5.1 Vectors

A vector is any quantity that has both magnitude and direction. For example, a
description of the wind in a weather report typically includes both the strength of
the wind and the direction from which the wind is blowing, making wind a vector
quantity.

Many important quantities in science can be described as vectors, especially in
physics. For example, a force acting on an object is a vector, since it has both magnitude
(the strength of the force) and direction (the direction of the push or pull). Other vector
quantities in physics include momentum, impulse, angular momentum, torque, and
the electric and magnetic field vectors.

In mathematics, vectors are indispensable tools in geometry, and are used extensively
to provide geometric insight in subjects such as multivariable calculus and differential
equations. Vectors and their generalizations are also one of the main objects of study
in linear algebra.

Vectors as Arrows

We typically think of a vector as an arrow drawn in Euclidean space. A two-dimensional
vector can be represented by an arrow drawn in the Euclidean plane, as shown in
Figure 1. The magnitude of the vector is length of the arrow; i.e. the distance from the
point A to the point B, while the direction of the vector is the direction that the arrow
points.

Two vectors are considered equal as long as they have the same magnitude and the
same direction. For example, the two vectors shown in Figure 2 are considered the
same, even though they start and end at different points. When working with vectors,
we can move a vector anywhere we want in the plane as long as we do not change its
magnitude or direction.

Notation and Terminology
When discussing vectors, ordinary numerical quantities (i.e. real numbers) are referred
to as scalars. Both vectors and scalars are used for algebra, and a variable may be either
a vector variable or a scalar variable.

To help distinguish between these two types of quantities, vector variables will
always be written in an upright bold font:

u, Vv, or w,
while scalar variables will be written in the usual italic font:

X, Yy, or z.
This is the most popular convention for distinguishing between vector and scalar
variables, but other conventions are possible. For example, some books denote a vector
variable using an arrow above the letter:

i, ¥, or .
This is also the most common way to indicate a vector variable when doing hand

calculations, since it is difficult to make handwritten letters bold, and the reader is
encouraged to adopt this practice.

A
A Figure 1: A two-dimensional vector.

D

C
A

A Figure 2: These two vectors are equal,
since they have the same magnitude and
the same direction.

The word “scalar” comes from the effect
that scalars have on vectors when they
multiply (see below).

Advanced textbooks sometimes do not
use any special notation to distinguish
vector variables, especially in subjects
that deal with many different kinds of
mathematical objects. For such a book, it
is up to the reader to remember which
variables are scalars and which ones are
vectors.
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A These vectors all have the same
magnitude but have different directions.
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W
Vitw

A Figure 3: The sum of two vectors v
and v

A Figure 4: A demonstration that vector
addition is commutative. The middle arrow
represents both v+ wand w + v

A Figure 5: A demonstration that vector
addition is associative. The bottom arrow
represents both (u + v) + w and

u+ (v+w).

/7

A Figure 6: A vector v and its negation —v

Magnitude of a Vector

The magnitude of a vector is a scalar, and corresponds to the length of any arrow that
represents the vector. Different books write the magnitude of a vector v in different
ways:

Ivl, livll, or w.
Also, some books refer to the magnitude of a vector as its length or norm instead.
We will consistently use the word “magnitude” and write |v| for the magnitude of a

vector v.
The magnitude of a vector v is always either positive or zero:

[v] > 0

If |v| = 0, then v is the zero vector, which has a magnitude of zero but no direction.
We will use a bold zero 0 to denote the zero vector.

Vector Addition

There is a way of combining two vectors known as vector addition. Given two vectors v

and w, we arrange them end to end as shown in Figure 3. The vector that stretches from

the beginning of v to the end of w is called the sum of v and w, and is written v + w.
Vector addition has many of the same properties as addition of scalars.

Properties of Vector Addition
Vector addition has the following properties:

1. Commutative property: v+ w = w + v for any two vectors v and w.

2. Associative property: (u +v) + w = u + (v + w) for any three vectors u, v, w.

3. Additive identity: v + 0 = v for any vector v, where 0 is the zero vector.

Figure 4 shows the geometry behind the commutative property, and Figure 5 shows
the geometry behind the associative property. The additive identity property follows
immediately from the fact that the zero vector has the same starting and ending point.

Negation and Subtraction

The negation of a vector v, denoted —v, is the vector with the same magnitude but
the exact opposite direction, as shown in Figure 6. Sometimes —v is also called the
opposite of v, and together v and —v are opposite vectors. Note that the negation of
the zero vector is again the zero vector.

A vector and its negation are additive inverses, meaning that

v+(-v) =0

for any vector v.

Although this operation is referred to as negation, there isn't any sense in which a
vector is either positive or negative. A vector v points in a certain direction, and its
negation —v points in the exact opposite direction, but neither of these directions is
preferred, and there is no good way to decide which of v and —v should be positive
and which should be negative.

We can use negation to define subtraction for vectors. If vand w are vectors, the
difference w — v is defined by the formula
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W-—V =W+ (—-v).

Figure 7 shows the geometric meaning of vector subtraction. If v and w are arranged
to have the same beginning point, then the difference w — v is the vector that points
from the end of v to the end of w.

Scalar Multiplication

There does not seem to be a good way of multiplying two vectors in general. However,
there is an operation called scalar multiplication that allows us to multiply a vector by
a scalar.

For a positive scalar k and a vector v, the product kv is a vector in the same direction
as v whose magnitude has been scaled by a factor of k. Thus,

lkv| = k|v|.

Figure 8 shows a vector v and several of its scalar multiples.
Multiplying a vector by negative scalar both scales and negates the vector. Thus
(=1)vis the same as —v, and (—k)v is the same as —(kv) for any scalar k. Note then that

kvl = [k[|v]

for any scalar k, where |k| is the absolute value of k.
Finally, multiplying a vector by the scalar 0 results in the zero vector:

Ov=0

We now list some further properties of scalar multiplication. Most of these are quite
straightforward, and the reader is encouraged to think about the justifications.

Properties of Scalar Multiplication
Scalar multiplication has the following properties:

1. Associativity: a(bv) = (ab)v for any scalars a, b and any vector v.
2. Multiplicative identity: 1v = v for any vector v.

3. Left distributivity: a(v + w) = av + aw for any scalar 4 and any vectors v, w.

4. Right distributivity: (a + b)v = av + bv for any scalars a, b and any vector v.

Linear Combinations

A linear combination of two vectors v and w is any expression of the form
av + bw,

where a and b are scalars. Figure 9 shows two vectors v and w and several different
linear combinations of them.

A linear combination is the most general way of combining two vectors v and w
using vector addition and multiplication by scalars. That is, any expression involving
v and w and these two operations can always be simplified algebraically to a linear
combination of v and w.

A Figure 7: The difference of two vectors v
and w.

A Figure 8: A vector v and several of its
scalar multiples.
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P Figure 9: Several different linear
combinations of two vectors v and w. Each
parallelogram in the grid has v and w along
its sides.

A Figure 10: Diagram for Example 2.

A Figure 11: The vector from C to D is
half of u + v.

EXAMPLE 1

Express the vector 2(-3v + 4w) — 3(-5v) as a linear combination of v and w.
SOLUTION  Distributing the 2 and —3 through gives

—6v + 8w + 15v,
and combining like terms yields the linear combination

9v + 8w.

EXAMPLE 2

In Figure 10, point D is the midpoint of line segment BC. Express the vector w as a linear
combination of u and v.

SOHTION Note first that the vector from C to B is equal to u + v. Since D is the midpoint
of BC, the vector from C to D must be half of u + v, as shown in Figure 11. From the picture,
we see that

1
u+w = E(u+v)

and therefore 1
wW = —Eu + EV.

It is also possible to take a linear combination of more than two vectors. For example,
if u, v, and w are three vectors, a linear combination of them would have the form

au + bv + cw,

where 4, b, and ¢ are scalars. More generally, if vi, vy, ..., v, are n different vectors,
then a linear combination of them has the form

avy + axvpy + --- + a,vy,
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where a1,a,...,a, are n scalars.

The Algebra of Vectors

The properties of vector addition and scalar multiplication mean that essentially all
of the usual rules of algebra apply to vectors, as long we do not try to multiply two
vectors together or add a vector to a scalar. In particular, we can use algebra to solve
equations involving vectors.

EXAMPLE 3

Solve the following equation for v in terms of u:

3u+2v = 5u—4(u—2v).

SOLUTION  Distributing the —4 on the right gives
3u+2v = 5u —4u + 8v,

which simplifies to
3u+2v = u+8v.

Subtracting both 8v and 3u from both sides gives
—6v = —2u

and dividing through by —6 yields

EXERCISES

1. Two vectors v and w have magnitudes of 12 and 5, respectively.
(a) What is the largest possible magnitude of v + w? What is the smallest possible
magnitude?
(b) Suppose the directions of v and w are perpendicular. What is the magnitude
of v + w in this case?

2. The following figure shows two congruent rectangles.

u

Express the vectors wi and w, as linear combinations of u and v.
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3. The following figure shows a tiling of the plane by congruent hexagons.

Express the vector from P to Q as a linear combination of u, v, and w.

4. The following figure shows a parallelogram in the plane.

Express the vector w as a linear combination of u and v.

5. In the following figure, AABC is isosceles, and Z/APC is a right angle.

Ae ¢ *B

Express the vector w as a linear combination of u and v.

6. The following figure shows a right triangle in the plane.

Express the vector w as a linear combination of u and v.
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7. The following figure shows two vectors v and w as well as a certain linear combina-
tion av + bw.

av + bw

v

Use the picture to estimate the values of a and b. Try to be accurate to within 20%.

8. Given that 3(u + 2w) + 4v = 2u — 4(3v — w), express the vector w as a linear
combination of u and v.



5.2 Vector Components

So far all of our discussion of vectors has been from the viewpoint of Euclidean
geometry. However, in modern mathematics it is much more common to take an
analytic approach to geometry, identifying each point in the plane with an ordered
pair (x, y) of real coordinates. The resulting plane is sometimes called the xy-plane,
but in linear algebra and advanced mathematics it is more often referred to as R2.

The most important vectors in R? are the standard basis vectors i and j, shown in
Figure 1. The standard basis vectors both have a magnitude of 1, with i pointing in the
positive x-direction and j pointing in the positive y-direction.

We can take linear combinations of i and j to get other vectors in the plane. For
example, Figure 2 shows the vector 5i + 3j, which stretches 5 units in the positive
x-direction and 3 units in the positive y-direction. In fact, every vector v in R? can be
written as a linear combination of i and j:

V = Uxi+ 0y

The coefficients v, and v, in this linear combination are called the components of v.
These represent how far the vector stretches in the x and y directions, as shown in
Figure 3. In particular, v, is the horizontal component of v, and v, is the vertical
component of v.

Note that each component may be positive or negative. For example, v, is positive
if v points generally to the right, and vy is negative if v points generally to the left.
Similarly, v, is positive if v points generally upwards, and v, is negative if v points
generally downwards.

Column Vectors

There is another common notation for linear combinations of i and j. Given any scalars
a and b, we let

a . .
[b] = ai + bj.

That is, [ Z Z ] written in this

fashion is known as a column vector. This way of writing vectors is very popular

} is a vector whose components are a and b. A vector

within mathematics, but physicists usually prefer to write i and j explicitly.

Of course, any vector v can be written as a column vector, with

=[5}

Figure 4 shows four different vectors in R?, written as column vectors.
Note that the standard basis vectors i and j can themselves be written as column
vectors. In particular, since

i=1i+0j and j=0i+]1j

= 0

we have

i~ o] | and

Here R is the symbol for the set of real
numbers. The superscript 2 in R?
represents the fact that every point in the
plane is an ordered pair of numbers.

X

1 2

A Figure 1: The standard basis vectors i
andj.

Ay

y=

A Figure 2: A linear combination of i and j.

Ay

A Figure 3: The two components v, and
vy of a vector v.

RN

Hya
R

A Figure 4: Four vectors in R2.

X
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Y

A Figure 5: The direction of v is
determined by the angle 6.

Uy

Ux
X

A Figure 6: The components of v are the
legs of a right triangle whose hypotenuse
is |v|.

Vector Operations

The operations of vector addition and scalar multiplication are easy to compute using
components. The formula for vector addition is

C —_—
il =
That is, each component of the sum of two vectors is the sum of the corresponding
components of the two vectors. For example,

HRHME!

The formula for scalar multiplication is equally simple:

(o] - %]

That is, multiplying a vector by a scalar k is the same as multiplying each component

by k. For example,
3 6
3] =[5

The direction of a vector v in R? can be described by a single angle 0, as shown in
Figure 5. As is the custom in mathematics, we measure angles counterclockwise from
the positive x-axis. Thus:

a

b

a+c

* b+d

Magnitude and Direction

e 0 = 0° if the vector points to the right,

¢ 0 =90° if the vector points straight up,

* O = 180° if the vector points to the left, and

e 0 =270° or (-90°) if the vector points straight down.

Given the direction 6 and magnitude |v| for a vector, we can find the components of
the vector using the formulas

Uy = |v|cos O and vy = |v|sin 0

These formulas can be derived from the right triangle shown in Figure 6. Conversely,
given the components of a vector, we can find the magnitude and direction using the
formulas

v
lv| = vf + vyz and tan0 = —~

Ox

The first of these formulas follows from the Pythagorean theorem. The second allows
us to find the angle 6 using v, and v,, though we must be careful about the direction
that the vector points.
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A WARNING The formula given for tan 6 does not imply that
v

6 = tan~! (_y )

Ux

This formula works if the vector points to the right (i.e. if vx > 0), but if the vector points to the
left the value of the arctangent will be off by 180°.

EXAMPLE 1

Find the magnitude and direction of the vector v = [ _;1 ] 5

SOLUTION From the formulas above, we have
3
v = \J(-)2+(3B3)2 =5 and tan 0 = Y
where 0 is the direction of v. Now,
3
-1 o
t ——| = -36.87°,
an ( = ) 36.8

but this is not the right direction, since the vector would have to point down and to the right.
Adding 180° gives the correct direction of 143.13°.

Vector Equations

Since the components of a vector determine both the magnitude and direction, two
vectors are equal if and only if they have the same components.

Equality of Vectors
The equation

i) =[]

holds if and only if a = cand b = d.

Here if and only if means that either statement implies the other. That is, if two
vectors are the equal then their components are the same, and if two vectors have the
same components then they must be equal.

A vector equation is an equation for which both sides are vectors. The principle
above lets us separate a vector equation into two scalar equations, which is often
necessary for finding the solution.

EXAMPLE 2

Solve for x: 3[;]_[_§] =x[§]'

SOLUTION  Multiplying the left vector through by 3 and the right vector through by x gives

the equation
x| | 4| _ |2«
6 6| |3x|°
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A Figure 7: A free body diagram in physics
represents force vectors as arrows.

We can now subtract the two vectors on the left to get
3x—-4| | 2x
12 T 3x |’
which is the same as the two scalar equations

3x —4 =2x and 12 = 3x.

The solution to both of these equations is x = 4.

EXAMPLE 3

Solve for x and y:
2

~ g

ty

= 3]

SOLUTION  Combining the vectors on the left together gives the equation
_ |8
= el

2x +2y = 8 and 3x +y = 6.

2x +2y
3x+y

which is the same as the system of equations

The second equation tells us that y = 6 — 3x. Plugging this into the first equation and solving
for x yields x = 1, and it follows that y = 3.

Vectors in Science

In science, vectors are used to represent any quantity that has both magnitude and
direction. For example:

1. Any moving object has an associated velocity vector. The magnitude of this
vector is the speed of motion, and the direction is the direction in which the object
is moving.

2. In physics, a force acting on an object is represented by a force vector. The
magnitude of this vector is the strength of the force, and the direction is the
direction in which the force pushes.

Note that the magnitude of a vector may have any units, in which case the components
of a vector have those same units. For example, the magnitude and components of a
velocity vector have units of m/sec, while the magnitude and components of a force
vector are measured in Newtons (N).

Vectors in science are often drawn as arrows, even if the vectors themselves do not
have units of length. For example, a free body diagram in physics represents the forces
acting on an object as arrows, as shown in Figure 7. In this case, the scale of the arrows
is arbitrary, as long as all force vectors are drawn to the same scale.

Vector addition is very important for force vectors in physics. For a given object,
the sum of all of the force vectors acting on it is called the net force, and determines
the motion of the object. An object is in static equilibrium if it is at rest and the net
force on it is equal to zero.
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EXERCISES

1

2

=Y

(3}

(o2}

~

. Compute 2v + 3wifv = [i] and w = [_1]

. Find the magnitude and direction of the given vector, correct two two decimal
places.

-6 .. 1 5
@ | ] ©) 4~ CEHEH
. A vector v has a direction of 60° and v, = 6. What is the magnitude of v?
|1
=16 |
. Find the value of x for which [ch] +x[§} = 3[37(]

[3]-17]

. Ajavelin is thrown with a speed of 25 m/sec at an angle of 40° above the horizontal.
Find the horizontal and vertical components of the javelin’s velocity vector.

3

. Find a vector v such that 2v + N

. Find the values of x and y for which x [ ;

. The following picture shows three forces Fy, F,, F3 acting on an object in static
equilibrium.

Given that |F;| = 5.0 N and |F;| = 4.0 N, find the magnitude and direction of the
force Fs.



5.3 Vector Geometry

Unit Vectors

A vector u is called a unit vector if its magnitude is equal to 1. Such vectors are often
used to represent a direction alone, without a corresponding magnitude. When writing
unit vectors by hand, it is common to replace the arrow above the letter with a hat,
i.e. il instead of il. Some books also use hats for unit vectors in printed text, but we will
just use plain bold letters.

Given any nonzero vector v, we can find a unit vector u in the same direction as v
using the formula

Figure 1 shows a vector v and the resulting unit vector u. The vector u is sometimes
called the normalization of v.

EXAMPLE 1

Find a unit vector that is parallel to the line y = %x + 1.

SOLUTION  This line has slope 1/2, so it is parallel to the vector v = [ i ] , as shown in Figure 2.

vl = V22 +12 = V5,

Since

the desired unit vector is

Any vector can be expressed as a scalar multiple of a unit vector. In particular, if u
is a unit vector in the same direction as v, then

v = |v|lu

This formula is often useful for building vectors with a certain magnitude and direction.

The idea is to first find a unit vector u in the appropriate direction, and then multiply
by the appropriate magnitude to obtain the desired vector.

EXAMPLE 2

3
Find a vector in the same direction as [ 4 ] that has magnitude 3.

SOLUTION Letv = [i] . Then |v| = V32 +42 =5, s0

\

1 2 3 4 5

A Figure 1: Dividing a vector by its
magnitude produces a unit vector in the
same direction.

A Figure 2: The vector [ﬂ is parallel to

a line with slope 1/2.
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(3,2

X

A Figure 3: The point (3,2) and its
associated radial vector.

\
\
y =

A Figure 4: The magnitude of a point is its

distance from the origin.

\

\

\

lae]
y =

A Figure 5: The sum of two points p
and q.

y ptv

P
e

A Figure 6: The sum of a point p and a
vector v.

A Figure 7: The difference of two points p

and q.

is a unit vector in the same direction as v. Multiplying u by 3 gives the desired vector:

3u_§3 _[95
T 54| " |12/5 |

Points as Vectors

Given any point (x, y) in the plane, the associated radial vector is the vector that
stretches from the origin (0, 0) to the given point. The components of the radial vector
are the same as the coordinates of the point:

-[3)

For example, Figure 3 shows the point (3,2) and the corresponding radial vector.

Although we think of a point and its radial vector very differently, they are both
described by the same pair of real numbers x, y. This makes it possible to regard points
and vectors as the same thing. Indeed, from now on we will make no distinction
between a point in the plane and its radial vector. Thus

x
toy [ y ]
for any real numbers x and y.

This convention simplifies our mathematics, because it decreases the number of
different kinds of objects that we have to contend with. It also gives us the freedom to
use vector operations such as addition and scalar multiplication on points as well as
vectors. For example, we can now add two vectors, add two points, or add a vector to a
point without worrying about the distinction between these operations.

Vector Operations Involving Points

We now have two different geometric interpretations of vectors. Given a vector such
as (3,2), we can regard it as either an arrow whose components are 3 and 2, or as a
point whose coordinates are 3 and 2. We already know the geometric meaning of
vector operations involving arrows. But what do these operations look like for points?

First observe that the magnitude of a point p is the same as the distance from p to
the origin, as shown in Figure 4. Indeed, the formula for magnitude is the same as the

familiar distance formula:
[(x, )| =/ x2+ y2.

Next we consider the vector sum of two points, as shown in Figure 5. Given points
p and q, the sum p + q is the fourth vertex of the parallelogram formed by the origin
and the points p and q. This rule for adding vectors is sometimes known as the
parallelogram law.

There is also a geometric interpretation for adding a point to an arrow, as shown in
Figure 6. Given a point p and a vector v, if we move the arrow for v so that it begins
at p, then the other end of the arrow will be at p + v.

Similarly, if p and q are two points in the plane, the difference q —p can be interpreted
as the vector that goes from p to q, as shown in Figure 7. This vector q — p is sometimes
called the displacement from the point p to the point q.
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(2,5) (2,5)

9,4) 9,4)

(3,2) 3,2)

(@) (b)

EXAMPLE 3

A rectangle in the plane has vertices at (3,2), (9,4), and (2,5), a shown in Figure 8(a). Find
the coordinates of the fourth vertex p.

SOLUTION Let v be the vector that appears along both the top and bottom edges of the
rectangle, as shown in Figure 8(b). Using the bottom edge, we have

v=1(94) -2 = (62).

Then
p=@25+v=(25+(6,2) = (8,7).

As for scalar multiplication, Figure 9 shows several scalar multiples of a point p.

Note that all of the scalar multiples of p lie on a line, namely the line that goes through
the origin and the point p.

Certain linear combinations of p and q also have nice geometric interpretations.

For example, the linear combination
LI
2P 21

can be interpreted as the midpoint of the line segment between p and q, as shown in
Figure 10.

Turning Vectors 90°

Many geometry problems in the plane involve two perpendicular directions, so it can
be helpful to know the rule for turning a vector 90°. Figure 11 shows the effect of such
a turn on the components of a vector. As you can see, you can turn a vector 90° by
switching the two components and negating one of them.

Of course, the direction in which you turn the vector depends on which of the
two components you negate. Specifically, switching the two components and then
negating the first component turns a vector 90° counterclockwise, while switching the

two components and then negating the second component turns a vector 90° clockwise.

EXAMPLE 4

Figure 12(a) shows a square in the plane. Find the coordinates of the point p.

SOLUTION  Let v and w be the vectors shown in Figure 12(b). Then
v=1(62-(21 =41).

<« Figure 8: (a) A rectangle in the plane.
(b) The vectors along the top and bottom are
the same.

Ay
Y 2p
4
3P
P
3P x
—%p
“p ‘

A Figure 9: Several scalar multiples of a
point p.

y 3
e
B TN |
- 2P T34
p.”

=

A Figure 10: The midpoint between two
points p and q is p + 1q.

by

(=2,5)
(5,2

(=5,-2)
(2/ _5)

/

A Figure 11: A vector can be turned 90°
by switching its two components and
negating one of them.
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P Figure 12: (a) The square from
Example 4. (b) The vectors v and w used in
the solution to Example 4.

y
y=9-3x
(2,3)
<
A Figure 13: The line and circle for
Example 5.
¥ (-1,3)
y=9-3x
[€AY)
(2,3)
<

A Figure 14: Finding the vector v.

(6,2) (6,2)

2,1 2,1

y=

@) (b)

The vector w has the same length as v, but is turned 90° counterclockwise. We conclude that
w = (_1/ 4)/

SO
p=1(62)+w=1(62)+(-1,4) = (5,6).

EXAMPLE 5
A circle of radius 2 is tangent to the line y = 9 — 3x at the point (2, 3), as shown in Figure 13.

Find the coordinates of the center of the circle.

SOLUTION We wish to find the vector v that stretches from the point (2, 3) to the center of
the circle, as shown in Figure 14. We know that the magnitude of v is 2, so we need only find
its direction.

The direction of v is perpendicular to that of the line y = 9 — 3x. This line has slope -3,
and is therefore parallel to the vector (-1, 3). Turning this vector 90° clockwise, we conclude
that v is parallel to the vector (3, 1).

All that remains is to scale the vector (3, 1) to have length 2. Since

I3, 1)] = ¥32+12 = V10.

the vector

s 1)

is a unit vector in the direction of v. Since |v| = 2, we conclude that
k- H
vio [1]

Then

p=(23)+v= (2,3)+%[?] - (2+L,3+L)'
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EXERCISES

1. Find a unit vector that points in the same direction as the vector (-1, 1).
2. Find a vector with magnitude 5 that is parallel to the line y = 2x + 1.

3. Find a unit vector that points at an angle of 30° from the horizontal.

2
4. Find a unit vector whose direction is perpendicular to the line y = 3%

5. The following figure shows a parallelogram in the plane. Find the coordinates of
the point p.

\y (7,10)

(12,4)

7,2)

6. The two line segments in the following figure are congruent, perpendicular, and
bisect one another. Find the coordinates of the point p.

Ay 7,7)

(€Y

7. In the following figure, a rectangle with a length of 10 and a width of 5 is resting

on the line y = i Find the coordinates of the point p.

Ay p

4,3)

=
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8. The following figure shows a right triangle in the plane. Find the coordinates of
the point p.

' 4,8)
N

(€2

X

9. In the following figure, a circle with a radius of 1 is tangent to the parabola y = x>

at the point (1, 1).
2 4y

11

y=

Find the coordinates of the center of the circle. (Hint: What is the slope of the
tangent line?)
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