Math 4530 Homework 12: Final HW set!

To many, mathematics is a collection of theorems. For me, mathematics is a collection of examples; a theorem is a statement about a collection of examples and the purpose of proving theorems is to classify and explain the examples... - John B. Conway.

Problems:

1. Recall that a subset A of a topological space X is a *deformation retract* of X if there is a homotopy $H: X \times [0,1] \to X$ such that H(x,0) = x, $H(x,1) \in A$, and H(a,t) = a holds for all $x \in X$, $a \in A$ and $t \in [0,1]$.

a) Find a circle inside the Mobius band such that the loop is a deformation retract of the Mobius band.

b) The edge of the Mobius band is also a circle. Show that this is not a deformation retract of the Mobius band. (possible approach: look at the fundamental group!)

- 2. Suppose X is a topological space and $B \subset A \subset X$. If B is a deformation retract of A and A is a deformation retract of X, show that B is a deformation retract of X.
- 4. Let $X \subset \mathbb{R}^2$ be the topological space consisting of the union of the lines $[0, 1] \times \{0\}, \{0\} \times [0, 1]$ and $\{1/n\} \times [0, 1]$ for all $n \in \mathbb{N}$. Give this the subset topology from \mathbb{R}^2 .
 - a) Show that X is not locally path connected

b) Show that the identity map $X \to X$ is homotopic to the constant map $X \to X$ whose image is the single point (0,0).

c) Using part b, show that the identity map $X \to X$ is homotopic to the constant map whose image is the single point (0, 1)

d) Show that the point $(0,1) \in X$ is *not* a deformation retract of X. Hint: suppose it was a deformation retract. Let $z_n = (1/n, 1)$ and try to understand $H(t, z_n)$

- e) Why does part c) not contradict part d) ?
- 5. Let X be a topological space and $A \subset X$. We say A is a retraction of X if there is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. We call r a retraction.

a) Prove that if $r: X \to A$ is a retraction of X, and $x_0 \in A$, then the map $r_*: \pi_1(X, x_0) \to \pi_1(A, x_0)$ is surjective.

b) Give an example of a space X and a subset $A \subset X$ that is a retraction but not a deformation retract.

6. For $k \in \mathbb{N}$, let $p_k : S^1 \to S^1$ be the "multiply the angle by k map". If you think of S^1 as \mathbb{R}/\sim then this is the map $p_k([x]) = [kx]$. We know that $p_k : S^1 \to S^1$ is a cover.

For which continuous maps $f: S^1 \to S^1$ is there a lift to the cover $p_k: S^1 \to S^1$? Give a complete list (which will probably depend on k) and justify your answer. Hint: Think about $\Delta(f)$. Compute $(p_k)_*$ and f_* and use the lifting criterion.

- 7. Compute the fundamental group of the following spaces. (You may take any basepoint you like!)
 - a) \mathbb{R}^3 with the *x*-axis removed
 - b) The space X from problem 4.
- 8. In this question, B^{n+1} denotes the unit radius ball $\{x \in \mathbb{R}^n : |x| \leq 1\}$ in \mathbb{R}^{n+1} , and S^n the unit radius sphere. Assume that the following statement holds: There is no retraction $r: B^{n+1} \to S^n$ for each n.
 - a) Prove that the identity map $S^n \to S^n$ is not homotopic to a constant map.
 - b) Prove that the inclusion map $i: S^n \to \mathbb{R}^{n+1} \{\vec{0}\}$ is not homotopic to a constant map. c) Explain why every continuous map $f: B^{n+1} \to B^{n+1}$ must have a fixed point, i.e. f(x) = x or some $x \in B^{n+1}$.