Math 4530 Homework 2: products, subspaces, continuity, connectedness
"I turn with terror and horror from this lamentable scourge of continuous functions with no derivatives." - Charles Hermite, in a letter to Thomas Stieltjes

1. Recall the frontier of a subset A of a topological space X is the set of points that are neither interior points or A nor interior points of $X \backslash A .{ }^{1}$ Prove just using the definitions that the frontier of any set is a closed set.
2. For which numbers $a<b \in \mathbb{R}$ is the interval $[a, b) \cap \mathbb{Q}$ open in the subspace topology on \mathbb{Q} ? For which is it closed? (justify this briefly, don't just list the numbers a and b that work.)
3. Look at the topology on \mathbb{R}^{2} defined in problem 7 from HW1. Describe the subset topology on the x-axis and on the y-axis.
4. Suppose that X, \mathcal{O}_{X} and Y, \mathcal{O}_{Y} are topological spaces and $\mathcal{O}_{X \times Y}$ the product topology on $X \times Y$. Let $A \subset X$ and $B \subset Y$, and give them the subspace topologies. Show that the product topology on $A \times B$ is the same as viewing $A \times B$ as a subset of the topological space $X \times Y, \mathcal{O}_{X \times Y}$ and giving it the subspace topology.
5. In class we talked about products of two spaces, but one can also take products of arbitrary collections of spaces. If X_{n} are topological spaces, indexed by $n \in \mathbb{N}$, then the product topology is defined to be that generated by the basis $\prod_{n \in \mathbb{N}} U_{n}$ where $U_{n} \subset X_{n}$ is open and $U_{n}=X_{n}$ for all but finitely many n.
(a) An important example is where $X_{n}=\mathbb{R}$ for all n, then we can think of $\prod_{n \in \mathbb{N}} X_{n}$ as the set of all sequences of real numbers $\left(a_{1}, a_{2}, \ldots\right)$. For $k \in \mathbb{N}, \epsilon>0$, and $x_{n} \in X_{n}$ define the set

$$
O_{\epsilon, x_{1}, \ldots x_{k}}:=\left\{\left(a_{1}, a_{2}, \ldots\right):\left|a_{i}-x_{i}\right|<\epsilon \text { for all } i \leq k\right\}
$$

Is the set $\left\{O_{\epsilon, x_{1}, \ldots x_{k}}: x_{i} \in X, \epsilon>0\right\}$ a basis for the product topology on $\prod_{n \in \mathbb{N}} X_{n}$ in this case?
(b) Show that, in general, the product of finitely many discrete topological spaces is discrete, but the product topology on $\prod_{n \in \mathbb{N}} Y_{n}$ where $Y_{n}=\{0,1\}$ with the discrete topology, is not discrete.
(c) Is the same true if you do the question above, but instead of the product topology you take the topology on $\prod_{n \in \mathbb{N}} X_{n}$ generated by the basis $\left\{\prod_{n \in \mathbb{N}} U_{n}: U_{n}\right.$ open in $\left.X_{n}\right\}$?
6. Let X and Y be topological spaces, and for a point $x \in X$ let $Y_{x}=\{(x, y): y \in Y\}$. Show that for any $x \in X$, the set Y_{x} is homeomorphic to Y.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that f gives a homeomorphism between \mathbb{R} and its graph (a subspace of \mathbb{R}^{2}).

[^0]8. Let X be a topological space, and $A \subset X$. Suppose you have some topology \mathcal{O} on A (not necessarily the subspace topology). Prove that, if the inclusion map $A \rightarrow X$ is a continuous map, then every open set from the subspace topology is in \mathcal{O}. (In other words, the subspace topology is the "smallest" topology that makes inclusions continuous.)
9. Let X be a topological space, and $A \subset X$ (with the subset topology). Prove or give a counterexample to the following statements:
(a) If A is open and connected and $f: X \rightarrow \mathbb{R}$ a continuous map, then the image of A is an open interval.
(b) If A is connected then \bar{A} is connected
(c) If A is path connected then \bar{A} is path connected
(d) If A is connected then the frontier of A is connected
(e) If A is connected then \bar{A} is path connected
(f) If the frontier of A is connected then A is connected
10. Show that the product (with the product topology) of two connected topological spaces is connected.
11. For each of the following subspaces of \mathbb{R}^{2} (with the subset topology coming from the usual topology on \mathbb{R}^{2}), determine if the space is connected and/or path connected. Justify your answer.
(a) The graph of the function $y=\sin \left(\frac{1}{x}\right)$ for $x \in[-1,0) \cup(0,1]$
(b) The graph of the function $y=\sin \left(\frac{1}{x}\right)$ for $x \in[-1,0) \cup(0,1]$, union the origin.
(c) Let A_{n} denote a circle of radius $1 / n$ and center at point $(1 / n, 0)$ in \mathbb{R}^{2}. Answer the question for the subspace $\bigcup_{n \in \mathbb{N}} A_{n}$
(d) Let B_{n} be the graph of the function $y=x / n$ where $x \in[0,1]$. Answer the question for the subspace $\bigcup_{n \in \mathbb{N}} B_{n}$

12. Challenge (not to hand in): Is the space from question 10 (b) homeomorphic to \mathbb{R} ? Prove or disprove!

Extra references.

Some students have asked me for suggestions of other books to look at. Allen Hatcher (professor emeritus here and world-class topologist) has some good suggestions in the "point-set topology" section of this list: https://pi.math.cornell.edu/~hatcher/Other/topologybooks.pdf I'll put the pdf file of his list on the course website as well.

[^0]: ${ }^{1}$ I will be careful to use the word "frontier" for this, not "boundary" I asked several mathematicians "what is the boundary of the open interval $(0,1)$ " and 4 out of 6 responded "the points 0 and 1 " (others asked for clarification), but to the question "does the open interval $(0,1)$ have boundary?" 5 out of 5 other mathematicians I asked said "no". For us, $(0,1)$ does have frontier in \mathbb{R} and it's the points 0 and 1 . We'll write ∂A for frontier of A.

