Math 130 Homework 3

Reading:

- Euclid's construction of the regular pentagon. (On website. Compare with your HW from last week)
- Constructible regular polygons and field extensions reading (link on website)
- Optional videos:

1) Prof. David Eisenbud (who should obviously be teaching this class!) constructs a regular 17-gon. http://www.youtube.com/watch?v=87uo2TPrs18. The construction starts at about 3:45.
2) Prof. Eisenbud again, this time actually explaining Gauss:
http://www.youtube.com/watch?v=oYlB51UGlbw
1. Prove that the construction below gives a regular pentagon.
2. Draw any line through O. Get A, B.
3. Circle $A B$.
4. Circle $B A$, get C.
5. OC, get D.
6. Circle DO. Get E, F.
7. $E F$, get G.
8. Circle $G A$, get H.
9. Circle center A, radius $O H$, get I, J.
10. Circle center B, radius $I J$, get K, L. 10-14. Draw $B K, K J, J I, I L, L B$.
Then $B K J I L$ is the required pentagon.

11. Prove that the triangle formed by the sides of an inscribed hexagon, pentagon, and decagon is right angled. (see picture on back for an illustration - not a suggested method of proof!) You may use any high-school level geometry in your proof.
12. Using the previous problem, show that the segment $A H$ in problem 1 has the same length as the side of the pentagon.
13. On algebraic numbers: Recall that a number is algebraic if it is the root of a polynomial in $\mathbb{Q}[x]$. It is algebraic of degree n if the lowest degree polynomial of which it is a root has degree n.
(a) Prove that if a is algebraic of degree n, then \sqrt{a} is algebraic of degree at most $2 n$. Must it be exactly $2 n ?$
(b) Prove that if a is algebraic of degree n, then a^{2} is algebraic of degree at most n. Must it be exactly n ?
(c) Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})$, and conclude that this field has degree 4 over \mathbb{Q}.
14. Complete our work from class: show that
(a) If L_{1} and L_{2} are line segments whose endpoints have coordinates in a field F, then their intersection has coordinates in F.
(b) if $(x-a)^{2}+(y-b)^{2}=r^{2}$ and $(x-c)^{2}+(y-d)^{2}=s^{2}$ are two circles, with $a, b, c, d, r, s \in F$, then a point (x, y) where the circles intersect is the root of a degree 2 polynomial with coefficients in F. [possible hint: replace one equation with the difference of the two equations to reduce the problem to the intersection of a circle and straight line].
15. Prove that the regular 9-gon is not constructible. You may use results proved in class.
16. More generally, prove that an angle of n degrees, where $0<n<180$ is an integer is constructible if and only if n is a multiple of 3 .
17. Show, without using Gauss' theorem, that if you can construct a regular k-gon and a regular n-gon, where k and n are relatively prime, then you can construct a regular $k n$-gon

Picture for Question 2:

