Math 4530 Homework 6: quotients

A mathematician's work is mostly a tangle of guesswork, analogy, wishful thinking, and frustration. And proof, far from being the core of discovery, is more often than not a way of making sure that our minds are not playing tricks

- G.-C. Rota

Reading: Chapter III, sections 1, 2, 3, 6 and 7 in Jänich.

Problems:

1. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Prove the following universal property of the product space:

There is a unique (up to homeomorphism) space P, \mathcal{O}_P with the property that there exist continuous maps $\pi_X : P \to X$ and $\pi_Y : P \to Y$ such that, for any topological space Z and any continuous maps $f_1 : Z \to X$ and $f_2 : Z \to Y$, there is a unique continuous map $h : Z \to P$ such that $f_1 = \pi_X \circ h$ and $f_2 = \pi_Y \circ h$.

- 2. a) Suppose that X is a path connected topological space and \sim an equivalence relation on X. Show that X/\sim is path connected.
 - b) If X is not necessarily path-connected, show that X/\sim has at most as many path-components as X. Give an example to show that X/\sim may have fewer path-components than X does.
- 3. Suppose that X, d is a metric space, with the metric topology, and A is a closed subset of X. Show that the quotient space X/A (collapsing A to a point) is a Hausdorff topological space. Why does this fail if A is not closed?
- 4. Define \sim on \mathbb{R} by $x \sim y$ if $x y \in \mathbb{Z}$. Show that \sim is an equivalence relation, and that \mathbb{R}/\sim is homeomorphic to the unit circle (the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ as a subset of \mathbb{R}^2)
- 5. Define \sim on \mathbb{R}^2 by $p \sim q$ if both of the coordinates of the vector p-q are integers.
 - (a) (Not to hand in) check that \sim is an equivalence relation
 - (b) Show that \mathbb{R}^2/\sim is homeomorphic to the product of two copies of the unit circle. possible hint: use the previous question
 - (c) Show that \mathbb{R}^2/\sim is homeomorphic to the surface of revolution

```
\left\{ \left( (2 + \cos(\phi))\cos(\theta), \ (2 + \cos(\phi))\sin(\theta), \sin(\phi) \right) \in \mathbb{R}^3 : \theta \in [0, 2\pi), \phi \in [0, 2\pi) \right\}
```

with the subset topology from \mathbb{R}^3 . In this question, you may use (without proof) basic facts from calculus/other math classes about continuity of functions of real variables.

- 6. Define a relation \sim on \mathbb{R}^2 by saying that $(x_1, y_1) \sim (x_2, y_2)$ if
 - $|x_1| < 1$, $|x_2| < 1$, and there exists $c \in \mathbb{R}$ such that both points lie on the graph of the function $y = \log(1 x^2) + c$, or
 - $|x_1| \ge 1$ and $x_1 = x_2$.
 - (a) Show that this is an equivalence relation
 - (b) Draw a picture of the equivalence classes in the plane
 - (c) Assume that \mathbb{R}^2 has the usual topology. Show that \mathbb{R}^2/\sim is not Hausdorff.
 - (d) **Bonus.** What is \mathbb{R}^2/\sim , as a topological space? Can you give a simple description of this (e.g. as some lines attached together...)
- 7. Let $GL_2(\mathbb{R})$ denote the set of invertible 2×2 matrices. Define a relation \sim on $GL_2(\mathbb{R})$ by $A \sim B$ if there exists $C \in GL_2(\mathbb{R})$ such that $A = CBC^{-1}$.

- (a) Show that this is an equivalence relation
- (b) Put a metric on $GL_2(\mathbb{R})$ by saying that the distances between matrices A and B is $\max\{|a_{ij}-b_{ij}|\}$ where a_{ij} denotes the i,j entry of A. (you do not have to check that this defines a metric, but you can if you want to)

Show that the quotient $GL_2(\mathbb{R})/\sim$ is not Hausdorff.

Possible hint: look at the equivalence class of $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$

- 8. Define an equivalence relation on the unit circle $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (remember, this has the subset topology from \mathbb{R}^2) by saying that $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 = -x_2$ and $y_1 = -y_2$. (you do not have to check that this is an equivalence relation). Show that the quotient S^1/\sim is homeomorphic to the original space S^1 .
- 9. **Challenge**, not to hand in:

Let's try to do the question above, but this time for the 2-dimensional sphere. Let $S^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$, and define two points to be equivalent if the vector representing one is -1 times the other. Is S^2/\sim homeomorphic to S^2 ?

Think about how you would prove it, even if you don't have all the required tools yet.