
6.1 Three-Dimensional Space

So far we have only considered vectors and vector geometry in two-dimensional space.
In this section we expand our point of view to consider three-dimensional space.

Three-Dimensional Coordinates
Just as a point on the plane can be described by two coordinates x and y, a point

a Figure 1: Each point in
three-dimensional space has three
coordinates.

a Figure 2: A slightly different picture of
the three coordinates.

in three-dimensional space can be described by three coordinates x, y, and z. The
geometric meaning of these coordinates is shown in Figures 1 and 2.

Using these coordinates, we can identify the points in three-dimensional space with
ordered triples (x , y , z) of real numbers. In linear algebra and advanced mathematics,
the set of all such ordered triples is usually denoted R3 (pronounced “arr-three”).

The space R3 has three coordinates axes, namely the x-axis, the y-axis, and z-axis.
These three axes are all mutually perpendicular, and they meet at the origin (0, 0, 0).
We usually think of the x and y axes as horizontal, while the z-axis is vertical.

There are also three coordinate planes, namely the x y-plane, the xz-plane, and the

a Figure 3: The three coordinate planes.
The x y-plane (orange) is horizontal, while
the xz-plane (blue) and the yz-plane (red)
are vertical.

yz-plane, as shown in Figure 3. Each of these planes contains two of the coordinate
axes, and is perpendicular to the third. These planes partition R3 into eight octants,
similar to the four quadrants in R2. Though there is not a standard numbering for
these octants, everyone agrees that the first octant is the portion of R3 consisting of all
points whose coordinates are positive, i.e. the visible portion in Figure 3.

Vectors in R3

Every vector v in R3 has three components vx , vy , and vz . As in R2, we think of vectors
and points as the same thing, so

v �



vx
vy
vz


� (vx , vy , vz ) � vx i + vy j + vz k.

Here i, j, and k are the three standard basis vectors in R3:

i �


1
0
0


, j �



0
1
0


, and k �



0
0
1



Addition and scalar multiplication in R3 work the same way that they do in R2:


a
b
c


+



a′

b′

c′


�



a + a′

b + b′

c + c′


and k



a
b
c


�



ka
kb
kc


.

EXAMPLE 1

Figure 4 shows a rectangle in R3. Find the coordinates of the point p.

a Figure 4: A rectangle in R3.

SOLUTION Let v be the vector from (7, 2, 3) to (4, 6, 4). Then

v � (4, 6, 4) − (7, 2, 3) � (−3, 4, 1).

This same vector lies along the top edge of the rectangle from (5, 0, 5) to p, so

p � (5, 0, 5) + v � (5, 0, 5) + (−3, 4, 1) � (2, 4, 6).
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Distance in R3

There is a nice formula for distances in R3, which is based on a three-dimensional
version of the Pythagorean theorem.

Three-Dimensional Pythagorean Theorem
For a rectangular box with length a, width b, and height c, as shown in Figure 5, the
distance d between opposite corners of the box obeys the formula

a2
+ b2

+ c2
� d2.

This theorem can be justified using two applications of the usual Pythagorean
a Figure 5: A rectangular box.

a Figure 6: Justification for the
three-dimensional Pythagorean theorem.

theorem, as shown in Figure 6. The two right triangles in this figure give us the
equations

a2
+ b2

� L2 and L2
+ c2

� d2 ,

and combining these gives the equation a2 + b2 + c2 � d2.
Based on this theorem, the magnitude of a vector v in R3 should be given by the

formula

|v| �
√

v 2
x + v 2

y + v 2
z

EXAMPLE 2

Find a vector parallel to (2, 1, 2) that has a magnitude of 12.

SOLUTION We have
|(2, 1, 2) | �

√
22 + 12 + 22 �

√

9 � 3,

so the vector (2, 1, 2) has a magnitude of 3. To find a vector in the same direction with a
magnitude of 12, we simply scale by a factor of 4:

4(2, 1, 2) � (8, 4, 8)

EXERCISES

1. Find the magnitude of the vector


8
1
−4


.

2. Find the distance between the points (6, 3, 2) and (2, 7, 9).
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3. The following figure shows a rectangular box in R3.

(a) Find the coordinates of the point p.
(b) What is the volume of the box?

4. The following figure shows an isosceles triangle in R3.

(a) Find the perimeter of the triangle.
(b) Find the area of the triangle.

5. The following figure shows a square and a line in R3.

Find the coordinates of the point p.
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6. The following figure shows two spheres in R3 that are tangent at a point r.

The larger sphere is centered at p � (−5, 0, 5), and has a radius of 9. The smaller
sphere is centered at q � (5, 5,−5).
(a) What is the radius of the smaller sphere?
(b) Find the coordinates of the point r at which the two spheres are tangent.

7. The following figure shows a regular hexagon in R3.

Find the coordinates of the point p.



6.2 Dot Product

The dot product is an operation that combines two vectors to obtain a scalar. For
vectors in R2, it is defined by the formula

v ·w � vx wx + vy wy

That is, we multiply corresponding components of the two vectors and then add the
results. For example,

(2, 3) · (5, 4) � (2)(5) + (3)(4) � 10 + 12 � 22.

Because the result is a scalar, the dot product is also known as the scalar product of
vectors. It is also sometimes called the inner product of vectors, or more properly the
Euclidean inner product.

The dot product works just as well in R3:

v ·w � vx wx + vy wy + vz wz

For example,
Note that the dot product of these vectors
is negative. In general, the dot product of
two vectors may be positive, negative, or
zero.

(2, 1, 7) · (3, 4,−2) � (2)(3) + (1)(4) + (7)(−2) � −4.

All of the discussion in this section applies equally well to vectors in two or three
dimensions.

Algebraic Properties
The dot product can be thought of as a kind of multiplication for vectors. Indeed,
the reason that we use a dot for dot product is that this is one of the symbols for
multiplication. Many of the algebraic properties of multiplication are shared by dot
product.

Algebraic Properties of the Dot Product
The dot product has the following properties:

1. v ·w � w · v for any two vectors v and w.

2. u · (v + w) � u · v + u ·w for any three vectors u, v, and w.

3. (kv) ·w � k(v ·w) for any scalar k and any vectors v and w.

The first rule above is the commutative law for dot product, and the second is the
distributive law. The third can be thought of as a version of the associative law, but it
involves both dot product and scalar multiplication.

Since dot product is commutative, it is
also true that

(u + v) ·w � u ·w + v ·w

for any vectors u, v,w, and

v · (kw) � k(v ·w)

for any vectors v,w and scalar k.

Although the dot product shares many properties of multiplication, one should
always keep in mind that the analogy between dot product and multiplication is not
exact. For example, the product of two numbers is another number, which makes it
possibly to multiply three numbers together. However, the dot product of two vectors
is a scalar, not a vector, which makes it impossible to take the dot product of three or
more vectors.

For multiplication of numbers, the
associative law states that

(x y)z � x(yz)

for all real numbers x , y , z. The
commutative law states that

x y � yx

for all real numbers x and y. Finally, the
distributive law states that

x(y + z) � x y + xz

for all real numbers x , y , z.
Incidentally, because the dot product obeys the distributive law, we can distribute

dot products of sums just as we do in normal algebra. For example,

(a + b) · (c + d) � a · c + a · d + b · c + b · d

for any four vectors a, b, c, d.
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Dot Product Squares
Taking the dot product of a vector with itself gives the sum of the squares of the
coordinates:

v · v � v2
x + v2

y + v2
z .

This is the same as the square of the magnitude of v.

v · v � |v|2

This relation between dot products and magnitudes of vectors can be useful for finding
magnitudes of sums. For example, if v and w are vectors, the magnitude of v+w obeys
the formula

|v + w|2 � (v + w) · (v + w).

Distributing the right side gives

|v + w|2 � v · v + v ·w + w · v + w ·w.

Combining the two middle terms and replacing v · v and w ·w by |v|2 and |w|2, weWe can combine the middle terms since
v ·w � w · v. arrive at the formula

|v + w|2 � |v|2 + 2(v ·w) + |w|2

This is like a vector version of the formula (a+b)2 � a2+2ab+b2. A similar computation
for v −w gives

|v −w|2 � |v|2 − 2(v ·w) + |w|2

EXAMPLE 1

Find the magnitude of v + w if |v| � 5, |w| � 6, and v ·w � 10.

SOLUTION We have

|v + w|2 � |v|2 + 2(v ·w) + |w|2 � (5)2
+ 2(10) + (6)2

� 81

and therefore |v + w| � 9.

EXAMPLE 2

Find a formula for the magnitude of 2v + 3w in terms of |v|, |w|, and v ·w.

SOLUTION We have

|2v + 3w|2 � (2v + 3w) · (2v + 3w)

� 4(v · v) + 6(v ·w) + 6(w · v) + 9(w ·w)

� 4 |v|2 + 12(v ·w) + 9 |w|2

and therefore
|2v + 3w| �

√
4 |v|2 + 12(v ·w) + 9 |w|2
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Geometric Interpretation
The importance of the dot product stems from its geometric interpretation.

a Figure 1: The angle between v and w.

Geometric Interpretation of Dot Product
If v and w are vectors, then

v · w � |v| |w| cos θ,

where θ is the angle between v and w, as shown in Figure 1.

This formula follows from the law of cosines from trigonometry, which states that

a Figure 2: Triangle for the law of cosines.

a Figure 3: A triangle of vectors.

c2
� a2

+ b2
− 2ab cos θ

for any triangle with side lengths a , b , c and angle θ as shown in Figure 2. If we apply
the law of cosines to the triangle of vectors shown in Figure 3, we get the equation

|w − v|2 � |v|2 + |w|2 − 2 |v| |w| cos θ

But we also know that

|w − v|2 � |v|2 − 2(v ·w) + |w|2

and it follows that v ·w � |v| |w| cos θ.

EXAMPLE 3

Two vectors v and w have magnitudes 5 and 6, and the angle between them is 60◦. What is
the value of v ·w?

SOLUTION We have v ·w � |v| |w| cos θ � (5)(6) cos(60◦) � (5)(6)(1/2) � 15.

One way the formula v · w � |v| |w| cos θ is useful is that it allows us to find the
angle between two vectors.

EXAMPLE 4

Find the angle between the vectors (3, 2) and (1, 5).

SOLUTION Let v � (3, 2) and w � (1, 5). Then

v ·w � (3)(1) + (2)(5) � 13, |v| �
√

13, and |w| �
√

26,

Substituting these into the formula v ·w � |v| |w| cos θ gives

13 �
√

13
√

26 cos θ.

Then
cos θ �

13
√

13
√

26
�

1
√

2
so θ � 45◦, as shown in Figure 4.

a Figure 4: The angle between the vectors
(3, 2) and (1, 5) is 45◦.

In general, the procedure is to solve for
cos θ and then take the inverse cosine,
which gives an angle between 0◦ and 180◦.
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The Sign of the Dot Product
Another application of the formula

v ·w � |v| |w| cos θ

is that it gives us a general rule for the sign of v ·w. Assuming neither v nor w is the
zero vector, the magnitudes |v| and |w| are always positive.dot product v ·w always
has the same sign as cos θ. Thus v ·w can only be negative if cos θ is negative.

Figure 5 shows the graph of the cosine function for 0◦ ≤ θ ≤ 180◦. As you can see,
the cosine is positive for acute angles (less than 90◦) and negative for obtuse angles
(greater than 90◦). Thus:

a Figure 5: The cosine is positive for
θ < 90◦ and negative for θ > 90◦.

• v ·w > 0 if the angle between v and w is acute.

• v ·w � 0 if the angle between v and w is a right angle.

• v ·w < 0 if the angle between v and w is obtuse.

This trichotomy is illustrated in Figure 6. The case where the dot product is zero has a
special name.

Orthogonal Vectors
Two vectors v and w are orthogonal if v ·w � 0.

That is, two vectors are orthogonal if their directions are perpendicular. For example,

Note that the zero vector 0 is technically
orthogonal to any other vector, since
0 · v � 0 for any vector v.

the vectors (5, 2) and (−2, 5) are turned 90◦ from one another, so their dot product is
equal zero:

(5, 2) · (−2, 5) � (5)(−2) + (2)(5) � 0.

Orthogonal vectors in R3 tend to be much less obvious. For example, the vectors
(3,−5, 1) and (7, 3,−6) are orthogonal in R3, since

(3,−5, 1) · (7, 3,−6) � (3)(7) + (−5)(3) + (1)(−6) � 0.

d Figure 6: The sign of the dot product
depends on the angle between the two
vectors.

EXERCISES

1. Compute the dot product of the vectors
[

5
2

]
and

[
3
−4

]
.

2. Simplify (v + 3w) · v + (3v) · (v −w).

3. Find a formula for |5v − 3w| in terms of |v|, |w|, and v ·w.
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4. Find the magnitude of v + 2w if |v| � 5, |w| � 2, and v ·w � 2.

5. Given that |v| � 7 and |w| � 5, find the value of (v + w) · (v −w).

6. Suppose that two vectors v and w meet at a 30◦ angle. If v · v � 4 and w ·w � 12,
what is the value of v ·w?

7. Find the angle between the vectors
[

2
−1

]
and

[
−1

3

]
.

8. Compute the angle between the vectors (2, 5, 1) and (−1, 4, 2), correct to the nearest
degree.

9. Find the angle between the vectors i + j − 4k and j + k.

10. Find the angle θ between the two lines in the following figure.

11. The following figure shows four vectors a, b, c, and d in R2.

(a) For which two of these vectors is the dot product positive?
(b) Which two of these vectors are orthogonal?

12. Let a � (−9,−3), b � (3,−8), c � (7, 2), and d � (−2, 6).
(a) Which two of these vectors are orthogonal?
(b) Which two of these vectors meet at an acute angle?

13. Find a value of t such that (2, 3, t) is orthogonal to 5i − 2j + 2k.
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14. The following figure shows a right triangle in R3.

(a) Determine the value of t.
(b) What is the area of the triangle?
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