Math 4530 Homework 9: covering spaces

Problems worthy of attack prove their worth by fighting back - Piet Hein

Problems:

For the first two questions, please think of S^1 as \mathbb{R}/\sim where $x \sim y$ if x = y + k for some $k \in \mathbb{Z}$. Thus, the function Δ defined on the previous homework takes integer values.

- 1. Suppose $f: S^1 \to S^1$ is a continuous map. Show that there is a map g that is homotopic to f, and with g(0) = 0. Hint: compose with rotations...
- 2. (a) Suppose that $f: S^1 \to S^1$ satisfies $\Delta(f) = \Delta(id)$, where *id* is the identity function $x \mapsto x$. Show that f is homotopic to *id*. Hint: the previous question might be helpful!
 - (b) Suppose that $g: S^1 \to S^1$ satisfies $\Delta(g) = 0$. Show that g is homotopic to a constant map.
- 3. Define a covering map $S^2 \to \mathbb{R}P^2$ and prove that it is a covering map. What is the degree of the cover?

CHALLENGE/BONUS: (not required to hand in) Does there exist a degree two covering map $S^2 \rightarrow S^2$? What about degree 3?

- 4. Let Y be a topological space that is homeomorphic to the numeral 8. You may take Y to be the set $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \text{ or } x^2 + (y 2)^2 = 1\}$. Does there exist a covering map from Y to S¹? Either define the map and show it is a cover, or prove that none exists.
- 5. Suppose that $\pi : \mathbb{R} \to \mathbb{R}$ is a covering map. Show that π is necessarily a homeomorphism.