x) y � h(x)

is called a first-order linear equation. Such an equation is integrable if

f ′(x) � g(x).

Every first-order linear equation can be made integrable by multiplying through by

an appropriately chosen integrating factor.

When searching for an integrating factor, keep in mind that the goal is to make the

If f ′(x) � g(x), then the differential

equation is just

f (x) y′ + f ′(x) y � h(x),

and the left side is the derivative

of f (x) y.

derivative of f (x) equal to g(x).

EXAMPLE 9

Find the general solution to the equation x2 y′ + 6x y � x + 1.

SOLUTION This equation isn’t integrable, since 6x isn’t the derivative of x2
. However, we

can make it integrable if we multiply through by x4
:

x6 y′ + 6x5 y � x5
+ x4.

The left side is now the derivative of x6 y. Integrating both sides gives

x6 y �
1

6

x6
+

1

5

x5
+ C

and solving for y yields

y �
1

6

+
1

5

x−1
+ Cx−6.



12 INTEGRATING FACTORS

EXAMPLE 10

Find the general solution to the equation y′ + 2y � x.

SOLUTION Multiplying by a power of x won’t work here, since multiplying by xn
gives

xn y′ + 2xn y � xn+1.

and 2xn
is never the derivative of xn

. Instead, we need to multiply through by e2x
:

e2x y′ + 2e2x y � xe2x .

The left side is now the derivative of e2x y. This lets us integrate both sides, using integration

by parts on the right side:

e2x y �
1

2

xe2x
−

1

4

e2x
+ C.

Solving for y gives

y �
1

2

x −
1

4

+ Ce−2x .

EXAMPLE 11

Find the general solution to the equation y′ � 1 + y tan x.

SOLUTION We start by putting this equation into the standard form for a linear equation:An equation must be put into the form

f (x) y′ + g(x) y � h(x)

before you can search for integrating

factors.

y′ − y tan x � 1.

We can now look for an integrating factor, although a little bit of guessing and checking is

required. The right strategy is to multiply through by cos x:

y′ cos x − y sin x � cos x.

The left side is the derivative of y cos x. Integrating both sides gives

y cos x � sin x + C

so

y � tan x + C sec x.

It is not hard to show that every first-order linear equation has an integrating factor. First,

by dividing through by the coefficient of y′, we can put any first-order linear equation into the

form

y′ + g(x) y � h(x).

Once an equation is in this form, the desired integrating factor is eG(x)
, where G(x) is any

antiderivative of g(x). For example, the equation

y′ + (cos x)y � cos
3 x

has integrating factor esin x
. Although this procedure works for any first-order linear equation,

it is usually easier to simply guess the integrating factor than to divide through by the

coefficient of y′ and then use the formula eG(x)
.

A Closer Look Existence of Integrating Factors
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EXERCISES

1–8 Use an integrating factor to find the general solution to the given differential

equation.

1. x2 y′ + 3x y � 1 2. x y′ � x5

+ 2y

3. y′ + 5y � ex 4. y′ � x + y

5. y′ + y cot x � cos x 6.
x y′

1 + y
� 1

7. x y′ ln x + y � x2 8. y′ + 2x y � x

9–10 Solve the given initial value problem.

9. x y′ + 2y � x2

, y(1) � 1 10. y′ � ex
+ 3y, y(0) � 4



3.4 Applications

In this section we consider a few applications of separation of variables and integrating
factors to the natural sciences. Many more such applications are described in the
exercises.

Newton’s Law of Cooling
Newton’s law of cooling is a differential equation that predicts the cooling of a warm
body placed in a cold environment. According to the law, the rate at which the
temperature of the body decreases is proportional to the difference in temperatures
between the body and its environment. In symbols,This law was first formulated by Isaac

Newton in 1701 in an anonymous article
entitled Scala Graduum Caloris (“Scale of
the Degrees of Heat”). dT

dt
� −r(T − Te )

where T is the temperature of the object, Te is the (constant) temperature of the
environment, and r is a constant of proportionality.

This equation is linear, so we ought to be able to solve it using integrating factors.

a Newton illustrated his law by describing
the cooling of hot iron.1

We start by adding rT to both sides:

dT
dt

+ rT � rTe .

This is now in the standard form for a linear equation. The integrating factor is e rt :

e rt dT
dt

+ re rtT � re rtTe .

Integrating both sides gives
e rtT � e rtTe + C

and hence

T � Te + C e−rt

where C is an arbitrary constant.
Figure 1 shows the cooling of a warm body over time as predicted by Newton’s

a Figure 1: Cooling of a warm body.

law of cooling. The behavior is very similar to exponential decay, except that the
temperature T approaches Te instead of 0 as t →∞. Indeed, Newton’s law of cooling
can be interpreted as saying that the temperature difference T − Te decays exponentially
over time.

EXAMPLE 1

An apple pie with an initial temperature of 170 ◦C is removed from the oven and left to cool
in a room with an air temperature of 20 ◦C. Given that the temperature of the pie initially
decreases at a rate of 3.0 ◦C/min, how long will it take for the pie to cool to a temperature
of 30 ◦C?

SOLUTION The pie should obey Newton’s law of cooling with Te � 20 ◦C. Thus

T (t) � 20 + C e−rt and T′(t) � −rCe−rt

1Photo by Jeff Kubina, licensed under CC BY-SA 2.0, cropped from original.

https://www.flickr.com/photos/95118988@N00/2750824192
https://www.flickr.com/photos/kubina/
http://creativecommons.org/licenses/by-sa/2.0
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for some constants C and r. We also have the initial conditions

T (0) � 170 ◦C and T′(0) � −3.0 ◦C/min.

Plugging these in gives the equations

170 � 20 + C and −3 � −rC,

so C � 150 ◦C and r � 0.02. Thus

T � 20 + 150e−0.02t .

To find how long it will take for the temperature to reach 30 ◦C, we plug in 30 for T and solve
for t. The result is that t � 135 min, as shown in Figure 2.a Figure 2: The temperature function T (t)

in Example 1. The diagonal dashed line
shows the initial 3.0 ◦C/min rate of
temperature decrease.

Reaction Rates
In chemistry, the rate at which a chemical reaction occurs is determined by a differential

The study of the rates at which chemical
reactions occur is a branch of chemistry
known as chemical kinetics. For more
complicated reactions, the chemical
kinetics can involve a system of
differential equations, with one equation
for each reactant.

equation called a rate equation. For a reaction with a single reactant, the concentration C
of the reactant obeys a rate equation of the form

dC
dt

� −rCn ,

where r is a constant called the rate constant, and n is a constant called the order of
the reaction.

Another important differential equation for the sciences is the logistic equation, which is
often used as a model for population growth in an environment with limited resources. The
equation is

dP
dt

� −rP
(
1 −

P
Pmax

)
where Pmax is the maximum population that the given environment can support, sometimes
called the carrying capacity. This equation is autonomous (time-independent), and can
therefore be solved using separation of variables; however, the integral that arises is difficult,
and requires integration by partial fractions. The resulting solution is

P �
Pmax

1 + Ce−rt

where C is an arbitrary constant.
Figure 3 shows the graph of a typical solution to the logistic equation. Note that the

a Figure 3: Logistic population growth.

population grows quickly at first (as with exponential growth), but the rate of increase slows
as the population approaches the maximum. As t → ∞, the population asymptotically
approaches the carrying capacity, i.e.

lim
t→∞

P(t) � Pmax.

The solutions to the logistic equation are known as logistic functions, and can be used to
model any situation where a variable is growing but the growth is bounded above.

Logistic functions are sometimes called
sigmoid functions because of the S-like
shape of their graphs, though this term is
also used more broadly to refer to any
function whose graph has an S-like shape.

A Closer Look The Logistic Equation
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Typically the order of the reaction is the same as its molecularity, i.e. the number
of molecules of the reactant that must come together to react. For example, the
decomposition of sulfuryl chloride

SO2Cl2 −→ SO2 + Cl2.

is a first-order reaction (n � 1), since it involves the decomposition of a single molecule
of SO2Cl2. On the other hand, the decomposition of nitrogen dioxide

a A sample of nitrogen dioxide gas.2

2 NO2 −→ 2 NO + O2.

is a second order reaction (n � 2), since it only occurs when two molecules of NO2
come together.

First and second order reactions behave somewhat differently. The rate equation
for a first-order reaction is

dC
dt

� −rC,

which is an instance of the exponential decay equation. Thus the concentration of the
reactant decays exponentially. A second-order reaction, on the other hand, is governed
by the equation

dC
dt

� −rC2 ,

We can solve this equation using separation of variables. Dividing through by C2 gives

C−2 dC
dt

� −r,

so the solutions are given by ∫
C−2 dC �

∫
−r dt .

Integrating gives
−C−1

� −rt + A

for some constant A, so

C �
1

rt + B

where B � −A.
Figure 4 shows the decrease in the concentration of a second-order reactant according

a Figure 4: Concentration of a
second-order reactant.

to this equation. This decrease behaves somewhat differently than exponential decay,
with the concentration decreasing very quickly at first but having a very long tail. In
particular, the half-life of the reactant is very small at first but increases over the course
of the reaction, as shown in Figure 5.

a Figure 5: Halving times for the reactant
in a second-order reaction. Note the
increasing half-life.

EXAMPLE 2

The decomposition of nitrogen dioxide (NO2) is a second-order reaction. During a chemistry
experiment, nitrogen dioxide with an initial concentration of 0.20 M is decomposed at a high
temperature. If 90% of the NO2 decomposes during the first ten seconds, what is the rate
constant for the reaction?

2Photo by W. Oelen, licensed under CC BY-SA 3.0, via Wikimedia Commons

http://woelen.homescience.net/science/index.html
http://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Nitrogen_dioxide_gas.jpg
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SOLUTION Figure 6 shows the concentration [NO2] of nitrogen dioxide in this example. We

a Figure 6: The concentration of NO2 in
Example 2.

know that
[NO2] �

1
rt + B

,

and we are given that [NO2] � 0.20 M at t � 0, and [NO2] � 0.020 M (10% of 0.20 M) at
t � 10 sec. This information yields two equations:

0.20 M �
1
B

and 0.020 M �
1

r(10 sec) + B
.

Then B � 5.0/M, so the rate constant r is 4.5/(M · sec).

EXERCISES

1. A bottle of water with an initial temperature of 25 ◦C is placed in a refrigerator
with an internal temperature of 5 ◦C. Given that the temperature of the water is
21 ◦C ten minutes after it is placed in the refrigerator, what will the temperature of
the water be after one hour?

2. In 1974, Stephen Hawking discovered that black holes emit a small amount of
radiation, causing them to slowly evaporate over time. According to Hawking, the
mass M of a black hole obeys the differential equation

dM
dt

� −
k

M2

where k � 1.26 × 1023 kg3/year.
(a) Use separation of variables to find the general solution to this equation
(b) After a supernova, the remnant of a star collapses into a black hole with an

initial mass of 6.00 × 1031 kg. How long will it take for this black hole to
evaporate completely?

3. The decomposition of hydrogen iodide is a second-order reaction:

2 HI −→ H2 + I2

Initially the concentration of a sample of hydrogen iodide is 0.250 M, and the
concentration is decreasing at a rate of 1.00 × 10−4 M/sec.
(a) How long will it take for half of the hydrogen iodide to be consumed?
(b) How long will it take for three quarters of the hydrogen iodide to be consumed?

4. When a hospital patient is administered morphine intravenously, the volume V of
morphine in the bloodstream obeys the equation

dV
dt

� r − kV

where r is the flow rate of the morphine, and k � 0.35/hour.
(a) Use integrating factors to find the general solution to the above equation.
(b) A nurse connects a patient to a morphine drip that administers morphine at

a rate of 1.5 mg/hour. How much morphine will there be in the patient’s
bloodstream one hour later?



APPLICATIONS 5

5. The velocity of an object moving through a fluid can be modeled by the drag
equation

dv
dt

� −kv2

where k is a constant.
(a) Find the general solution to this equation.
(b) An object moving through the water has an initial velocity of 16 m/sec. After

2.0 seconds, the velocity has decreased to 12 m/sec. What will the velocity be
after ten seconds?

6. Water is being drained from a spout in the bottom of a cylindrical tank. According
to Torricelli’s law, the volume V of water left in the tank obeys the differential
equation

dV
dt

� −k
√

V

where k is a constant.
(a) Use separation of variables to find the general solution to this equation.
(b) Suppose the tank initially holds 30.0 L of water, which initially drains at a rate

of 1.80 L/min. How long will it take for tank to drain completely?
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