Math 4530 Homework 12: Final HW set!

To many, mathematics is a collection of theorems. For me, mathematics is a collection of examples; a theorem is a statement about a collection of examples and the purpose of proving theorems is to classify and explain the examples... - John B. Conway.

Problems:

1. Recall that a subset A of a topological space X is a deformation retract of X if there is a homotopy $H: X \times[0,1] \rightarrow X$ such that $H(x, 0)=x, H(x, 1) \in A$, and $H(a, t)=a$ holds for all $x \in X, a \in A$ and $t \in[0,1]$.
a) Find a circle inside the Mobius band such that the loop is a deformation retract of the Mobius band.
b) The edge of the Mobius band is also a circle. Show that this is not a deformation retract of the Mobius band. (possible approach: look at the fundamental group!)
2. Suppose X is a topological space and $B \subset A \subset X$. If B is a deformation retract of A and A is a deformation retract of X, show that B is a deformation retract of X.
3. Show that the two figures below (an eight and a "theta") have isomorphic funadmental group. Possible strategy: define a bigger space X and use deformation retracts...
$8 \quad \Theta$
4. Let $X \subset \mathbb{R}^{2}$ be the topological space consisting of the union of the lines $[0,1] \times\{0\},\{0\} \times[0,1]$ and $\{1 / n\} \times[0,1]$ for all $n \in \mathbb{N}$. Give this the subset topology from \mathbb{R}^{2}.
a) Show that X is not locally path connected
b) Show that the identity map $X \rightarrow X$ is homotopic to the constant map $X \rightarrow X$ whose image is the single point $(0,0)$.
c) Using part b, show that the identity map $X \rightarrow X$ is homotopic to the constant map whose image is the single point $(0,1)$
d) Show that the point $(0,1) \in X$ is not a deformation retract of X. Hint: suppose it was a deformation retract. Let $z_{n}=(1 / n, 1)$ and try to understand $H\left(t, z_{n}\right)$
e) Why does part c) not contradict part d) ?
5. Let X be a topological space and $A \subset X$. We say A is a retraction of X if there is a continuous map $r: X \rightarrow A$ such that $r(a)=a$ for all $a \in A$. We call r a retraction.
a) Prove that if $r: X \rightarrow A$ is a retraction of X, and $x_{0} \in A$, then the map $r_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow$ $\pi_{1}\left(A, x_{0}\right)$ is surjective.
b) Give an example of a space X and a subset $A \subset X$ that is a retraction but not a deformation retract.
6. For $k \in \mathbb{N}$, let $p_{k}: S^{1} \rightarrow S^{1}$ be the "multiply the angle by k map". If you think of S^{1} as \mathbb{R} / \sim then this is the map $p_{k}([x])=[k x]$. We know that $p_{k}: S^{1} \rightarrow S^{1}$ is a cover.

For which continuous maps $f: S^{1} \rightarrow S^{1}$ is there a lift to the cover $p_{k}: S^{1} \rightarrow S^{1}$? Give a complete list (which will probably depend on k) and justify your answer. Hint: Think about $\Delta(f)$. Compute $\left(p_{k}\right)_{*}$ and f_{*} and use the lifting criterion.
7. Compute the fundamental group of the following spaces. (You may take any basepoint you like!)
a) \mathbb{R}^{3} with the x-axis removed
b) The space X from problem 4 .
8. In this question, B^{n+1} denotes the unit radius ball $\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ in \mathbb{R}^{n+1}, and S^{n} the unit radius sphere. Assume that the following statement holds: There is no retraction $r: B^{n+1} \rightarrow S^{n}$ for each n.
a) Prove that the identity map $S^{n} \rightarrow S^{n}$ is not homotopic to a constant map.
b) Prove that the inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}-\{\overrightarrow{0}\}$ is not homotopic to a constant map.
c) Explain why every continuous map $f: B^{n+1} \rightarrow B^{n+1}$ must have a fixed point, i.e. $f(x)=x$ or some $x \in B^{n+1}$.

