Math 130 Worksheet 5: Rotations

Every rotation of \mathbb{R}^{2} about the origin has the following matrix form

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Alternatively, one can think of \mathbb{R}^{2} as the complex plane. In this case, rotation corresponds to multiplication by a complex number $a+b i$ where $a^{2}+b^{2}=1$.

Exercise: What is the result of multiplying $x+i y$ by i ?
Why does this correspond to rotating the complex plane by 90° ?

In three dimensions, the situation is a bit more complicated.
Given a unit vector $u=\left(u_{x}, u_{y}, u_{z}\right)$, where $u_{x}^{2}+u_{y}^{2}+u_{z}^{2}=1$, the matrix for a rotation by angle of θ about an axis in the direction of u is:

$$
R=\left(\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right) .
$$

(Using some linear algebra, it is possible to prove that these are exactly the orthogonal matrices of determinant 1 , meaning that $M^{T} M=I$ and $\operatorname{det}(M)=1$).

Exercise: What is the matrix for rotating by θ degrees about the vertical axis, $u=(0,0,1)$?

What's next: Our goal today is to see a different way to describe rotations of \mathbb{R}^{3}, analogous to the complex numbers for rotating \mathbb{R}^{2}.
(Optional exercise if you have extra time:) What complex number do you need to multiply by to get rotation by 45° ?

