Math 4530 Homework 10: Lifting paths and loops.

We are usually convinced more easily by reasons we have found ourselves than by those which occurred to others. - Blaise Pascal

Recommended reading:

Jänich, chapter IX sections 2-5. (we'll continue with section 5 next week). Alternative/additional: Munkres chapter 51

Problems:

For the first two questions, we again consider S^{1} as \mathbb{R} / \sim where $x \sim y$ if $x=y+k$ for some $k \in \mathbb{Z}$. The function Δ is that defined on the previous homework takes integer values.

1. Use the homotopy lifting theorem and/or the monodromy lemma to give a new, short and complete proof that the function Δ is
a) well-defined (meaning it doesn't depend on which lift you choose) and
b) assigns the same value to functions that are homotopic.
2. Let f and g be continuous maps from $S^{1} \rightarrow S^{1}$. Prove that $\Delta(f \circ g)=\Delta(f) \Delta(g)$.
3. Let \sim be the equivalence relation on \mathbb{R}^{2} given by $(x, y) \sim(p, q)$ if $x-p \in \mathbb{Z}$ and $y-q \in \mathbb{Z}$. Prove that the quotient map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \sim$ is a covering map.
4. Let $(m, n) \in \mathbb{Z} \times \mathbb{Z}$. Give an example of a loop α based at $\pi((0,0))$ in \mathbb{R}^{2} / \sim so that the lift of α based at $(0,0)$ has its other endpoint at (m, n).

For the next question, we say that two paths (or loops) f and g from $[0,1] \rightarrow X$ are said to be homotopic rel endpoints if $f(0)=g(0)$, and $f(1)=g(1)$, and there is a homotopy f_{t} with $f_{0}=f f_{1}=g$, and such that $f_{t}(0)=f(0)$ and $f_{t}(1)=f(1)$ for all t.
5. Let X be a connected topological space, and let $\pi: Y \rightarrow X$ be a cover. Let $x_{0} \in X$. Let $\alpha:[0,1] \rightarrow X$ and $\beta:[0,1] \rightarrow X$ be two loops based at x_{0}. The concatenation $\alpha \beta$ is a loop defined by
$\alpha \beta(t)=\alpha(2 t)$ if $t \in[0,1 / 2]$, and $\alpha \beta(t)=\beta(2 t-1)$ if $t \in[1 / 2,1]$.

Show that if α^{\prime} is homotopic to α rel endpoints and β^{\prime} is homotopic to β rel endpoints, then $\alpha \beta$ is homotopic to $\alpha^{\prime} \beta^{\prime}$ rel endpoints.
6. Let $\alpha:[0,1] \rightarrow S^{1}$ be the map $x \rightarrow[x]$ (considering $S^{1}=\mathbb{R} / \sim$ as usual, so this is the map that just glues the two ends of the interval together, wrapping it once around the circle). Let $\beta:[0,1] \rightarrow S^{1}$ be the map $x \rightarrow[1-x]$.

Check that $\alpha \beta(0)=\alpha \beta(1)$, so we can think of $\alpha \beta$ as a function from S^{1} to S^{1}. Then compute the value of $\Delta(\alpha \beta)$.

