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1. Introduction

The purpose of these notes is to give a self-contained proof of the following theorem,

Theorem 1.1. Let f : Sn → Sn be a K-quasiconformal homeomorphism, n ≥ 2, K ≥ 1. Then

(1) f is differentiable a.e.
(2) The differential Dfx is nonsingular at a.e. x at which f is differentiable.
(3) Let x be a point at which Dfx is nonsingular, and let v, w ∈ TxSn with ‖v‖ = ‖w‖ 6= 0.

Then
1

K
≤ ‖Dfx(v)‖
‖Dfx(w)‖

≤ K

An analogous theorem holds for quasi-conformal homeomorphisms between subdomains of Sn, as
can easily be seen from the fact that all of the above statements are local in nature. Here a.e.
refers to the Lebesgue measure on Sn. Throughout these notes, all measures will be Borel measures
on the appropriate topological space, which will always be some Borel subset of Rn for some n.
”Almost everywhere” will always refer to the Lebesgue measure on this subset of the appropriate
dimension, unless otherwise noted. Lebesgue measure on Rn will be denoted by mn. When there
is no possibility of ambiguity, we will simply write m.

2. Background material in Analysis

We review some basic theorems from real analysis that will be used frequently. The proofs are all
standard and hence mostly omitted.

2.1. Absolute continuity. A function F : [a, b] → Rm (−∞ ≤ a ≤ b ≤ ∞) is called absolutely
continuous if for every ε > 0, there is some δ > 0 such that for any positive integer N , and any
collection of N disjoint subintervals of [a, b], written (aj , bj), 1 ≤ j ≤ N , we have

(2.1)

N∑
j=1

|bj − aj | < δ ⇒
N∑
j=1

|F (bj)− F (aj)| < ε

Given a measurable space (X,A), and two σ-finite measures µ, ν on the σ-algebra A of measurable
sets, we say that ν is absolutely continuous with respect to µ, written ν � µ, if µ(E) = 0 implies

1
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that ν(E) = 0. In this case, there is a function g ∈ L1(X,A, µ), uniquely defined µ-a.e., such that

(2.2) ν(E) =

∫
E

g dµ

g is called the Radon-Nikodym derivative of ν with respect to µ, and is sometimes written dν
dµ .

On R, these two notions of absolute continuity are closely connected by a theorem which is some-
times called ”the fundamental theorem of calculus for Lebesgue integrals”. For a closed interval
[a, b], −∞ < a < b < ∞, and a continuous function F : [a, b] → R, we can define a signed Borel
measure µ on [a, b] by

(2.3) µ([a, x]) = F (x)− F (a)

for a ≤ x ≤ b.

Theorem 2.1. For a continuous function F : [a, b]→ R, the following are equivalent,

(1) F is absolutely continuous.
(2) There is a function f ∈ L1(m) such that

F (x)− F (a) =

∫ x

a

f dm

(3) F is differentiable a.e., F ′ ∈ L1(m), and

F (x)− F (a) =

∫ x

a

F ′ dm

(4) The signed Borel measure µ is absolutely continuous with respect to m.

Hence absolutely continuous functions are precisely the class of functions for which the fundamental
theorem of calculus holds true, in the sense that we can integrate the derivative and recover the
function.

Clearly any absolutely continuous function is uniformly continuous, by taking N = 1 in the defini-
tion. However, there are uniformly continuous functions which are not absolutely continuous. One
example is the Cantor function on [0, 1], also known as the devil’s staircase.

2.2. Lebesgue Density Theorem. For any n ∈ N, let f ∈ L1
loc(Rn,m) be a locally Lebesgue-

integrable function. Let B(r, x) denote the ball of radius r centered at x. A point x ∈ Rn is said
to be a Lebesgue point for f if

(2.4) lim
r→0

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)| dy = 0

The Lebesgue density theorem implies that Lebesgue density points for f are abundant.

Theorem 2.2. Almost every x ∈ Rn is a Lebesgue point for f .

A particularly useful consequence is that

(2.5) lim
r→0

1

m(B(r, x))

∫
B(r,x)

f(y) dy = f(x)
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for a.e. x ∈ Rn, since this is true for every Lebesgue point.These theorems are true if we replace the
balls B(r, x) with any other family of sets parametrized by r which shrinks to x sufficiently nicely,
e.g. cubes centered at x of side length r.

Let E be a Borel subset of Rn. We say that x ∈ E is a Lebesgue density point for E if

(2.6) lim
r→0

m(B(r, x) ∩ E)

m(B(r, x))
= 1

By applying the Lebesgue density theorem to the characteristic function for E, we see that a.e.
x ∈ E is a Lebesgue density point for E.

Let F : U → V be a homeomorphism between two open subsets of Rn. We can define a new
measure νF on U by νF (A) = m(F (A)) for a measurable A ⊂ U . We define the volume derivative
of F at x as

(2.7) ν′F (x) := lim
r→0

νF (B(r, x))

m(B(r, x))

The Lebesgue density theorem implies that this limit exists for a.e. x ∈ U , and that ν′F ∈ L1
loc(m).

In fact, ν′F is the Radon-Nikodym derivative of the absolutely continuous part of the measure νF
(with respect to m). Suppose that m(A) = 0 implies that m(F (A)) = 0. Then νF is absolutely
continuous with respect to m, ν′F is the Radon-Nikodym derivative of νF , and

(2.8) m(F (A)) =

∫
A

ν′F dm

It is easily checked that if F is differentiable at a point x, then ν′F (x) is the absolute value of the
Jacobian of F at x. Hence the volume derivative is a generalization of the Jacobian of a differentiable
mapping.

If we forget the homeomorphism F , we can still define, for any regular Borel measure µ, the volume
derivative

(2.9) µ′(x) = lim
r→0

µ(B(r, x))

m(B(r, x))

(a regular Borel measure is a Borel measure which takes finite values on compact sets) For regular
Borel measures, the volume derivative µ′ exists a.e. and is an L1

loc(m) function. In particular, it is
finite a.e.

2.3. Egoroff’s Theorem. A classic, extremely useful theorem of analysis is Egoroff’s theorem.
Let (X,A, µ) be a measure space.

Theorem 2.3. Suppose µ(X) <∞, and (fn)n≥1 is a sequence of measurable real-valued functions
converging pointwise a.e. to a function f . Then for every ε > 0, there exists E ⊂ X such that
µ(E) < ε and fn → f uniformly on X\E.

2.4. Hausdorff measure. We will need a natural way of assigning a 1-dimensional measure to
segments of paths in Rn, for any n ≥ 1. The most natural way to do this is via the 1-dimensional
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Hausdorff measure, which we will denote by Λ. Fix n. We define, for any A ⊂ Rn,

(2.10) Λ(r,A) = inf

{ ∞∑
1

diamBj : A ⊂
∞⋃
1

and diamBj ≤ r

}

(2.11) Λ(A) = lim
r→0

Λ(r,A)

The sets Bj in the definition of Λ(r,A) may be restricted to the class of open subsets of Rn. Λ is
a metric outer measure on Rn, hence all Borel sets are Λ-measurable and therefore the restriction
of Λ to the Borel σ-algebra is a Borel measure. Λ is invariant under isometries of Rn. For n = 1,
Λ agrees with the usual Lebesgue measure on R.

It is an easy exercise to see that if P is orthogonal projection onto a 1-dimensional subspace of
Rn, and A ⊂ Rn is Borel measurable, then m1(P (A)) = Λ(P (A)) ≤ Λ(A). Now let A ⊂ Rn be a
connected Borel measurable subset, and let x, y ∈ A. Let ` be a straight line segment joining x to
y in Rn, and let L be the line in Rn containing `. The orthogonal projection of A onto L contains
the line segement `, since A is connected, and we thus obtain the fundamental diameter estimate

(2.12) diam(A) ≤ Λ(A)

We will use estimates on the Hausdorff measure of the images of Lebesgue-small sets to prove the
absolute continuity of maps F : [a, b]→ Rn. More precisely,

Lemma 2.4. Suppose F : [a, b]→ Rn is an injective map such that for every ε > 0, there is δ > 0
such that whenever I1, . . . , Ik are disjoint closed subintervals of [a, b] satisfying

∑n
j=1m1(Ij) < δ,

we have
∑n
j=1 Λ(F (Ij)) < ε. Then F is absolutely continuous.

The proof is immediate from the diameter estimate (2.12).

3. The differentiability of quasiconformal mappings

The goal of this section is to prove the first part of Theorem 1.1, which states that a quasicon-
formal homeomorphism of Sn is differentiable a.e. for n ≥ 2. We first define what it means for a
homeomorphism to be quasiconformal. Since all of the statements of theorem 1.1 are local, from
now on all homeomorphisms f will be between bounded open subsets of Rn, and all distances will
be measured in the Euclidean metric, which is locally comparable to any Riemannian metric we
would put on Sn. So fix from now on a homeomorphism f : U → V , where U , V are bounded open
subsets of Rn. Define

(3.1) DI(x, r) = inf
|x−y|=r

|f(x)− f(y)|

(3.2) DO(x, r) = sup
|x−y|=r

|f(x)− f(y)|

(3.3) D(x) = lim sup
r→0

DO(x, r)

DI(x, r)

The first two functions DI and DO measure the shortest and longest distance from the center of
the image of a sphere centered at x. The ratio of these two functions for a particular r is a measure
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of the extent to which this image deviates from being a sphere centered at f(x). D(x) is the
infinitesmal analogue of this measure. The homeomorphism f is called K-quasiconformal if there
is a constant K ≥ 1 such that D(x) ≤ K for every x ∈ U . One may define a conformal mapping as
a map which infinitesmally maps spheres to spheres in the above sense, and we then see that D(x)
measures the failure of f to be conformal at x. We also see that a quasiconformal homeomorphism
is a homeomorphism which fails to be conformal only by a uniformly bounded amount.

It is also convenient to introduce the function

(3.4) H(x) = lim sup
h→0

|f(x+ h)− f(x)|
|h|

3.1. The Rademacher-Stepanov Theorem. The analytic backbone of this differentiability re-
sult is the following theorem of Rademacher-Stepanov, which states that under certain conditions,
a continuous function which has partial derivatives a.e. is differentiable a.e.

Theorem 3.1. Suppose that U is an open set in Rn and that f : U → Rm is a map such that

(1) f is continuous.
(2) The partial derivatives of f exist a.e.
(3) H(x) <∞ a.e.

Then f is differentiable a.e.

The conclusion of this theorem is true even if hypotheses (1) and (2) are dropped, but we will
not need the result in this generality. Partial derivatives refers here only to the derivatives of
f along directions parallel to the n coordinate axes. Before proceeding with the proof of the
Rademacher-Stepanov theorem, we outline how it will be used to prove the differentiability of the
K-quasiconformal homeomorphism f . The Rademacher-Stepanov theorem implies that it suffices to
show that f has partial derivatives a.e. and that H(x) <∞ a.e. The first of these is a consequence
of a remarkable regularity property of quasiconformal homeomorphisms; quasiconformal maps are
absolutely continuous along a.e. line segment parallel to the coordinate axes in Rn. The second
condition is an easy consequence of the Lebesgue density theorem.

Proof. By considering the coordinate functions of f separately and observing that the assumptions
on f are local in nature, it suffices to assume that m = 1 and U is a bounded open subset of Rn.
The idea of the proof is relatively simple; we simply follow the proof that a continuous function with
continuous partial derivatives is differentiable. The difficulty lies in finding a proper full measure
set of U on which this argument will work.

Fix δ > 0. For c ∈ N, let Ac denote the set of all points x ∈ U such that |f(x + h) − f(x)| ≤ c|h|
whenever |h| < 1/c and x ∈ U . Then Ac ⊂ Ac+1, and

(3.5)

∞⋃
c=1

Ac = {x ∈ U : H(x) <∞}
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is a full measure subset of U by assumption. Hence we find a large enough integer k such that
m(U\Ak) < δ/2. We also define functions

(3.6) gj(x) = sup
1≤i≤n

sup
0<|r|<1/j

∣∣∣∣f(x+ rei)− f(x)

r
− ∂if(x)

∣∣∣∣
Since the partial derivatives of f exist a.e. in U , gj is defined a.e. in U for each j, and gj → 0 a.e. It
is clear also that gj is measurable. Hence by Egoroff’s theorem, there is a compact set F ⊂ U such
that m(U\F ) < δ/2 and such that gj |F → 0 uniformly. Let E be the set of Lebesgue density points
of F ∩ Ak. By the Lebesgue density theorem, E has full measure in F ∩ Ak, and so m(U\E) < δ.
Note that every point of E is itself a density point of E. We will prove that f is differentiable at
every point of E. Since δ > 0 was arbitrary, this proves that f is differentiable at a.e. point in U .

Let y ∈ E, and let t > 0 be small enough that B(y, 2t) ⊂ U . Let x be some point in U such that
|x− y| = t. Define

zi = (x1, . . . , xi, yi+1, . . . , yn)

for 0 ≤ i ≤ n, so that z0 = y and zn = x. The points zi need not lie in E. However, using the fact
that y is a density point for E, we will be able to find points ui sufficiently close to these zi which
do lie in E. More precisely, for each t > 0 sufficiently small, we will find r = r(t) ≤ t such that
B(zi, r) ∩ E is nonempty. Further, r(t) can be chosen so that r(t)/t→ 0 as t→ 0.

The idea is to find r such that the pair of inequalities

(3.7) m(B(zi, r)\E) ≤ m(B(y, 2t)\E) < m(B(zi, r))

hold. Clearly the first inequality is satisfied if r ≤ t. The second inequality is satisfied if

(3.8) r > 2t

(
m(B(y, 2t)\E)

m(B(y, 2t))

)1/n

as we may write

(3.9) m(B(y, 2t)\E) = m(B(y, 2t))

(
m(B(y, 2t)\E)

m(B(y, 2t))

)
<

rn

(2t)n
m(B(y, 2t)) = m(B(y, r))

and all balls of radius r have the same measure. We claim that for sufficiently small t, we may
choose any r satisfying

(3.10) 2(t+ t2)

(
m(B(y, 2t)\E)

m(B(y, 2t))

)1/n

> r > 2t

(
m(B(y, 2t)\E)

m(B(y, 2t))

)1/n

It is easy to check that the left side of (3.10) is ≤ t for t small enough, using that y is a density
point of E. To be definite, we can choose r(t) to be the average of each side of (3.10). Then it is
immediate as well that r(t)/t→ 0 as t→ 0.

Knowing now that we can choose r(t) dependent on t as we claimed, we will suppress the argument
of r(t) and just write r. We can find ui ∈ B(zi, r)∩E for each i, since this set is nonempty by our
choice of r. Put u0 = y. Let vi = ui−1 + (xi − yi)ei, and write

(3.11) f(x)− f(y) = f(x)− f(un) +

n∑
i=1

(f(ui)− f(vi)) +

n∑
i=1

(f(vi)− f(ui−1))
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Recall that the compact set F was chosen so that gj → 0 uniformly on F . This implies that the
functions ∂if are well-defined and are uniformly continuous on F for each i. Since E ⊂ F , the same
holds for E. From equation (3.11), we have the estimate∣∣∣∣∣f(x)− f(y)−

n∑
i=1

∂if(y)(xi − yi)

∣∣∣∣∣ ≤ |f(x)− f(un)|+
n∑
i=1

|f(ui)− f(vi)|(3.12)

+

n∑
i=1

∣∣∣∣∣f(vi)− f(ui−1)−
n∑
i=1

∂if(ui−1)(xi − yi)

∣∣∣∣∣(3.13)

+

n∑
i=1

|∂if(ui−1)− ∂if(y)||xi − yi|(3.14)

To conclude the proof, we show that each of the three lines above is bounded by a function of the
form ε(t), where ε(t)/t→ 0 as t→ 0 which implies that f is differentiable at y.

For line (3.12), recall that E ⊂ Ak, and so if we take t < 1/(2k), then |f(p+ h)− f(p)| ≤ k|h| for
any p ∈ E. By the construction of the points ui, this implies that

(3.15) |f(x)− f(un)|+
n∑
i=1

|f(ui)− f(vi)| ≤ k(1 + 2n) · r(t)

since

(3.16) |vi − ui| ≤ |ui−1 − zi−1|+ |ui − zi| ≤ 2r

as may be checked from how the points vi are chosen. Since r(t)/t→ 0 as t→ 0, this takes care of
the first line.

For line (3.13), observe that

(3.17)

n∑
i=1

∣∣∣∣∣f(vi)− f(ui−1)−
n∑
i=1

∂if(ui−1)(xi − yi)

∣∣∣∣∣ ≤ t ·
n∑
i=1

g1/t(u
i−1) ≤ nt · sup

u∈F
g1/t(u)

and supu∈F g1/t(u)→ 0 as t→ 0 since gj → 0 uniformly on F as j →∞.

Lastly, for line (3.14), the functions ∂if are uniformly continuous on E as remarked earlier, and so

(3.18)
1

t

n∑
i=1

|∂if(ui−1)− ∂if(y)||xi − yi| ≤ n

 sup
1≤i≤n

sup
|u−v|<t
u,v∈E

|∂if(u)− ∂if(v)|

→ 0

as t→ 0. �

3.2. The ACL Property. We say that a homeomorphism f : U → V of open sets is ACL
(absolutely continuous on lines) if for every compact n-box Q = {x : ai ≤ xi ≤ bi}, the restrictions
of f to the line segments parallel to the coordinate axes which lie inside of Q ∩ U are absolutely
continuous, for almost every line segment. To make this assertion more precise, let Pi be the
orthogonal projection of Rn onto the ith coordinate plane {xi = 0}. Then f is ACL if for each i,
1 ≤ i ≤ n, and each compact n-box Q, the set of y ∈ Pi(U ∩Q) such that the map t→ f(y + tei)
is not absolutely continuous (ai ≤ t ≤ bi) has Lebesgue mn−1 measure zero in {xi = 0}.
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Proposition 3.2. Suppose that f is ACL. Then f has partial derivatives a.e. in U .

Proof. For each i, 1 ≤ i ≤ n, let Ai be the set of points z ∈ U such that the ith partial derivative of
f does not exist at z. It is easy to check that Ai is a Borel subset of U . Let Q = {x : ai ≤ xi ≤ bi}
be a compact n-box. By Fubini’s theorem,

(3.19) mn(Q ∩Ai) =

∫
Pi(Q)

m1(P−1i (y) ∩Ai ∩Q) dmn−1(y)

where m1 here is 1-dimensional Lebesgue measure on the fiber P−1i (y), and y ∈ Pi(Q). For a.e.

y ∈ Pi(Q), f is absolutely continuous P−1i (y), hence by Theorem 2.1, f |P−1i (y) is differentiable a.e.

on P−1i (y), and therefore m1(P−1i (y) ∩Ai ∩Q) = 0. This implies that mn(Q ∩Ai) = 0. Since this
holds for every n-box Q, we conclude that mn(Ai) = 0. �

Hence it suffices to prove that any quasiconformal homeomorphism has the ACL property, in order
to prove that partial derivatives exist a.e. We will do this by estimating the 1-dimensional Hausdorff
measure Λ of the images under f of line segments parallel to the coordinate axes. We will then use
Lemma 2.4 to derive absolute continuity on a full measure subset of line segments.

We first need a covering lemma for compact subsets of R.

Lemma 3.3. Suppose that F is a compact set in R and that ε > 0. Then there exists δ > 0 with
the following property: For every r ∈ (0, δ), there exists a finite covering of F with open intervals
I1, . . . , Ip such that

(1) m(Ij) = 2r for 1 ≤ j ≤ p.
(2) The center of Ij belongs to F
(3) Each point of F belongs to at most two intervals Ij
(4) pr < m(F ) + ε

Proof. Choose an open set G such that F ⊂ G and m(G) < m(F ) + ε. Set δ = d(F,R\G). Suppose
that 0 < r < δ. For x ∈ F put Ij(x) = (x− r, x+ r). This gives a covering of F by open sets, and
extracting a finite cover gives a covering of F which satisfies (1) and (2). By removing redundant
intervals, it is easy to check that (3) can be satisfied as well.

Now let I1, . . . Ip be our covering satisfying (1),(2), and (3). We claim that it then satisfies (4) as
well. Since every point of F lies in at most two intervals from this covering, and since each Ij ⊂ G,

(3.20) pr =
1

2

∑
m(Ij) ≤ m(G) < m(F ) + ε

�

Let Ωn denote the volume of an n-ball of radius 1, so that an n-ball of radius r has volume Ωnr
n.

Theorem 3.4. Let f : U → V be a quasiconformal homeomorphism, . Then f is ACL.

Proof. Let Q = {x : ai ≤ xi ≤ bi} be compact n-box contained inside U . Fix some i, 1 ≤ i ≤ n,
from now on, as the argument will be the same for each coordinate. Identify {xi = 0} with Rn−1,
and let P denote the projection onto {xi = 0}
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Define a Borel measure µ on Rn−1 by (for A ⊂ Rn−1)

(3.21) µ(A) = mn(f(Q ∩ P−1(A)))

It’s easy to see that µ is a regular Borel measure on Rn−1, hence its volume derivative µ′ is finite a.e.
Fix some y ∈ Rn−1 such that µ′(y) < ∞, and set J = Q ∩ P−1(y). We claim that f is absolutely
continuous on this line segment. Since µ′ <∞ a.e. in Rn−1, this will prove the theorem.

Let F be a compact subset of J ∩ int(Q). Our goal is to estimate Λ(f(F )) in terms of m1(F ), in
order to prove that if m1(F ) is small, then Λ(f(F )) is small. Choose some K such that D(x) < K
for every x ∈ U . Consider k large enough that Q contains a 1/k neighborhood of F , and let Fk
be the set of all x ∈ F such that 0 < r < 1/k implies DO(x, r) ≤ KDI(x, r). Then Fk ⊂ Fk+1,
F = ∪Fk, and each Fk is compact by the continuity of f .

We now fix k, and focus on estimating Λ(f(Fk)). Choose ε > 0, t > 0, and let δ > 0 be given
by Lemma 3.3 for the set Fk. Choose r > 0 small enough that r < min(δ, 1/k) and such that
|f(x) − f(z)| < t whenever x, z ∈ Q and |x − z| ≤ 2r. Let I1, . . . , Ip be the covering of Fk from
Lemma 3.3. Let xj ∈ Fk be the center of Ij . We are at last ready to begin making estimates.

We first get a preliminary estimate on Λ(t, f(Fk)) in terms of the function DO(−, r). Let Aj =
B(xj , r) be the open n-ball centered at xj with radius r, whose intersection with J is the interval
Ij . Since f(Fk) ⊂ ∪f(Aj), and diam(f(Aj)), we have

(3.22) Λ(t, f(Fk)) ≤
p∑
j=1

diam(f(Aj)) ≤ 2

p∑
j=1

DO(xj , r)

At this point in the proof, quasiconformality still has not entered the picture. Continuing, we
can think of the rightmost sum in 3.22 (ignoring the factor of 2) as

∑p
j=1 1 ·DO(xj , r). Applying

Hölder’s inequality with conjugate exponents n and n/(n−1), and then applying part (4) of Lemma
3.3, we have the bound p∑

j=1

1 ·DO(xj , r)

n

≤

 p∑
j=1

1n/(n−1)

n−1 p∑
j=1

DO(xj , r)
n

(3.23)

= pn−1
p∑
j=1

DO(xj , r)
n(3.24)

≤ (m1(Fk) + ε)n−1
1

rn−1

p∑
j=1

DO(xj , r)
n(3.25)

≤ (m1(F ) + ε)n−1
1

rn−1

p∑
j=1

DO(xj , r)
n(3.26)

(since Fk ⊂ F ). We now finally need to use quasiconformality, to control the term 1
rn−1

∑p
j=1DO(xj , r)

n

as r → 0. Our heuristic is the following: if f does not distort the shape of small n-balls too much,
then the sum

∑p
j=1DO(xj , r)

n should be proportional to the volume of f(Q ∩ P−1(W )), where

W = Bn−1(y, r) is an (n− 1)-ball around y in Rn−1 of radius r. In turn, f(Q∩P−1(W )) should be
proportional by some distortion factor to the length of the path f(J) (a finite constant!) multiplied
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by mn−1(W ) = Ωn−1r
n−1, if we think of f(Q ∩ P−1(W )) as a cylinder surrounding f(J). Hence∑p

j=1DO(xj , r)
n is on the order of rn−1 (independent of p!).

All that remains is to make the above argument rigorous. Since each xj ∈ Fk, we have DO(xj , r) ≤
KDI(xj , r) for each j. Observe that f(∂Aj) is the homeomorphic image of an n − 1 sphere
in Rn, hence by the higher-dimensional Jordan curve theorem, it cuts Rn into components, one
bounded, one unbounded. The bounded component contains f(xj), and in fact contains the open
ball B(f(xj), DI(xj , r)), by the definition of DI . Since f is a homeomorphism, f must map the
open ball Aj homeomorphically onto the bounded component of Rn\f(∂Aj). In particular, we
conclude that B(f(xj), DI(xj , r)) ⊂ f(Aj). This implies that

(3.27)

p∑
j=1

DO(xj , r)
n ≤ Kn

p∑
j=1

DI(xj , r)
n ≤ Kn

Ωn

p∑
j=1

m(f(Aj))

By construction of the intervals Ij , each point of Q∩P−1(W ) lies in at most two n-balls Aj . Hence
each point of f(Q ∩ P−1(W )) lies in at most two of the sets f(Aj). This gives us the estimate

(3.28)
Kn

Ωn

p∑
j=1

m(f(Aj)) ≤ 2
Kn

Ωn
m(f(Q ∩ P−1(W ))) = 2

Kn

Ωn
µ(W )

If we assemble all of the inequalites we have proven, and write rn−1 = Ω−1n−1mn−1(W ), we have
proven

(3.29) Λ(t, f(Fk))n ≤ 2n+1KnΩn−1(m1(F ) + ε)n−1µ(W )

Ωnmn−1(W )

As r → 0, µ(W )/mn−1(W ) → µ′(y) < ∞, by our choice of y at the beginning (this is of course
equivalent to saying µ(B(y, r)) is on the order of rn−1). So if we first let r → 0, then ε → 0, and
lastly t→ 0, we obtain

(3.30) Λ(f(Fk))n ≤ Cµ′(y)m1(F )n−1

for a constant C. Letting k → ∞, the compact sets Fk exhaust F , hence the compact sets f(Fk)
exhaust f(F ), and therefore

(3.31) Λ(f(F ))n ≤ Cµ′(y)m1(F )n−1

It is easy to see that this inequality for each compact subset F of J∩ int(Q) implies that f |J satisfies
the hypotheses of Lemma 2.4. Therefore f |J is absolutely continuous. �

3.3. Finishing the proof of differentiability. It remains only to show that if f is a quasicon-
formal homeomorphism, then H(x) <∞ a.e., where H is defined in 3.4. Compared to the previous
two theorems, this is easy.

Lemma 3.5. Suppose that f : U → V is a quasiconformal homeomorphism. Then H(x) <∞ a.e.

Proof. Since f is a homeomorphism, we may consider the volume derivative ν′f of f , defined in

equation (2.7). ν′f is locally integrable, hence finite a.e. We claim that for any y ∈ U , if ν′f (y) <∞,

then H(y) < ∞. Find positive numbers K, δ such that for 0 < r < δ, DO(y, r) ≤ KDI(y, r). By
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the Jordan curve argument in the proof of Theorem 3.4, DI(y, r)
n ≤ Ω−1n m(f(B(y, r))). Combining

these inequalities yields an inequality which is equivalent to

(3.32)
DO(y, r)n

rn
≤ Knm(f(B(y, r)))

m(B(y, r))

Letting r → 0, we obtain

(3.33) lim sup
r→0

DO(y, r)n

rn
≤ Knν′f (y) <∞

Since DO(y, r) ≥ |f(y + v) − f(y)| for any v with |v| = r, this implies that H(y) < ∞. Hence
H(y) <∞ for a.e. y ∈ U . �

Combining Theorem 3.1, Theorem 3.4, and Lemma 3.5, we obtain

Theorem 3.6. Let f be a quasiconformal homeomorphism. Then f is differentiable a.e.
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