Math 113 Supplement on Permutation Groups

1 A brief history

As early as 200BC, mathematicians have studied structures that we now call groups:
structures, symmetries, numbers, permutations and more. But it was not until the
mid-1800s that someone noticed that collections of symmetries, of numbers and of other
operations have something in common and gave that something a name. This was
British mathematician Arthur Cayley (1821-1895), the first to write down something
that looks like our modern definition of a “group”!

Cayley’s observation did not come out of nowhere. A whole family of mathematicians
were working on problems involving groups — although mostly groups of permutations —
and moving towards higher and higher degrees of abstraction. French mathematician
Evariste Galois (1811-1832)2 was the first to use the word “group” (groupe in French)
to describe a group of permutations. Other major contributors were Augustin-Louis
Cauchy, C. F. Gauss, and Felix Klein, who worked on groups of symmetries. And
once the notion of “group” had been defined, there was an explosion of interest in
creating a unified theory and extending the concept to cover broader and broader areas
of mathematics.

The symmetric groups Sy, (recall that S, is the group of permutations of n objects)
are particularly important. Historically, they were the objects of study that inspired the
modern definition of a group. And as we saw in class, every finite group can be thought
of as a kind of a permutation group. (Precisely, for any finite group, there is at least
one subgroup of some symmetric group S, that is structurally the same as the finite
group.) So understanding symmetric groups is one way to get at an understanding of
all finite groups.

2 DMore on the mathematics of permutation groups
a.k.a Course Notes Section 12b

Our treatment of groups of permutations is a little different than that in the official
course notes. What follows is a summary of what we did beyond what is covered in the
book, for your reference. You should read and understand sections 12.1 and 12.2 in the
book before working through the content here. Sectlon 12.3 in the book is optional and
won’t be covered in class or on the midterm.

Let’s start with the theorem we mentioned in the history above: that all groups can
be-understood as groups of permutations. This theorem was discovered and proved by
Cayley, the mathematician who first defined group.

1Pop quiz: the definition is...

*You'll notice that Galois died at the age of 20. He was fighting a duel and lost. The man led a
somewhat colorful life and produced a remarkable amount of mathematics in a remarkably short time,
pioneering what is now called Galois theory.



2.1 Writing groups using permutations

Theorem 2.1 (Cayley). Any finite group is structurally the same as a subgroup of
some permutation group.

As we did in class, we will not give a complete proof of this theorem, but we will
explain how to make a group of permutations that corresponds to a given finite group.
We leave it to you to check some examples for verification and ponder why this method
works.

Here is how to do it. Start with the multiplication table for your group. For example:
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Remember that our convention for the multiplication table says that you the column
first and then the row. Next, assign a number to each element of your group, and write
this down in the table. If we do I « 1, A < 2, etc, we get:
ol 1Al Bl.C LD LE ]

I | As | Bs | C4 | D5 | Eg
As | Bs | I | BEg | Cs | Ds
B3 | I, | Ay | Ds | Eg | Cy
Cy | D5 | Eg I Bs | As
Ds | Eg | Cs | Ay | I Bs
Eg | Cy | Ds | By | Ao I
Finally, to figure out what permutation goes with which element, read the row of
numbers across and write this below 1 2 3 4 5 6. In our example, we find that:

I corresponds to (1 2 g g)
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B corresponds to ( 31956 4 ) and so on.

If we do the permutation BA (first A, then B), we get the permutation (

That’s I, which is BA in the multiplication table for the group. So our correspondence
‘works out — when you multiply two elements and then take the corresponding permuta-
tion, that’s the same thing as “multiplying” the two corresponding permutations.

Practice Problem 12b.0 What are the permutations corresponding to C', D and E?
Check that the permutations corresponding to C' and A multiply together (in the right
order, as CA) to give the permutation corresponding to E.
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Question 2.2. Why does this always work out? Can you think of a reason?

NOTE: this scheme will only work if you make multiplication go column first and then
row! (otherwise I think we’d have to read the columns going down, instead of the rows
going across to get the numbers we need to use in our permutations)

Practice Problem 12b.1 Follow the procedure above for the group with four elements
with the multiplication table given at the bottom of page 272 in the course notes.
You will get a subgroup of Sy that is structurally the same as that group. Check
that multiplication works on at least two different examples of elements (e.g. since
" HR? =V, check that if you do the permutation corresponding to R? followed by the
one corresponding to H, then you get the permutation corresponding to V. Then choose
two other elements).

2.2 Generators for S,

A special kind of permutation is a transposition. This is the result of switching two
adjacent numbers and doing nothing else. We write it down by writing down the two
numbers. For example,
2 3 56

( 943 5p

Practice Problem 12b.2 Prove that there are exactly n — 1 transpositions in S,

) is a transposition and we call it (34)

We will show that any permutation can be made by putting together a bunch of
permutations. One way to think about this is as follows: suppose that you have a
line-up of heavy objects that you want to rearrange in a different order. In fact, they
are so heavy that you can only move an object past one other before you have to put
it down and rest for a moment before picking it up again or moving anything else. In
other words, you can only do one transposition at a time. Provided that you are allowed
to take as many breaks as you want, is it possible to put the objects into any order you
want? Sure — this is one case where patience is all you need!

Practice Problem 12b.3 Convince yourself that you really can rearrange the objects
using this strategy

Another way to show this is by drawing permutations as braids.

Definition 2.3. A braid with n strands is a diagram with n dots in a top row, n dots
In a bottom row, and a line (called a strand) connecting each top dot to a single bottom
dot. Here is an example with 5 strands:
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You could make a physical model of a braid out of strings.
A braid is a way of writing down a permutation. Remember, our notation

tells you how to do a rearrangement by saying “1 goes to the third position”, “2 goes to
the first position”, etc. Now we’ll say “1 goes to the third position” instead by drawing
a strand from the 1st dot at the top to the third dot at the bottom. Similarly, “2 goes
to the first positioﬁ” is indicated by a strand connecting the 2nd dot at the top to the
first dot at the bottom. Thus, the permutation written down above gives this braid:

a

You can also go backwards: if you have a picture of a braid, just follow the strings
down to see what permutation it corresponds to. If the string from the first dot at the
top goes to the 5th dot at the bottom, you should write a 5 underneath the 1.

Problem 2.4 (Practice Problem 12b.4). What permutation is represented by the braid
on 5 strands in the example right below Definition 2.37

You can simulate doing one permutation followed by another by drawing the braid for
one permutation right underneath the braid for the other.
For example:
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Practice Problem 12b.5 Why does this method work to show you what happens
when you do one permutation after the other?

With braids, a transposition is just an instruction to cross one strand over an
adjacent one:

(23) -
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So to write a permutation as a sequence of transpositions, we need to give instructions
for crossing neighboring strands one at a time. If you had physical strings, this is exactly
what you would do to make the “braid”: pick up two side by side strands, one strand
in each hand, and cross them. Then pick up another pair of side by side strands and
cross them. o this s saee as (34)

Here is the result of doing (12) then (43) and then (32) to a braid with 6 strands:
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We see that we get the permutation ( ; ? Z ;l g 2 ), which is exactly what we

get if we multiply the three transpositions

23 A 56
2 6

L3 1

Lo s 5
(124356)
1 23 2 5.6
(132456)

using the old method.




If you have a picture of a braid, you can also go backwards and see what transpositions
make it up, by reading the string-crossings from top to bottom. Here is an example.

Practice Problem 12b.6 Write this braid as a sequence of transpositions:




