
9.1 Lines

As we have seen, a linear equation in x, y, and z describes a plane in R3. This is quite
helpful for understanding planes, but this leaves us without a good description of lines
in R3. In this section, we develop a description of lines in R3 (and more generally Rn)
using a new kind of equation called a parametric equation.

The Parametric Equation for a Line
Figure 1 shows a typical line in R3. This line goes through a certain point p, and is

a Figure 1: A line in R3.

parallel to a certain vector v. For the line in the picture, these are

p � (4, 1, 3) and v � (−2, 2, 0).

What are some other points on this line?
Well, if we add p to v, we certainly get another point on the line:

p + v � (2, 3, 3).

More generally, if t is any scalar, then the vector tv is also parallel to the line, so

p + tv � (4, 1, 3) + t(−2, 2, 0) � (4 − 2t , 1 + 2t , 3)

will be another point on the line. Figure 2 shows the location of this point for t � 1.5.

a Figure 2: The point p + tv lies on the
line for any scalar t.

The equation
(x , y , z) � (4 − 2t , 1 + 2t , 3)

is called a parametric equation (or parametrization) for the line. This equation includes
an arbitrary scalar t (called a parameter), and we can plug in any value for t to get a
point (x , y , z) on the line. For example:

• Substituting t � 1.5 gives the point (1, 4, 3),

• Substituting t � −1 gives the point (6,−1, 3), and

• Substituting t � 0 gives the original point (4, 1, 3).

In fact, every point on the line corresponds to some value of t.

Parametric Equation for a Line
Let L be the line in R3 that goes through a point p and is parallel to a vector v. Then
L is defined by the parametric equation

(x , y , z) � p + tv.

If p � (x0 , y0 , z0) and v � (a , b , c), this equation can be written
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Note then that the constant terms are the coordinates of a point on the line, and the
coefficients of t are the components of the parallel vector. For example, the line

It is usually cleaner to write the
parametric equation for a line using
column vectors.
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goes through the point (2, 7, 5) and is parallel to the vector (4,−3, 2).
Note that we can also find a parametric equation for the line through two points, as

the following example shows.

EXAMPLE 1

Find a parametric equation for the line through the points (3, 7, 4) and (5, 8, 2).

SOLUTION Let v be the vector that goes between these two points:

v � (5, 8, 2) − (3, 7, 4) � (2, 1,−2).

Then v should be parallel to the line. We can use either of the two given points to find a
parametric equation. Using (3, 7, 4), we get
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or equivalently

If we had used (5, 8, 2) instead, we would
have found a different parametric
equation for the same line.
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It is not always necessary to use a point and a direction vector to make up a
parametric equation for a line. For example, it is obvious that

(x , y , z) � (t , 0, 0)

is a parametric equation for the x-axis in R3, and similar parametric equations can be
made for the y and z axes. Some other simple examples of lines include:

• Any line parallel to the x-axis is defined by an equation of the form (x , y , z) �
(t , y0 , z0), where y0 and z0 are constants. Similar equations define lines parallel
to the y and z axes.

• The line of all points on the x y-plane for which y � x can be described paramet-
rically as (x , y , z) � (t , t , 0). This line is shown in Figure 3

a Figure 3: The line (x , y , z) � (t , t , 0).

• The line (x , y , z) � (t , t , t) goes through the origin and the point (1, 1, 1). Each
point on this line is equidistant from the x, y, and z axes.

• More generally, if (a , b , c) is any point in R3, then (x , y , z) � t(a , b , c) is the line
of all scalar multiples of (a , b , c). This line goes through the point (a , b , c) as well
as the origin, as shown in Figure 4.

a Figure 4: The line (x , y , z) � t(a , b , c). Testing Points
A parametric equation is a very different way of describing a shape than a Cartesian
equation. When we write a Cartesian equation for a plane, such as

2x + 5y + 3z � 4,
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the equation is actually a test for whether a given point lies on the plane. For example,
the point (−2, 1, 1) lies on this plane, since substituting x � −2, y � 1, and z � 1 makes
the equation true.

A parametric equation, on the other hand, is more like a factory for producing points
on the plane. Given a parametric equation for a line such as
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we can plug in values for t to make points on the line.

The nature of parametric equations
makes them very useful for computer
graphics. For example, if we want a
computer to draw a line for us, all it has to
do is plug in 1000 different values of t to
get 1000 different points on the line, and
then plot all of them to get a good picture. However, we can still use a parametric equation to test whether a given point lies

on a given line.

EXAMPLE 2

Determine whether the point (8, 1, 2) lies on the line
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SOLUTION We are looking for a value of t for which
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This gives us three equations involving t:

4 + t � 8, 5 − t � 1, 3 − 2t � 2.

From the first equation, we see that t � 4 is the only possibility. This works for the second
equation, but not for the third, which means that (8, 1, 2) does not lie on the given line.

To solve a system of equations with one
unknown, solve the first equation and
then check whether the solution works
for all of the other equations.

Lines in Rn

Of course, our description of lines in R3 works just as well in higher dimensions.

Parametric Equation for a Line in Rn

Let L be the line in Rn that goes through a point p and is parallel to a vector v. Then
L is defined by the parametric equation

(x1 , x2 , . . . , xn ) � p + tv.

For example, the line in R4 that goes through the point (1, 0, 1, 0) in the direction of
the vector (0, 1, 1, 2) is
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or equivalently (x1 , x2 , x3 , x4) � (1, t , 1 + t , 2t).
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Again, it is sometimes possible to make a parametric equation for a line in R4

without using a point or direction vector. For example, the x4-axis in R5 is defined by
the parametric equation

(x1 , x2 , x3 , x4 , x5) � (0, 0, 0, t , 0).

EXAMPLE 3

Find a parametric equation for the line in R5 that goes through the points (2, 1, 4, 7, 6)
and (5, 3, 3, 4, 8).

SOLUTION Let v be the vector that goes between these two points:

v � (5, 3, 3, 4, 8) − (2, 1, 4, 7, 6) � (3, 2,−1,−3, 2).

Then v should be parallel to the line. Using this vector and the first point gives us the equation
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EXERCISES

1. Find a parametric equation for the line in R3 that goes through the point (5, 7, 8)
and is parallel to the vector (4, 1, 7).

2. Find a vector that is parallel to the line
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3. In the following figure, the line L is perpendicular to the plane 3x + 2y + 4z � 5
and goes through the point (2, 1, 3).

Find a parametric equation for L.

4. Find a parametric equation for the line through (3, 1, 0) that is parallel to the line
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5. Find a parametric equation for the line in R3 that goes through the points (2, 1, 4)
and (3, 6, 2).

6. What angle does the line (x , y , z) � (t , t , t) make with the x-axis?

7. Let L be the line
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Which of the points (5, 7, 6), (8, 6, 9), and (−1, 4, 3) lies on L?

8. Let L1 and L2 be the lines
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Is one of these the same as the line (x , y , z) � (1 + t , 2t , 3 − t)?

9. Find a parametric equation for the line y � 2x + 3 in R2.

10. Find a parametric equation for the line in R4 that goes through the point (2, 1, 5, 3)
and is parallel to the x2-axis.

11. Find a parametric equation for the line in R4 that goes through the origin and is
perpendicular to the hyperplane 2x1 − x2 + 4x3 + x4 � 1.



9.2 Geometry of Lines

In this section we use parametric equations to explore the geometry of lines in R3.

Line-Plane Intersections
Typically, a line and a plane in R3 intersect at exactly one point, as shown in Figure 1.

a Figure 1: A line L and plane P in R3

typically intersect at one point.

The following example shows how to find this point of intersection.

EXAMPLE 1

Find the point at which the line
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intersects the plane x + y + z � 4.

SOLUTION What we want is a value of t for which the point (1− t , 2t − 3, t) lies on the given
plane. We can test this by plugging the point into the equation for the plane:

(1 − t) + (2t − 3) + (t) � 4.

Simplifying and solving for t yields t � 3, and plugging this back into the equation of the line
gives the intersection point, which is (−2, 3, 3) .

Of course, it is also possible for a line and plane in R3 to be parallel, meaning that
there is no point of intersection. For example, if P1 and P2 are parallel planes, then any
line drawn on P2 is parallel to P1. Figure 2 shows an example of a line that is parallel to
a plane.

a Figure 2: A line and plane in R3 that are
parallel.

When a line and plane are parallel, searching for the point of intersection yields a
contradictory equation. For example, the line (x , y , z) � (t , t , t) is parallel to the plane
x + y − 2z � 1, and if we plug the point (t , t , t) into the equation x + y − 2z � 1 we get

t + t − 2t � 1.

This simplifies to the equation 0 � 1, which indicates that there are no solutions for t.
Finally, it is possible for a line to lie on a plane, meaning that every point on the

line also lies on the plane. For such a line, searching for the point of intersection
yields a tautological equation. For example, the line (x , y , z) � (t , t , t) lies on the plane

An equation is said to be a tautology if it
is true for any values of the variables.

x + y − 2z � 0, and if we plug the point (t , t , t) into the equation x + y − 2z � 0 we get

t + t − 2t � 0.

which is true for every value of t.

Pairs of Lines
As we know from plane geometry, two lines in a plane are either parallel or intersect at
single point. Parallel lines go in the same direction, maintaining a constant distance
between them, and each line can be moved onto to the other by a translation.

In three dimensions, there are three possible relationships between a pair of lines:

1. They can be parallel, meaning that they go in the same direction. Parallel lines
maintain a constant distance between one another, and each line can be moved
onto the other by a translation.

2. They can intersect at a single point.
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3. They can be skew, as shown in Figure 3. Skew lines do not go in the same
direction, but also do not intersect.

Any two parallel or intersecting lines in R3 lie on a common plane, but skew lines do

a Figure 3: A pair of skew lines in R3.

not. However, every pair of skew lines do lie on a uniquely determined pair of parallel
planes, as shown in Figure 3.

But how can we determine whether two given lines are parallel, intersecting, or
skew? Well first of all, two lines are parallel if and only if their direction vectors are
scalar multiples of one another. For example, the lines
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are parallel, since the direction vectors (−2, 4,−6) and (3,−6, 9) are scalar multiples of
one another:

(3,−6, 9) � −
3
2

(−2, 4,−6).

For lines that are not parallel, a simple way of checking whether they intersect is to
look for a point of intersection. The following example illustrates this procedure.

EXAMPLE 2

Find the point at which the lines
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intersect.

SOLUTION We are looking for a point that lies on both lines, and there is no reason that the
two values of t corresponding to this point would be the same. Thus we want to find values t1
and t2 for t so that
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This gives us three equations involving t1 and t2:

6 + t1 � 2 + 2t2 , 3 + 3t1 � 6 + t2 , 2 + 2t1 � 9 − t2.

To look for a solution to these three equations, we treat the first two as a system of two
equations and two unknowns. Solving this system for t1 and t2 in the usual way yields

t1 � 2 and t2 � 3.

We now plug these values into the third equation to check whether this is actually a solution:

2 + 2t1 � 9 − t2 → 2 + 2(2) � 9 − (3) X

Since the equation on the right is true, we have found a point of intersection. Substituting
back into the parametric equation for one of the lines gives the point (8, 9, 6) .

To solve a system of three equations with
two unknowns, start by solving the first
two equations and then check whether
your answer works for the third equation.

A system of equations with more
equations than unknowns is called an
overdetermined system. This system
has three equations and two unknowns,
which makes it overdetermined.

This procedure always finds an intersection point if there is one. If the three
equations involving t1 and t2 have no solution, it means that the lines are skew.
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Two lines are said to be coplanar if they lie on a common plane. Intersecting lines are always
coplanar, as are parallel lines, but skew lines are not.

There is a simple test using determinants to check whether two lines in R3 are coplanar. If
L1 and L2 are lines in R3 with parametric equations

(x , y , z) � p + tv and (x , y , z) � q + tw,

then L1 and L2 are coplanar if and only if the following determinant is zero.

���������

vx vy vz

wx wy wz

px − qx py − qy pz − qz

���������

The reason is that if L1 and L2 are coplanar, then the vectors v and w must both be parallel to
this plane, as must the vector p − q. That is, v, w and p − q must be coplanar vectors, which
means that the determinant above is zero. Conversely, if the determinant above is zero, then
the vectors v, w and p − q must be coplanar, and it follows that the two lines are coplanar.

A Closer Look Coplanar Lines

EXERCISES

1. The following figure shows the line



x
y
z


�



3 + 2t
2 − 5t

5t


and the plane x+2y+7z � −2.

(a) Find the point of intersection.

(b) Find the angle θ.

2. Where does the line



x
y
z


�
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−1
1 − t

t


intersect the plane x + y + z � 1?

3. Find the point in R4 at which the line (x1 , x2 , x3 , x4) � (t , t , t , t) intersects the
hyperplane x1 + 2x2 + x3 + 2x4 � 24.

4–6 Determine whether the given lines are parallel, intersecting, or skew. If they
intersect, find the point of intersection.

4.
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5.
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

x
y
z


�



3 − t
t

5 − 2t


.

6.



x
y
z


�



2t
1 − t

t


and



x
y
z


�



t
6 − 3t
1 + t


.

7. Find the point at which the lines



x1

x2

x3

x4



�



2
t
5

1 + t



and



x1

x2

x3

x4



�



2t
3

2 + 3t
3 + t



intersect in R4.

8. Let L1 and L2 be the skew lines (x , y , z) � (t , 3, 2) and (x , y , z) � (1, t , 5).

(a) Find a parallel pair of planes that contain L1 and L2.

(b) Find a line L3 that intersects L1 and L2 and is perpendicular to both of them.

9. Find an equation for the plane in R3 that contains the lines



x
y
z


�



0
0
1


+ t



1
−1

0


and



x
y
z


�



1
1
2


+ t



1
−1

0


.

10. The planes x � 3 and 2x+3y+4z � 13 intersect along a line inR3. Find a parametric
equation for this line.

11. Find the distance from the point (6, 1, 1) to the line



x
y
z


�



1 + t
2 + t
3 − t


.



9.3 Planes and Flats

So far we have learned how to use parametric equations to describe lines in Rn . In this
section, we generalize this technique to allow for descriptions of planes and other flats.

Parametric Equations for Planes
Figure 1 shows a typical plane in Rn . This plane goes through a certain point p, and

a Figure 1: A plane in Rn .

is parallel to the vectors v and w. We assume that v and w do not point in the same
direction, so that v and w together specify the direction of the plane. How can we
describe the points on this plane?

Well, since v and w are parallel to the plane, any linear combination

sv + tw

is also parallel to the plane. Adding this vector to p, we conclude that any point of the
form

p + sv + tw

lies on the plane, where s and t can be any scalars. This is the desired parametric
equation for the plane.

Here both s and t are parameters,
meaning that each of them can be an
arbitrary real number.

Parametric Equation for a Plane
Let P be a plane in Rn determined by a point p and parallel vectors v and w. Then P
is defined by the parametric equation

(x1 , x2 , . . . , xn ) � p + sv + tw

where s and t are parameters.

For example, the plane in R3 that goes through the point (3, 1, 4) and is parallel to
the vectors (1, 3, 1) and (1, 1, 2) is defined by the equation

Note that the coefficients of s on the right
are the components of a parallel vector, as
are the coefficients of t.



x
y
z


�



3
1
4


+ s



1
3
1


+ t



1
1
2


or



x
y
z


�



3 + s + t
1 + 3s + t
4 + s + 2t


.

Of course, we already know how to describe planes in R3 using linear Cartesian
equations, which makes parametric equations for planes a bit redundant. However,
in higher dimensions, a linear Cartesian equation describes a hyperplane instead of a
plane, so we need parametric equations to describe planes in Rn for n > 3.

EXAMPLE 1

Find a parametric equation for the plane in R4 that goes through the points (1, 1, 1, 1),
(1, 2, 3, 4), and (4, 3, 2, 1).

SOLUTION We can get some vectors parallel to the plane by subtracting pairs of points:

v � (1, 2, 3, 4) − (1, 1, 1, 1) � (0, 1, 2, 3), w � (4, 3, 2, 1) − (1, 1, 1, 1) � (3, 2, 1, 0).
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Then the given plane is parametrized by
Note here that the three given points
correspond to certain values of s and t:

point s t
(1, 1, 1, 1) 0 0
(1, 2, 3, 4) 1 0
(4, 3, 2, 1) 0 1



x1
x2
x3
x4



�



1
1
1
1



+ s



0
1
2
3



+ t



3
2
1
0



or



x1
x2
x3
x4



�



1 + 3t
1 + s + 2t
1 + 2s + t

1 + 3s



.

Most of the techniques we know for working with parametric equations for lines
are also useful for planes.

EXAMPLE 2

Determine whether the point (1, 4, 4, 10) lies on the plane



x1
x2
x3
x4



�



s − t
1 − s + 3t
−3 + s + 2t
2 + 2s + t



.

SOLUTION We want to find values for s and t such that



s − t
1 − s + 3t
−3 + s + 2t
2 + 2s + t



�



1
4
4
10



.

This gives us a system of four equations with two unknowns:Remember the procedure for solving an
overdetermined system:

1. Use the first few equations to
solve for the variables.

2. Check whether the solution works
for the remaining equations.

s − t � 1, 1 − s + 3t � 4, −3 + s + 2t � 4, 2 + 2s + t � 10.

Solving the first two equations for s and t gives s � 3 and t � 2. This solution works for the
other two equations as well, and therefore the point (1, 4, 4, 10) does lie on the given plane.

By the way, in simple examples it is often possible to figure out a parametric equation
for a plane without worrying about parallel vectors and such. Here are some examples:

1. The x y plane in R3 is defined by the equation (x , y , z) � (s , t , 0). Similar
equations work for the xz plane and the yz plane.

2. Similarly, in R4 the equation (x1 , x2 , x3 , x4) � (0, s , 0, t) defines the x2x4 plane,
i.e. the plane that contains the x2 and x4 axes. Similar equations work for the
other five coordinate planes.

There are six coordinate planes in R4,
namely the x1x2, x1x3, x1x4, x2x3, x2x4,
and x3x4 planes.

3. The plane x � 3 in R3 is defined by the equation (x , y , z) � (3, s , t).

4. The plane x � z in R3 is defined by the equation (x , y , z) � (s , t , s).

5. The plane z � 2y in R3 is defined by the equation (x , y , z) � (s , t , 2t).

6. The plane y + z � 1 in R3 is defined by the equation (x , y , z) � (s , t , 1 − t).
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Parametric Equations for Flats
The fundamental shapes in two-dimensional geometry are lines, and the fundamental
shapes in three-dimensional geometry are lines and planes. In higher dimensions, the
fundamental shapes include lines and planes, as well as higher-dimensional analogs of
these. Collectively, these shapes are known as flats.

Every flat has a dimension, and any two flats of the same dimension are geometri-
cally congruent. A one-dimensional flat is the same as a line, and a two-dimensional flat
is the same as a plane. However, there are also three-dimensional flats, four-dimensional

In addition, it sometimes helps to think of
points as zero-dimensional flats.

flats, and so forth.
Each of the Euclidean spaces

R, R2 , R3 , R4 , R5 , . . .

is itself a flat. For example, the real numbers R form a line (the real line), and R2

is a plane (the Euclidean plane). Similarly, R3 is a three-dimensional flat, R4 is a
four-dimensional flat, and so forth.

We can parametrize arbitrary flats in much the same way that we parametrize
planes. For example, the parametric equation



x1

x2

x3

x4



�



2
1
5
3



+ s



1
1
0
0



+ t



0
1
1
0



+ u



0
0
1
1



defines a 3-dimensional flat in R4. Here s, t, and u are the three parameters, and we
can obtain every point on the 3-dimensional flat by plugging in values for s, t, and u.
In particular, (2, 1, 5, 3) is a point on this flat, and the vectors (1, 1, 0, 0), (0, 1, 1, 0), and
(0, 0, 1, 1) are parallel vectors for this flat.

For flats of dimension four or more, we usually use t1 , t2 , . . . for parameters instead
of separate letters. For example, the parametric equation



x1

x2

x3

x4

x5

x6



�



1
1
1
1
1
1



+ t1



1
0
2
0
0
0



+ t2



0
1
0
0
0
0



+ t3



0
0
0
1
0
3



+ t4



0
0
0
0
1
4



defines a 4-dimensional flat in R6. This flat goes through the point (1, 1, 1, 1, 1, 1), and
is parallel to the vectors

(1, 0, 2, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 3), and (0, 0, 0, 0, 1, 4).

Parametric Equation for a Flat
Let F be a k-dimensional flat in Rn determined by a point p and parallel vectors
v1 , v2 , . . . , vk . Then F is defined by the parametric equation

(x1 , x2 , . . . , xn ) � p + t1v1 + t2v2 + · · · + tkvk

where t1 , t2 , . . . , tk are parameters.
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EXAMPLE 3

Find a parametric equation for the 3-dimensional flat in R4 that goes through the points
(1, 2, 1, 2), (1, 2, 3, 4), (3, 3, 3, 3), and (4, 3, 2, 1).

SOLUTION We can subtract the first point from the remaining points to obtain three parallel
vectors:

v1 �



1
2
3
4



−



1
2
1
2



�



0
0
2
2



, v2 �



3
3
3
3



−



1
2
1
2



�



2
1
2
1



, v3 �



4
3
2
1



−



1
2
1
2



�



3
1
1
−1



.

Then the flat is defined by the parametric equationNote here that the four given points
correspond to certain values of s, t, and u:

point s t u
(1, 2, 1, 2) 0 0 0
(1, 2, 3, 4) 1 0 0
(3, 3, 3, 3) 0 1 0
(4, 3, 2, 1) 0 0 1



x1
x2
x3
x4



�



1
2
1
2



+ s



0
0
2
2



+ t



2
1
2
1



+ u



3
1
1
−1



.

Here are some simple examples of higher-dimensional flats:

1. There is a three-dimensional flat in R5 that contains the x1, x3, and x4 axes. This
is defined by the parametric equation

(x1 , x2 , x3 , x4) � (s , 0, t , u , 0).

2. The equation x2 � 5 defines a hyperplane in R5, which is a four-dimensional flat.In general, a hyperplane in Rn is an
(n − 1)-dimensional flat. This flat can be defined by the parametric equation

(x1 , x2 , x3 , x4 , x5) � (t1 , 5, t2 , t3 , t4).

This flat is parallel to the four-dimensional flat that contains the x1, x3, x4, and x5
axes.

3. The linear equation x4 � 2x2 defines a hyperplane in R4, which is a three-
dimensional flat. This flat can be defined by the parametric equation

(x1 , x2 , x3 , x4) � (s , t , u , 2t).

4. The set of all points (x1 , x2 , x3 , x4 , x5 , x6) in R6 for which

x1 � x2 , x3 � x4 , and x5 � x6

is a three-dimensional flat in R6. It can be defined by the parametric equation

(x1 , x2 , x3 , x4 , x5 , x6) � (s , s , t , t , u , u).

EXERCISES

1. Find a parametric equation for the plane in R3 that goes through the point (1, 2, 5)
and is parallel to the plane



x
y
z


�



3 + s
1 + 2t
s − t


.
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2. Find a Cartesian equation for the plane



x
y
z


�



2 + s
2 + 2s + 3t

1 + t


.

3. Find a parametric equation for the plane in R4 that goes through the points
(1, 1, 1, 1), (2, 2, 1, 1), and (1, 1, 2, 3).

4. Find a parametric equation for the plane inR5 consisting of all points (x1 , x2 , x3 , x4 , x5)
for which

x1 � x3 � x5 and x2 � x4.

5. Let P be the plane
(x1 , x2 , x3 , x4) � (s , t , 1 + s , 2t).

Which of the points (2, 4, 3, 8), (3, 5, 4, 2), and (1, 3, 4, 6) lies on P?

6. Find a parametric equation for the plane in R4 that contains the lines

(x1 , x2 , x3 , x4) � (3, t , 1, 2) and (x1 , x2 , x3 , x4) � (3, 5, 1, t).

7. Find the point on the plane



x1

x2

x3

x4

x5



�



s
1 + 2s

t
s − t
−2 + 3t


whose x2-coordinate is 9 and whose x4-coordinate is 1.

8. Find the point in R4 at which the planes

(x1 , x2 , x3 , x4) � (s , t , 6, s) and (x1 , x2 , x3 , x4) � (4, s , 2s , t)

intersect.

9. Find a parametric equation for the three-dimensional flat in R4 that goes through
the points (0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 2), and (0, 0, 1,−1).

10. Find a parametric equation for the three-dimensional flat in R5 consisting of all
points (x1 , x2 , x3 , x4 , x5) for which

x1 + x2 � 1 and x3 � x5.

11. Find a parametric equation for the three-dimensional flat in R5 that contains the
lines 

x1

x2

x3

x4

x5



�



1 + t
1 + t

1
1
1



and



x1

x2

x3

x4

x5



�



1
1
2

1 + t
1 − t



.
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12. The intersection of the plane

(x1 , x2 , x3 , x4) � (3, s , t , 4t)

and the hyperplane
(x1 , x2 , x3 , x4) � (s , 2s , t , u)

is a line in R4. Find a parametric equation for this line.
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