Math 4530 Homework 1.

Reminder:

- Discussing with classmates is encouraged, but you must write up your solutions alone!
- Searching on the internet (or elsewhere) for solutions is prohibited. This is a discovery-based course where you will learn concepts by playing with examples and struggling with problems.
"The only way to learn mathematics is to do mathematics" - P. Halmos

1. Read the course syllabus carefully!
2. Tell me about yourself:
3. Year (sophomore, senior, grad student, etc.)
4. Major(s) or intended major(s) or interests
5. What 3000 and 4000 -level math courses have you taken, and which are you currently taking?
6. Anything else you would like to share?
7. Let X, \mathcal{O} be a topological space.
(a) Show that a subset $A \subset X$ is open if and only if $\AA=A$.
(b) Show that

$$
\bar{A}=\bigcap_{Y \text { closed, } Y \supseteq A} Y
$$

(c) Prove the following holds, or find a topological space that provides a counterexample: For any collection of sets A_{λ}, the union of their closures is the closure of their union, i.e.

$$
\bigcup_{\lambda} \overline{A_{\lambda}}=\overline{\bigcup_{\lambda} A_{\lambda}}
$$

(d) Do the problem above, but replace union with intersection.
4. Prove that the following "neighborhood axioms" give an equivalent definition of a topological space to that given in class, if you define open sets to be those that contain a neighborhood of each point in the set. ${ }^{1}$
Definition. A topological space is a set X and a collection of subsets called "neighborhoods of points" satisfying the following.

1. There corresponds to each point x at least one neighborhood of x, and each neighborhood of x contains the point x.
2. If V contains a neighborhood of x, then V is itself a neighborhood of x.
3. The intersection of any two neighborhoods of x is itself a neighborhood of x.
4. If a point y lies in a neighborhood U_{x} of some point x, then there must exist a neighborhood U_{y} of y that is a subset of U_{x}.
5. In this question, you will show that any metric topology can be defined by a metric where the distance between any two points is at most 1 . In other words, topologists cannot see how big something is!

Suppose that X is a set and d a metric on X.

[^0](a) Show that $d^{\prime}(x, y)=\min \{d(x, y), 1\}$ satisfies the axioms of a metric
(b) Show that $d^{\prime \prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}$ satisfies the axioms of a metric.
(c) It is a fact that both of these define the same topology on X as d. Prove this fact for the metric $d^{\prime \prime}$ defined in part b of this question. (You can check d^{\prime} for extra practice but you don't need to hand that in).
6. Let X be the set of all continuous functions from $[0,1]$ to \mathbb{R}. Define distances:
$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$
and define
$$
d^{\prime}(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|
$$

These both satisfy the axioms needed for a metric space - pick one of them and show that all the axioms hold. For the one that you chose, state in words what the distance is measuring.
7. Define a "neighborhood" of a point $(x, y) \in \mathbb{R}^{2}$ to be any set of the form $I \times\{y\}$ where I is an open interval (in the usual sense of the word open for intervals of \mathbb{R}) containing x. Let \mathcal{O} be the set of arbitrary unions of "neighborhoods" together with the empty set. Does this define a topology on \mathbb{R}^{2} ? If not, why not? If so, are the x and the y axes open sets or closed sets or neither?
8. Let $A=\{0\} \cup[1,2] \cup\{p \mid p \in \mathbb{Q}, p>3\}$, a subset of \mathbb{R} with the usual topology. How many different subsets of \mathbb{R} can you attain by starting with A and taking closures, complements, and interiors (perhaps iteratively, so you're allowed to take the closure of the complement, for example).
(b) If you start with a different set than A, can you get more possibilities?

Challenge (1 bonus point): What is the maximum number? Is there even a maximum?
9. Do the following problem about continuous deformations (you need an explanation, with pictures, not a rigorous proof). (see also the back of the warm-up from 8/29)

Problem 1.2. A pretzel has two holes that "hold" a doughnut (see Figure 1.2 (a)). Show that the pretzel can be deformed in such a way that one of its "handles" will unlink itself from the doughnut (Figure 1.2 (b)).

Figure 1.2
10. Challenge (not for credit): Solve the n-pancake problem in \mathbb{R}^{n} : if you have n solid objects in \mathbb{R}^{n}, then there exists a straight line cut (an $n-1$ dimensional plane) that simultaneously divides the volume of each of them in half.

[^0]: ${ }^{1}$ Historical remark: Hausdorff made this definition in 1919. He also proposed the following additional axiom: 5. For two different points x and y, there are two corresponding neighborhoods U_{x} and U_{y} with no points in common.
 You can show that this is not equivalent: there are topological spaces (according to our definition) which do not satisfy this extra axiom. Can you think of some? (you do not need to hand this in)

