Math 130 Homework 4

Reading:

- Hartshorne, sections 6, 7 and 8. (they look like chapters, but they are sections in chapter 2)
- Optional, if you're interested: History of the Jordan curve theorem at en.wikipedia.org/wiki/Jordan_curve_theorem

1. (The rational cartesian plane). Consider a geometry where the points are ordered pairs (a, b) of rational numbers, and the lines are all the subsets of the form

$$
\left\{\left(x_{0}, y_{0}\right)+t\left(x_{1}, y_{1}\right): t \in \mathbb{Q}\right\}
$$

where $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are fixed points in $\mathbb{Q} \times \mathbb{Q},\left(x_{1}, y_{1}\right) \neq(0,0)$.
Prove that this satisfies axioms I1 - I3. Which of the betweenness axioms are satisfied? (use the same notion of betweenness (for \mathbb{R}^{2}) discussed in Thursday's lecture - it's also the same as the one in Hartshorne)
2. Can you replace \mathbb{Q} with $\mathbb{Q}(\sqrt{2})$ in Problem 1 ? What about any other subfield of \mathbb{R} ?
(To answer this question, you need to give a clear explanation of whether your previous work used special properties of \mathbb{Q}, or if every property of \mathbb{Q} that you used also works for other subfields of \mathbb{R}. You don't need to re-prove everything)
3. Do the following problems from Hartshorne chapter 6:
6.3a) (also draw a pictorial representation of what such a plane looks like, like we did for the 5-point plane in class)
6.10 (hint: induction)
4. Verify that the real projective plane that we introduced in class satisfies the axioms $\mathrm{P} 1-\mathrm{P} 4$ for a projective plane given in Hartshorne problem 6.3.
Recall that the points are $\mathbb{R}^{2} \cup[0, \pi)$ and the lines are all of the form
$\{(x, y), \theta: y=m x+b$ and $\theta=\tan (b)\}$ or $\{(a, y), \pi / 2\}$ (vertical lines), or $\{\theta: 0 \leq \theta<\pi\}$ (all the slopes together).
5. Define a reasonable notion of betweenness for the real projective plane that extends the notion of betweenness in \mathbb{R}^{2}. Does this satisfy axioms B1 to B4?
(you may have different answers from each other, as I am giving you some freedom of how to define "between")
6. Read (and learn) the proof of Plane Separation, proposition 7.1 in Hartshorne. (nothing to hand in).
7. Do the following problems from Hartshorne chapter 7:
7.1, 7.4, 7.9, 7.10

