
Penrose Tiles and Aperiodic Tessellations

Penrose tilings are a remarkable example of aperiodic, semi-regular tessellations
1
.

What follows is an excerpt from an article on Penrose tilings by Martin Gardner,

from his book “Penrose Tiles to Trapdoor Ciphers”.

Gardner was the long-time author of a mathematics column in Scientific American

magazine, as well as author of many books. He, more than anyone else, has made

major contributions to making deep mathematics accessible to general audiences.

His work demonstrates that, much like one need not be a Yeats scholar to appreciate

and understand poetry, one need not be a professional mathematician to appreciate,

understand, and find beauty and value in mathematics.

This short excerpt covers many of the ideas we talked briefly about in class and

illustrates them with pictures and examples.

1exercise: define all of the technical terms in that sentence!
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Penr ose Tiling 

At the end of a 1975 Scientific American column on tiling 
the plane periodically with congruent convex polygons (reprinted in my 
Time Travel and Other Mathematical Bewilderments) I promised a later 
column on nonperiodic tiling. This chapter reprints my fulfillment of 
that promise -a 1977 column that reported for the first time a remark- 
able nonperiodic tiling discovered by Roger Penrose, the noted British 
mathematical physicist and cosmologisr. First, let me give some defini- 
tions and background. 

A periodic tiling is one on which you can outline a region that tiles 
the plane by translation, that is, by shifting the position of the region 
without rotating or reflecting it. M. C. Escher, the Dutch artist, is famous 
for his many pictures of periodic tilings with shapes that resemble living 
things. Figure 1 is typical. An adjacent black and white bird constitute a 
fundamental region that tiles by translation. Think of the plane as being 
covered with transparent paper on which each tile is outlined. Only if the 
tiling is periodic can you shift the paper, without rotation, to a new 
position where all outlines again exactly fit. 

An infinity of shapes - for instance the regular hexagon - tile only 
periodically. An infinity of other shapes tile both periodically and non- 
periodically. A checkerboard is easily converted to a nonperiodic tiling 
by identical isosceles right triangles or by quadrilaterals. Simply bisect 
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1988 M C Escher He~rs Cordon Art - Baarn - Holland 

Figure 1 A periodic tessellation by M.  C .  Escher (1949) 

each square as shown in Figure 2A, left, altering the orientations to 
prevent periodicity. It is also easy to tile nonperiodically with dominoes. 

Isoceles triangles also tile in the radial fashion shown in the center of 
Figure 2A. Although the tiling is highly ordered, it is obviously not 
periodic. As Michael Goldberg pointed out in a 1955 paper titled "Cen- 
tral Tessellations," such a tiling can be sliced in half, and then the half 
planes can be shifted one step or more to make a spiral form of nonper- 
iodic tiling, as shown in Figure 2A, right. The triangle can be distorted in 
an infinity of ways by replacing its two equal sides with congruent lines, 
as shown at the left in Figure 2B. If the new sides have straight edges, the 
result is a polygon of 5, 7, 9, 11 . . . edges that tiles spirally. Figure 3 
shows a striking pattern obtained in this way from a nine-sided polygon. 
It was first found by Heinz Voderberg in a complicated procedure. 
Goldberg's method of obtaining it makes it almost trivial. 

In all known cases of nonperiodic tiling by congruent figures the 
figure also tiles periodically. Figure 2B, right, shows how two of the 
Voderberg enneagons go together to make an octagon that tiles periodi- 
cally in an obvious way. 

Another kind of nonperiodic tiling is obtained by tiles that group 
together to form larger replicas of themselves. Solomon W. Golomb 
calls them "reptiles." (See Chapter 19 of my book Unexpected  Hanging.) 
Figure 4 shows how a shape called the "sphinx" tiles nonperiodically by 
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giving rise to ever larger sphinxes. Again, two sphinxes (with one sphinx 
rotated 180 degrees) tile periodically in an obvious way. 

Are there sets of tiles that tile only nonperi~dicall~? By "only" we 
mean that neither a single shape or subset nor the entire set tiles periodi- 
cally, but that by using all of them a nonperiodic tiling is possible. 
Rotating and reflecting tiles are allowed. 

For many decades experts believed no such set exists, but: the suppo- 
sition proved to be untrue. In 1961 Hao Wang became interested in 
tiling the plane with sets of unit squares whose edges were colored in 
various ways. They are called Wang dominoes, and Wang wrote a splen- 
did article about them for Scientific American in 1965. Wang's problem 
was to find a procedure for deciding whether any given set of dominoes 
will tile by placing them so that abutting edges are the same color. 
Rotations and reflections are not allowed. The problem is important 
because it relates to decision questions in symbolic logic. Wang conjec- 
tured that any set of tiles which can tile the plane can tile it periodically 
and showed that if this is the case, there is a decision procedu~re for such 
tiling. 

In 1964 Robert Berger, in his thesis for a doctorate from Harvard 
University in applied mathematics, showed that Wang's conjecture is 

Figure 2 (A) Nonperiodic tiling with congruent shapes (B)  An enrzeagon 
(dotted at left) and a pair of enneagons (right) forming czn octagon 
that tiles periodically 



Figure 3 A spiral tiling by Heinz Voderberg 

Figure 4 Three generations of sphinxes i n  a nonperiodic tiling 
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false. There is no general procedure. Therefore there is a s'et of Wang 
dominoes that tiles only nonperiodically. Berger constructecl such a set, 
using more than 20,000 dominoes. Later he found a much smaller set of 
104, and Donald Knuth was able to reduce the number to 92. 

It is easy to change such a set of Wang dominoes into polygonal tiles 
that tile only nonperiodically. You simply put projections and slots on 
the edges to make jigsaw pieces that fit in the manner fol-merly pre- 
scribed by colors. An edge formerly one color fits only another formerly 
the same color, and a similar relation obtains for the other colors. By 
allowing such tiles to rotate and reflect Robinson construclted six tiles 
(see Figure 5) that force nonperiodicity in the sense explained above. In 
1977 Robert Ammann found a different set of six tiles that; also force 
nonperiodicity. Whether tiles of this square type can be reduced to less 
than six is not known, though there are strong grounds for believing six 
to be the minimum. 

At the University of Oxford, where he is Rouse Ball P'rofessor of 
Mathematics, Penrose found small sets of tiles, not of the square type, 

Figure 5 Raphael M.  Robinson's six tiles that force a nonperiodic tiling 
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that force nonperiodicity. Although most of his work is in relativity 
theory and quantum mechanics, he continues the active interest in 
recreational mathematics he shared with his geneticist father, the late 
L. S. Penrose. (They are the inventors of the famous "Penrose staircase" 
that goes round and round without getting higher; Escher depicted it in 
his lithograph "Ascending and Descending.") In 1973 Penrose found a 
set of six tiles that force nonperiodicity. In 1974 he found a way to 
reduce them to four. Soon afterward he lowered them to two. 

Because the tiles lend themselves to commercial puzzles, Penrose 
was reluctant to disclose them until he had applied for patents in the 
United Kingdom, the United States and Japan. The patents are now in 
force. I am equally indebted to John Horton Conway for many of the 
results of his study of the Penrose tiles. 

The shapes of a pair of Penrose tiles can vary, but the most interest- 
ing pair have shapes that Conway calls "darts" and "kites." Figure 6A 
shows how they are derived from a rhombus with angles of 72 and 108 
degrees. Divide the long diagonal in the familiar golden ratio of (1 + 
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Figure 6 (A) Construction of dart and kite (B) A coloring (black and gray) 
of dart and kite to force nonperiodicity (C) Aces and bow ties that 
speed constructions 
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6 ) / 2  = 1.61803398 . . . , then join the point to the obtuse corners. That 
is all. Let phi stand for the golden ratio. Each line segment is either 1 or 
phi as indicated. The smallest angle is 36 degrees, and the other angles 
are multiples of it. 

The rhombus of course tiles periodically, but we are not allowed to 
join the pieces in this manner. Forbidden ways of joining sides of equal 
length can be enforced by bumps and dents, but there are sinnpler ways. 
For example, we can label the corners H and T (heads and tails) as is 
shown in Figure 6B, and then give the rule that in fitting edges only 
corners of the same letter may meet. Dots of two colors could be placed 
in the corners to aid in conforming to this rule, but a prettier method, 
proposed by Conway, is to draw circular arcs of two colors on each tile, 
shown in the illustration as black and gray. Each arc cuts the sides as 
well as the axis of symmetry in the golden ratio. Our rule is that abutting 
edges must join arcs of the same color. 

To appreciate the full beauty and mystery of Penrose tiling one 
should make at least 100 kites and 60 darts. The pieces need be colored 
on one side only. The number of pieces of the two shapes are (like their 
areas) in the golden ratio. You might suppose you need more of the 
smaller darts, but it is the other way around. You need 1.618 . . . as 
many kites as darts. In an infinite tiling this proportion is exact. The 
irrationality of the ratio underlies a proof by Penrose that lhe tiling is 
nonperiodic because if it were periodic, the ratio clearly would have to 
be rational. 

A good plan is to draw as many darts and kites as you can on one 
sheet, with a ratio of about five kites to three darts, using a thin line for 
the curves. The sheet can be photocopied many times. The curves can 
then be colored with, say, red and green felt-tip pens. Conwqy has found 
that it speeds constructions and keeps patterns stabler if you imake many 
copies of the three larger shapes as is shown in Figure 6C. As you expand 
a pattern, you can continually replace darts and kites with aces and bow 
ties. Actually an infinity of arbitrarily large pairs of shapes, made up of 
darts and kites, will serve for tiling any infinite pattern. 

A Penrose pattern is made by starting with darts and kites around 
one vertex and then expanding radially. Each time you add a piece to an 
edge, you must choose between a dart and a kite. Sometimes the choice 
is forced, sometimes it is not. Sometimes either piece fits, but later you 
may encounter a contradiction (a spot where no piece can be legally 
added) and be forced to go back and make the other choice. It is a good 
plan to go around a boundary, placing all the forced pieces first. They 
cannot lead to a contradiction. You can then experiment with unforced 



pieces. It is always possible to continue forever. The more you play with 
the pieces, the more you will become aware of "forcing rules" that 
increase efficiency. For example, a dart forces two kites in its concavity, 
creating the ubiquitous ace. 

There are many ways to prove that the number of Penrose tilings is 
uncountable, just as the number of points on a line is. These proofs rest 
on a surprising phenomenon discovered by Penrose. Conway calls it 
"inflation" and "deflation." Figure 7 shows the beginning of inflation. 
Imagine that every dart is cut in half and then all short edges of the 
original pieces are glued together. The result: a new tiling (shown in 
heavy black lines) by larger darts and kites. 

Inflation can be continued to infinity, with each new "generation" of 
pieces larger than the last. Note that the second-generation kite, al- 
though it is the same size and shape as a first-generation ace, is formed 
differently. For this reason the ace is also called a fool's kite. It should 
never be mistaken for a second-generation kite. Deflation is the same 
process carried the other way. On every Penrose tiling we can draw 
smaller and smaller generations of darts and kites. This pattern too goes 
to infinity, creating a structure that is a fractal (see Chapter 3). 

Figure 7 How a pattern is inflated 
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Conway's proof of the uncountability of Penrose patterns (Penrose 
had earlier proved it in a different way) can be outlined as follows. On 
the kite label one side of the axis of symmetry L, the other R (for left and 
right). Do the same on the dart, using 1 and r. Now pick a random point 
on the tiling. Record the letter that gives its location on the tile. Inflate 
the pattern one step, note the location of the same point in a second-gen- 
eration tile and again record the letter. Continuing through higher infla- 
tions, you generate an infinite sequence of symbols that is a unique 
labeling of the original pattern seen, so to speak, from the selected point. 

Pick another point on the original pattern. The procedure may give a 
sequence that starts differently, but it will reach a letter beyond which it 
agrees to infinity with the former sequence. If there is no such agree- 
ment beyond a certain point, the two sequences label distinct patterns. 
Not all possible sequences of the four symbols can be produced this way, 
but those that label different patterns can be shown to cori-espond in 
number with the number of points on a line. 

We have omitted the colored curves on our pictures of tilings be- 
cause they make it difficult to see the tiles. If you work with colored tiles, 
however, you will be struck by the beautiful designs created by these 
curves. Penrose and Conway independently proved that whenever a 
curve closes, it has a pentagonal symmetry, and the entire region within 
the curve has a fivefold symmetry. At the most a pattern car1 have two 
curves of each color that do not close. In most patterns all curves close. 

Although it is possible to construct Penrose patterns with a high 
degree of symmetry (an infinity of patterns have bilateral symmetry), 
most patterns, like the universe, are a mystifying mixture of order and 
unexpected deviations from order. As the patterns expand, they seem to 
be always striving to repeat themselves but never quite managing it. 
G. K. Chesterton once suggested that an extraterrestrial being, observing 
how many features of a human body are duplicated on the left and the 
right, would reasonably deduce that we have a heart on each side. The 
world, he said, "looks just a little more mathematical and regular than it 
is; its exactitude is obvious, but its inexactitude is hidden; i1.s wildness 
lies in wait." Everywhere there is a "silent swerving from accuracy by an 
inch that is the uncanny element in everything . . . a sort of secret 
treason in the universe." The passage is a nice description of Penrose's 
planar worlds. 

There is something even more surprising about Penrose universes. 
In a curious finite sense, given by the "local isomorphism theorem," all 
Penrose patterns are alike. Penrose was able to show that every finite 
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region in any pattern is contained somewhere inside every other pattern. 
Moreover, it appears infinitely many times in every pattern. 

To understand how crazy this situation is, imagine you are living on 
an infinite plane tessellated by one tiling of the uncountable infinity of 
Penrose tilings. You can examine your pattern, piece by piece, in ever 
expanding areas. No matter how much of it you explore you can never 
determine which tiling you are on. It is no help to travel far out and 
examine disconnected regions, because all the regions belong to one 
large finite region that is exactly duplicated infinitely many times on all 
patterns. Of course, this is trivially true of any periodic tessellation, but 
Penrose universes are not periodic. They differ from one another in 
infinitely many ways, and yet it is only at the unobtainable limit that one 
can be distinguished from another. 

Suppose you have explored a circular region of diameter d. Call it 
the "town" where you live. Suddenly you are transported to a randomly 
chosen parallel Penrose world. How far are you from a circular region 
that exactly matches the streets of your home town? Conway answers 
with a truly remarkable theorem. The distance from the perimeter of the 
home town to the perimeter of the duplicate town is never more than d 
times half of the cube of the golden ratio, or 2.1 1+ times d. (This is an 
upper bound, not an average.) If you walk in the right direction, you 
need not go more than that distance to find yourself inside an exact copy 
of your home town. The theorem also applies to the universe in which 
you live. Every large circular pattern (there is an infinity of different 
ones) can be reached by walking a distance in some direction that is 
certainly less than about twice the diameter of the pattern and more 
likely about the same distance as the diameter. 

The theorem is quite unexpected. Consider an analogous isomor- 
phism exhibited by a sequence of unpatterned digits such as pi. If you 
pick a finite sequence of 10 digits and then start from a random spot in 
pi, you are pretty sure to encounter the same sequence if you move far 
enough along pi, but the distance you must go has no known upper 
bound, and the expected distance is enormously longer than 10 digits. 
The longer the finite sequence is, the farther you can expect to walk to 
find it again. On a Penrose pattern you are always very close to a 
duplicate of home. 

There are just seven ways that darts and kites will fit around a vertex. 
Let us consider first, using Conway's nomenclature, the two ways with 
pentagonal symmetry. 

The sun (shown in white in Figure 8) does not force the placing of 
any other piece around it. If you add pieces so that pentagonal symmetry 
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Figure 8 The infinite s u n  pattern 

is always preserved, however, you will be forced to construct the beauti- 
ful pattern shown. It is uniquely determined to infinity. 

The star, shown in white in Figure 9, forces the 10 light gray kites 
around it. Enlarge this pattern, always preserving the fivefold symmetry, 
and you will create another flowery design that is infinite and unique. 
The star and sun patterns are the only Penrose universes with perfect 
pentagonal symmetry, and there is a lovely sense in which they are 
equivalent. Inflate or deflate either of the patterns and you get the other. 

The ace is a third way to tile around a vertex. It forces no more 
pieces. The deuce, the jack and the queen are shown in white in Figure 
10, surrounded by the tiles they immediately force. As Penrose discov- 
ered (it was later found independently by Clive Bach), some of the seven 
vertex figures force the placing of tiles that are not joined to the immedi- 
ately forced region. Plate 1 shows in deep color the central portion of the 
king's "empire." (The king is the dark gray area.) All the deep colored 
tiles are forced by the king. (Two aces, just outside the left and right 
borders, are also forced but are not shown.) 



Figure 9 The infinite star pattern 

Jack Queen Deuce 

Figure 10 The "empires" of deuce, jack and queen 


