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Abstract. We give a topological stability result for the action of the fundamental
group of a compact manifold of negative curvature on its boundary at infinity: any
nearby action of this group by homeomorphisms of the sphere is semi-conjugate to the
standard boundary action. Using similar techniques we prove a global rigidity result
for the “slithering actions” of 3-manifold groups that come from skew-Anosov flows.
As applications, we construct hyperbolic 3-manifolds that admit arbitrarily many
topologically inequivalent Anosov flows, answering a question from Kirby’s problem
list, and also give a more conceptual proof of a theorem of the second author on
global C0–rigidity of geometric surface group actions on the circle.

Le groupe fondamental d’une variété compacte agit sur le bord à l’infini de son
revêtement universel. Nous démontrons un théorème de rigidité topologique pour
cette famille d’actions: toute action suffisament proche de cette action standard est
semi-conjugée à celle-ci. Avec la même stratégie de preuve, nous démontrons un
théorème de rigidité global pour les actions sur le cercle d’une variété de dimension 3
avec un “slithering” de Thurston. Comme applications, nous construisons pour tout
N strictement positif une variété hyperbolique de dimension 3 qui admet au moins N
flots d’Anosov topologiquement inéquivalents. Cette construction donne une réponse
positive à une question de Christy de la liste de Kirby. Nous donnons aussi une
preuve plus conceptuelle d’un théorème de la deuxième auteure sur la rigidité globale
des actions géométriques d’un groupe de surface sur le cercle.

1. Introduction

This paper proves two related rigidity results for group actions on manifolds, with
applications to skew-Anosov flows. The first is a general local rigidity result for the
boundary action of the fundamental group of a closed negatively curved manifold.

1. Local rigidity of boundary actions. A major historical motivation for the study
of rigidity of group actions comes from the classical (Selberg–Calabi–Weil) rigidity of
lattices in Lie groups. Perhaps the best known example is Calabi’s original theorem
that, for n ≥ 3, the fundamental group of a compact, hyperbolic n-manifold is locally
rigid as a lattice in SO(n, 1), later extended to a global rigidity result by Mostow. From
a geometric-topological viewpoint, it is natural to consider the action of SO(n, 1) on
the boundary sphere of the compactification of hyperbolic n-space (the universal cover
of the manifold in question) and several modern proofs of Mostow rigidity pass through
the study of this boundary action. See [18] for a broad introduction to the subject.

More generally, if M is a closed n-dimensional manifold of (variable) negative curva-

ture, its universal cover M̃ still admits a natural compactification by a visual boundary

sphere, denoted ∂∞M̃ and the action of π1M on M̃ by deck transformations extends
1
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to an action by homeomorphisms on ∂∞M̃ , which we call the boundary action. How-

ever, even if M is smooth, ∂∞M̃ typically has no more than a C0 structure. This
presents a new challenge for dynamicists, as many tools in rigidity theory originate ei-
ther from hyperbolic smooth dynamics or the homogeneous (Lie group) setting, where
differentiability plays an essential role.

As we will later show, in the C0 context the best rigidity result one can hope for
is topological stability. An action ρ′ : Γ → Homeo(X) of a group Γ on a space X is
said to be a topological factor of an action ρ : Γ → Homeo(Y ) if there is a surjective,
continuous map h : X → Y (called a semiconjguacy) such that h ◦ ρ′ = ρ ◦ h. A group
action ρ : Γ → Homeo(X) is topologically stable if any action which is close to ρ in
Hom(Γ,Homeo(Y )) is a factor of ρ.1 Here and in what follows, Hom(Γ,Homeo(Y ))
is always equipped with the standard compact-open topology. Our first result is the
following.

Theorem 1.1 (Topological stability). Let M be a compact, orientable n-manifold with
negative curvature, and ρ0 : π1M → Homeo(Sn−1) the natural boundary action on

∂∞M̃ . There exists a neighborhood of ρ0 in Hom(π1M,Homeo(Sn−1)) consisting of
representations which are topological factors of ρ0.

Moreover, this topological stability is strong in the following sense: for any neigh-
borhood U of the identity in the space of continuous self-maps of Sn−1, there exists
a neighborhood V of ρ0 in Hom(π1M,Homeo(Sn−1)) so that every element of V is
semi-conjugate to ρ0 by some map in U .

The statement of Theorem 1.1 is similar in spirit to the extensions of the classical
C1-structural stability for Anosov (or more generally, Axiom A) systems to topological
stability proved by Walters [48] and Nitecki [43] in the 1970s. However, we are working
in the context of group actions rather than individual diffeomorphisms, and further, we
do not assume any regularity of the original boundary action that is to be perturbed.
Thus, our tools are by necessity fundamentally different.

In the context of stability properties of group actions Sullivan [45] characterized
which subgroups of PSL(2,C) exhibit C1-stability2 and also remarked that stability
holds more generally within the class of actions on metric spaces that are expansive-
hyperbolic, a class of actions that includes boundary actions of fundamental groups
of closed negatively curved manifolds. This program was worked out in detail only
quite recently by Kapovich-Kim-Lee [34], who show that what they call S-hyperbolic
actions (a weakening of Sullivan’s expansivity-hyperbolicity condition) are stable under
perturbation with respect to a Lipschitz topology. While S-hyperbolic actions repre-
sent a broader class than those studied here, in the specific case of boundary actions
of fundamental groups of negatively curved manifolds our result is stronger and quite
different in spirit. We do not aim to preserve “hyperbolic”-like behaviour, and con-
sider perturbations in the C0-topology, which can be much more violent and introduce
wandering domains. Thus, one can view Theorem 1.1 as a strict strengthening of
Kapovich-Kim-Lee’s topological stability for the restricted case of boundary actions.

1Elsewhere in the literature this is also referred to as semi-stability or (topological) structural stability,
see [43] for some discussion on terminology.

2Sullivan’s main result is in the opposite direction to ours: he shows that, among subgroups of
PSL(2,C), C1-stability implies convex-cocompactness.
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Sharpness. As hinted above, one cannot replace “factor of” with “conjugate to” in
Theorem 1.1. In Section 4, we show that nearby, non-conjugate topological factors do
occur for boundary actions of closed negatively curved manifolds. We give two sample
constructions. One comes from Cannon–Thurston maps, special to the case where M
is a hyperbolic 3-manifold, and the other is a general “blow-up” type construction,
applicable to C1 examples in all dimensions.

2. Global rigidity of slithering actions. In the case where dim(M) = 2, and
hence ∂∞(M) = S1, a stronger global rigidity result for boundary actions of surface
groups was proved by the second author in [38] (see also [8], [41]). Using the techniques
of Theorem 1.1 we can recover this, and in fact generalize it to the broader context
of group actions on S1 arising from slitherings associated to skew-Anosov flows on 3-
manifolds, in the sense of Thurston [47]. As we discuss in the next paragraph, these
flows are basic examples in hyperbolic dynamics. Our rigidity result is the following.

Theorem 1.2 (Global rigidity of skew-Anosov slithering actions). Let Fs be the weak
stable foliation of a skew-Anosov flow on a closed 3-manifold M , and ρs : π1M →
Homeo+(S1) the associated slithering action. Then the connected component of ρs
in Hom(π1M,Homeo+(S1)) consists of representations “semi-conjugate” to ρs in the
sense of Ghys [26].

Definitions and properties of skew-Anosov flows and slitherings are recalled in Section
5. Note that the notion of semi-conjugacy of circle maps in the statement above is not
the same as in the definition of topological factor; unfortunately the terminology “semi-
conjugacy” in this sense has also become somewhat standard. To avoid confusion, we
will follow [39] and use the term weak conjugacy for this property of actions on the
circle. It has also been referred to as “monotone equivalence” by Calegari.

A consequence of the above theorem is a new, independent proof of the main result
of [38] on global C0 rigidity of geometric surface group actions on S1. See Corollary
5.12 below.

3. Inequivalent flows on a common manifold. Anosov (or uniformly hyperbolic)
flows are important examples of dynamical systems, due to their stability: as originally
shown by Anosov, C1-small perturbations of these flows give topologically conjugate
systems. Classical examples in dimension 3 include suspension flows of hyperbolic
automorphisms of tori, and geodesic flows on the unit tangent bundles of hyperbolic
surfaces. The general problem of which manifolds admit Anosov flows, and the classi-
fication of such flows, is a fundamental problem in both topology and dynamics.

The first exotic examples of Anosov flows were given by Franks and Williams [23].
They produced non-transitive examples of flows that have separating transverse tori.
Handel and Thurston [29] then gave new transitive examples, and their work planted
the seeds for the definition of a general procedure (namely, the Fried–Goodman Dehn
surgery) to produce new flows from old ones, later used to give the first examples of
Anosov flows on hyperbolic 3-manifolds.

After existence, the next natural question regarding Anosov flows on a given man-
ifold is that of abundance: how many Anosov flows, up to topological equivalence,
does a given manifold support? Results of Ghys [25] and recently announced work of
Barbot-Fenley [4] imply that principal Seifert fibered spaces admit at most two dis-
tinct Anosov flows up to equivalence, (cf. Remark 6.1 below). However, the case of
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graph manifolds, or more generally manifolds with non-trivial JSJ-decompositions, is
less rigid and there are indeed examples that exhibit abundance. The first example of a
closed 3-manifold admitting at least two distinct Anosov flows was given by Barbot [3],
and Beguin–Bonnati–Yu [7] found examples of manifolds admitting N distinct Anosov
flows for arbitrarily large N . All these examples occur on manifolds with non-trivial
JSJ-decompositions and have many (incompressible) transverse tori. This leaves open
the question of the abundance for hyperbolic manifolds, which appears as Problem
3.53 (C), attributed to Christy, in Kirby’s problem list [37]

Using techniques developed for the proof of Theorem 1.2, we prove the following
existence result for flows, thus resolving this problem.

Theorem 1.3 (Christy’s problem). For any N ∈ N, there exist closed, hyperbolic
3-manifolds that support N Anosov flows that are distinct up to topological equivalence.

The hyperbolic manifolds in Theorem 1.3 and the flows are described explicitly, using
Dehn filling constructions. In addition to residing on hyperbolic manifolds, our exam-
ples contrast with those of Beguin–Bonnati–Yu in that they are skew. They also have
the further property of being contact Anosov, meaning that they are Reeb Flows for
certain contact structures on these manifolds and are in particular volume preserving.
(See [20] for a general contstruction of contact Anosov flows by Dehn surgery.)

4. Topological stability of geodesic flows. A major tool in the proof of Theorem
1.1 is a “straightening” result for quasi-geodesic flows. This technique can also be
used to recover the topological stability result for Anosov flows of Kato–Morimoto [35,
Theorem A] in the special case of the geodesic flow on a compact manifold of negative
curvature.

Theorem 1.4 (Alternative proof of [35], special case). Let M be a manifold of negative
curvature and Φt the geodesic flow on UTM . There exist ε, R > 0 such that, if Ψt

is a flow such that each flowlines of Ψt(x) remains ε-close to the flowline Φt(x) for
t ∈ [0, R], then there is a continuous function p(x, t) on UTM ×R and surjective map
h : UTM → UTM such that h ◦Ψt(x) = Φp(x,t) ◦ h(x).

We note also that a related, and more direct, notion of quasi-geodesic straightening
appears also in Ghys’ work [25] on Anosov geodesic flows. However, despite this parallel
the proofs are essentially different.

Outline.

• Section 2 covers general background on foliations, suspensions, and large-scale ge-
ometry in negative curvature.
• Section 3 is devoted to the proof of Theorem 1.1, followed by Theorem 1.4
• In Section 4 we construct examples of non-conjugate actions that are C0-close to

the boundary actions, illustrating some of the pathological behaviour that can occur
despite topological stability.
• In Section 5 we recall the necessary background on skew-Anosov flows and slither-

ings, prove Theorem 1.2 and derive global rigidity for lifts under finite covers of the
boundary action of a surface group.
• Section 6 constructs 3-manifolds with inequivalent skew-Anosov flows, proving The-

orem 1.3.
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2. Preliminaries

This section contains some general background material on the setting of our work,
the results and framework summarized here will be used throughout.

2.1. Suspension foliations, flat bundles and holonomy. For an oriented manifold
N , we let Homeo+(N) denote the group of orientation-preserving homeomorphisms
of N . For a group Γ, the representation space Hom(Γ,Homeo+(N)) is the space of
homomorphisms Γ → Homeo+(N) equipped with the compact-open topology. The
case of particular interest to us, from a foliations perspective, is when Γ = π1(B) is the
fundamental group of a closed manifold B. In this case one may form the suspension
of a representation ρ ∈ Hom(Γ,Homeo+(N)). The suspension is a foliated N -bundle
over B with total space given by the quotient

Eρ := (B̃ ×N)/π1(B),

where π1(B) acts diagonally by ρ on N and by deck transformations on the universal

cover B̃ of B. Horizontal leaves are subsets of the form B̃×{p} ⊂ N×B̃. The diagonal

π1(B)-action maps horizontal leaves to horizontal leaves, so the foliation of B̃ ×N by
horizontals descends to a foliation on Eρ transverse to the fibers of the bundle Eρ → B.
In our intended applications, foliations are always co-oriented and representations have
image in the group of orientation-preserving homeomorphisms of N . Though this is
not strictly necessary for much of the background discussed here, we will take it as a
standing assumption from here on.

We will typically use the notation Eρ to denote this foliated suspension space, and
use other notation (e.g. simply M) when we wish to forget the transverse foliation on
it.

2.2. Manifolds of negative curvature and boundaries at infinity. We briefly
summarize standard results on manifolds of negative curvature that will be used in the
sequel. Further background can be found in standard references such as [1, 10].

Let M be a closed Riemannian manifold of negative curvature. Then its universal

cover M̃ is a Hadamard manifold of pinched negative curvature. In particular, it is
uniquely geodesic and is a δ-hyperbolic space for some δ. Any δ-hyperbolic space has
a compactification by a “boundary at infinity”. In the case of interest to us, this
boundary is topologically a sphere of dimension dim(M)− 1. Points on the boundary
correspond to equivalence classes of geodesic rays, where two unit speed geodesics c1
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and c2 : [0,∞)→ M̃ are equivalent if the distance d(c1(t), c2(t)) is uniformly bounded.
See [10, III.H.3] for a general introduction in the δ-hyperbolic setting, or [1] for the

Hadamard manifold setting. One way to specify the topology on ∂∞M̃ is as follows:

fixing x ∈ M̃ and a geodesic ray α from x to a point ξ ∈ ∂∞M̃ , define neighborhoods
Ur,d(α) of α to be the set of (the equivalence classes of) geodesic rays based at x that
stay distance at most d from α on a ball of radius r about x. Such sets form a basis for

the topology. Equivalently, one may take an exhaustion of M̃ by compact sets Ki, fix
any d > 0, and define neighborhoods Ui(α) of a geodesic α to be the sets of geodesic
rays that stay within distance d of α on Ki. These also form a basis for the topology.

Deck transformations of M̃ act by isometries, sending geodesics to geodesics, and this
extends to an action by homeomorphisms on the boundary.

Given a unit-speed geodesic ray α : [0,∞)→ M̃ , the Busemann function Bα : M̃ →
R is defined by

Bα(x) = lim
t→∞

(d(α(t), x)− t) .

Level sets of Bα are called horospheres. Busemann functions on smooth Hadamard
manifolds are always C2 (as was proved in [31]) and the horospheres Bα are perpendic-
ular to geodesics. In our setting of pinched negative curvature and bounded geometry

– this comes from the fact that the metric on M̃ is lifted from the compact manifold
M – one can show the Busemann functions Bα are in fact smooth, although we will
not need to use this higher regularity.

In the case where M is a surface, the boundary at infinity can be used to give a

convenient description of the unit tangent bundle of M̃ . To any distinct triple of points

(ξ, η, ν) in (∂∞M̃)3, one can associate the tangent vector to the (directed) geodesic
from ξ to η at the unique point p such that the geodesic from p to ν is orthogonal
to the geodesic with endpoints ξ and η. This assignment defines a homeomorphism

between the space of distinct triples in ∂∞M̃ and UTM̃ . In general, even for higher
dimensional compact manifolds, the action of π1M on the space of distinct triples

of ∂∞M̃ is properly discontinuous and cocompact. The reader may consult [9, Prop
1.13] for a proof phrased there in terms of the action on the Gromov boundary of a
hyperbolic group. More generally, a group acting on a space such that the induced
action on the space of distinct triples is properly discontinuous and cocompact is said
to be a uniform convergence group. The following well-known property applies to any
uniform convergence group action, but we state it in the form which will be useful to
us later on.

Proposition 2.1 ([9] Prop 3.3). For each x ∈ ∂∞M̃ , there exists distinct p, q ∈ ∂∞M̃
and a sequence of elements γn ∈ π1M such that γn(x)→ p and γn(y)→ q for all y 6= x.

Points x ∈ ∂∞M̃ with the property above are called conical limit points of the action.
A proof and further discussion can be found in [9, §3].

2.3. Geodesic flow. Associated to the geodesic flow on the unit tangent bundle UTM̃
on the universal cover of a manifold of negative curvature are two transverse foliations,

each of codimension dim(M)− 1. The leaf space of each can be identified with ∂∞M̃ .

The weak stable foliation, denoted Fs, has leaves Ls(ζ), for ζ ∈ ∂∞M̃ , consisting of the
union of all geodesics with common forward endpoint ζ. The weak unstable foliation
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Fu consists of leaves Lu(ξ) formed by geodesics with common negative endpoint ξ.
Both descend to foliations on UTM .

“Stable” and “unstable” here have a precise dynamical meaning – the geodesic flow in
negative curvature is Anosov, and the weak stable (resp. weak unstable) leaves consist
of geodesics that converge (resp. diverge) exponentially (see the proof of Lemma 2.5
below), but we do not need any further dynamical framework at the moment, and
defer a more detailed discussion to Section 5. What we will use is that Fs and Fu
are transverse, and also that these foliations can be described naturally in terms of the
suspension of the boundary action of π1M , as we explain now.

The tangent bundle UTM̃ may also be canonically identified with M̃ × ∂∞M̃ =

M̃ × Sn−1 via the positive endpoint map which assigns to each unit tangent vector v
the forward endpoint of the oriented geodesic tangent to v. Under this identification

the horizontal sets M̃×{p} are the leaves of Fs and the natural projection M̃×∂∞M̃ →
UTM is the quotient via the diagonal action of π1M by deck transformations on M̃ and
the boundary action on Sn−1. Thus, the suspension foliation of the boundary action
gives the weak stable foliation of geodesic flow, or equivalently the holonomy of Fs is
the boundary action. If instead one uses the negative endpoint of oriented geodesics

to identify UTM̃ with M̃ × ∂∞M̃ , the suspension of the boundary action is the weak
unstable foliation.

2.4. Quasi-geodesics. Let c ≥ 0, k ≥ 1. A curve α in a metric space X is a (c,k)
quasi-geodesic if

1
kd(α(x), α(y))− c ≤ |x− y| ≤ k d(α(x), α(y)) + c

holds for all x, y in the domain of α. Often we will work with unparametrized rectifiable
curves in X. Such a curve is quasi-geodesic if its arc length parametrization is. We
recall two well-known and useful properties of quasi-geodesics.

Lemma 2.2 (Local-to-global principle, see [15] Theorem 1.4). Let X be a δ-hyperbolic
metric space. For any c ≥ 0, k ≥ 1, there exists L > 0 and c′, k′ such that every curve
which is a (c, k) quasi-geodesic on each subsegment of length L is globally a (c′, k′)
quasi-geodesic.

Lemma 2.3 (Quasi-geodesics are close to geodesics, see [10] III.H.1.7). Let X be a
δ-hyperbolic space. There exists a constant R = R(δ, c, k) such that if α is a (c, k)
quasi-geodesic segment in X, then the image of α lies in the R-neighborhood of the
geodesic segment joining its endpoints.

It follows from this latter point that, provided a metric space X is δ-hyperbolic, each
(oriented) bi-infinite quasi-geodesic α in X has a unique bi-infinite geodesic at bounded
distance. The positive and negative endpoints of α are defined to be the positive and
negative endpoints of this geodesic, denoted e+(α) and e−(α), respectively. Since quasi-
isometries send quasi-geodesics to quasi-geodesics, this means that continuous quasi-

isometries of X extend to continuous maps on ∂∞X. In particular, when X = M̃ ,

not only deck transformations, but all lifts of homeomorphisms of M to M̃ induce

homeomorphisms of ∂∞M̃ .
A (unparametrized) quasi-geodesic flow of a metric space X is a 1-dimensional foli-

ation whose leaves are quasi-geodesics. The flow is uniform if there exist k ≥ 1, c ≥ 0
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such that each leaf is a (c, k) quasi-geodesic. If Γ is a group that acts properly discon-
tinuously and cocompactly on a space X and FQG is a quasi-geodesic foliation such
that the action of Γ sends leaves to leaves, then local-to-global principle implies that
FQG is automatically uniform.

Using Lemma 2.3, and the definition of the topology on ∂∞X described above, one
easily attains the following.

Lemma 2.4. Let X be δ-hyperbolic and let α be a (k, c) quasi-geodesic ray based at x0.
Given a neighborhood U of e+(α) ∈ ∂∞X, and constant d > 0, there exists a compact
set K such that, if β is any (k, c) quasi-geodesic ray that is distance at most d from α
on K, then e+(β) ∈ U .

The same evidently holds for e−. From this, one may derive the fact that endpoint
maps are continuous on the space of (k, c) quasi-geodesics equipped with the compact-
open topology, and hence descend to continuous maps on the leaf space of a uniform
quasi-geodesic foliation. The following alternative proof of this fact appears essentially
in [12]; we include it as it gives another helpful illustration of the behavior of uniform
quasi-geodesics in negative curvature.

Lemma 2.5. Let F be an oriented, uniform quasi-geodesic foliation of the universal
cover of a compact manifold of negative curvature. Then the endpoint maps, considered
as functions on the leaf space of F , are continuous.

Proof. Suppose that `n is a sequence of leaves of F that converge uniformly on compact
sets to a leaf `∞. Following the discussion after Lemma 2.3, there exists D > 0
(depending on the curvature of M and the quasi-geodesic constants of leaves) such
that each `n lies in the D-neighborhood of a unique geodesic γn. It follows that the
γn coarsely converge on compact sets: after passing to a subsequence, we may assume
that there is a length n segment of γn which lies in the 3D-neighborhood of γ∞. Since
geodesics in negative curvature have exponential divergence3 this implies that γn lies
in a 3De−λn neighborhood of γ∞ on a segment of length n/2, for some λ > 0. Thus,
the γn converge and so e+(λn) = e+(γn) converges to e+(γ∞). �

This concludes the preliminary material required for the proof of Theorem 1.1. Fur-
ther material on Anosov flows and an introduction to “slitherings” will be given in
Section 5 where it is needed.

3. Proof of Theorem 1.1

3.1. Construction of a well-behaved leafwise immersion. The first step in the
proof of Theorem 1.1 is to construct a well behaved map from the suspension bundle
Eρ (see Section 2.1) of a perturbation ρ of the boundary action, to the unit tangent
bundle of M . This map will send fibers to fibers, and send leaves of the horizontal
foliation on the suspension Eρ to C1 submanifolds such that the tangent distribution
of each leaf is C0 close to the distribution given by the weak-stable distribution of the
geodesic flow on M .

3Recall that a divergence function for a metric space X is a function ∆ : N→ R such that, for any
geodesics c1, c2 : [0, t]→ X with c1(0) = c2(0), and any r,R ∈ N; if R + r ≤ t and dX(c1(R), c2(R)) >
e(0) then any path from c1(R + r) to c2(R + r) outside the ball B(c1(0), R + r) must have length at
least ∆(r). Any δ-hyperbolic space has an exponential divergence function. (See [10, III.H.1.25] for a
proof).
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Lemma 3.1. Let M be a compact negatively curved manifold, and let ρ0 be the boundary
action. There exists a neighborhood U of ρ0 in Hom(π1M,Homeo+(Sn−1)) and a con-

tinuous assignment ρ 7→ fρ from U to the space of continuous maps M̃×Sn−1 → UTM̃
with the following properties:

(1) fρ0 is the canonical homeomorphism between M̃ × Sn−1 and UTM̃ defined de-
fined in section 2.3,

(2) for all ρ ∈ U , the map fρ covers the identity M̃ → M̃ mapping fibers to fibers
(although it is not required to be injective on any fiber),

(3) the image of each horizontal leaf M̃ × {p} under fρ is a C1 submanifold of

UTM̃ ,
(4) the map fρ is π1M -equivariant, so descends to a map Eρ → UTM , and
(5) given ε > 0, and R > 0, by choosing U sufficiently small we can ensure that

the image of any leaf M̃ ×{p} under fρ has tangent distribution ε-close (in the
C0-sense, from the metric lifted from M) to the weak-stable distribution over

any ball of radius R in M̃ . Equivalently, by choosing U sufficiently small, we
can ensure for each p that the restriction of fρ to B × {p}, where B is any

R-ball in M̃ , is ε-close in the C1-topology to a weak-stable leaf in UTM̃ .

Finally, in the case where M is a surface and ∂∞M̃ = S1, we may additionally take fρ
to be a homeomorphism for all ρ ∈ U .

Remark 3.2. The construction in the proof generalizes to other foliated bundles than
UT(M). What we use in the construction is compactness of M , the linear structure of
the tangent bundle, the C1,0+ regularity of the weak-stable foliation on UT(M), and
the fact that ρ is a C0-small perturbation of the holonomy of this bundle.

Proof of Lemma 3.1. Let τ be a smooth triangulation of M , and let τ̃ denote its lift to

M̃ . For the proof, we define fρ first on the spheres over the vertices of τ , then extend
using a partition of unity to “interpolate” between vertices.
Set-up. Let Ov denote the open star of a vertex v ∈ τ . The set O := {Ov |
v vertex of τ} is an open cover of M whose nerve agrees with τ . Let Õ be the lift of

O to M̃ . Take a partition of unity {σv : v vertex of τ} subordinate to O and pull this

back to a π1M -equivariant partition of unity {σ̃v : v vertex of τ̃} on M̃ subordinate to

Õ.

Step 1: Define f over vertices of τ̃ . We recall first the structure available to us.

UTM̃ is a sphere bundle over M̃ with a natural action of π1M by diffeomorphisms,

and inherits a linear (vector bundle) structure from its inclusion in TM̃ . The lift of

the weak-stable foliation F̃s is transverse to the Sn−1 fibers of UTM̃ and invariant
under π1M , so gives UTM the structure of a foliated bundle, and the holonomy of this
foliation is the boundary action ρ.

Let D ⊆ M̃ be a connected fundamental domain for the π1M -action. Fix a basepoint

x ∈ D that is a vertex in τ̃ and let Sx denote the fiber over x in UTM̃ . For a
perturbation ρ of ρ0, we may build a foliated bundle Eρ with holonomy ρ by taking the

quotient of M̃×Sx ∼= M̃×Sn−1 by the diagonal action of π1M by deck transformations

of M̃ and the action ρ on Sx ∼= Sn−1. Define fρ on {x}× Sx to agree with the identity
map Sx → Sx.
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Now we define fρ over other vertices. For a vertex v of τ̃ , and Sv the fiber over v

in UTM̃ , let πv : Sv → Sx denote the homeomorphism obtained by sending a point

y ∈ Sv to the unique point of Sx lying in the same leaf of F̃ s as y. Now for each vertex
v of τ̃ in D, define fρ on {v} × Sn−1 by fρ(v, p) = π−1v fρ(x, p). In other words, we
define fρ on the fibers over vertices in D so that it takes points on the same leaf of the

horizontal foliation on M̃ × Sn−1 to points on the same leaf of F̃ s.
There is a unique π1M -equivariant extension of this map to one defined on the union

of fibers over all vertices of τ̃ . Concretely this is given as follows: For a vertex v ∈ D,
an element g ∈ π1M , and a point (gv, p) in {gv} × Sn−1, define

fρ(gv, p) =
(
gv, π−1gv ρ0(g)ρ(g)−1(p)

)
i.e., it is the unique point on the fiber Sgv contained in the same leaf of F̃ s as the point
ρ0(g)ρ(g)−1(p) ∈ Sx.

Remark. Note that, given any finite set of elements of g, and any ε > 0, we can choose
a neighborhood U of ρ0 sufficiently small so that ρ0(g)ρ(g)−1(p) lies within distance ε
of p.

Step 2: Extend over M̃ ×Sn−1. For a vertex v of τ̃ , let Ov denote its open star, and

let Fv : Ov × Sn−1 → UTM̃ be the map that covers the identity on Ov ⊂ M̃ , agrees
with fρ on {v} × Sn−1, and sends horizontal leaves Ov × {p} to leaves of Fs.

Using the linear structure on the tangent bundle TM̃ we now extend fρ to be defined
everywhere by using the partition of unity to interpolate between the maps Fv. In

detail, on a horizontal leaf M̃ × {p} ⊂ M̃ × Sn−1 define for each point (z, p) a (not

necessarily unit) tangent vector to M̃ at z by

V (z, p) :=
∑

v vertex of τ̃

σ̃v(z)Fv(z, p).

Note that this is a finite sum involving only vertices of τ whose star contains z. The
remark above together with the fact that Fv is π1M -equivariant ensures that if ρ is
chosen sufficiently close to ρ0, then Fv(z, p) is never zero. Thus, we may define

fρ(z, p) :=
V (z, p)

||V (z, p)||
∈ UTM̃.

Since σ̃ is smooth and Fs is a C1,0+ foliation, for fixed p the maps V (z, p), and hence
also the maps fρ(z, p) are of class C1. Moreover, these maps vary continuously in z in
the C1 topology and as all functions in the definition are π1M -equivariant, so is fρ.

Continuity in ρ also follows readily from the definition. In fact, this map is continuous
at the point ρ0 with respect to leafwise uniform convergence in the C1 topology on

compact sets of uniform size. For if ρn → ρ0, then the fact that F̃ s is of class C1,0+

implies that all the summands in the definition of V (z, p) will C1-converge uniformly
on any fixed compact set. By π1M–equivariance we then get uniform converge on balls
of a fixed radius about any point.

Finally, in the case where dim(M) = 2, and ρ is an action on the circle, one can avoid
the normalisation of V (z, p) in the definition of fρ and make a separate argument to
produce a map which descends to a homeomorphism Eρ → UTM , as follows. Consider

the universal cover ŨTM , which is an R-bundle over M̃ and a fiberwise cover of UTM̃ .
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Sn−1

L
`

M̃

fρ
−→

fρ(L)

UTM̃

Lu(ξ)

Figure 1. The map fρ and a leaf ` of FQGρ

A perturbation ρ of ρ0 gives rise to a unique perturbation of the holonomy of ŨTM
in the group HomeoZ(R) of homeomorphisms of the fiber R that commute with the
covering map R→ S1 ∼= R/Z. Repeating the same construction as above to define Fv
using the lifted actions, we can then average the maps Fv using the partition of unity
σ̃v and the natural Lie group structure on the fiber R lifted from S1. The resulting

map M̃ × R→ ŨTM will additionally commute with the fiberwise covering map, and

descend to a map fρ : M̃ × S1 → UTM̃ with the required properties (1)-(5). The fact
that points on R are totally ordered, and that orientation-preserving homeomorphisms
and our averaging trick are all order-preserving means that, with this construction, fρ
will be bijective. It is easy to verify that its inverse is also continuous, hence fρ is π1M
equivariant homeomorphism. �

3.2. Quasi-geodesics and endpoint maps. Keeping the notation from Section 3.1,

M denotes a compact, negatively curved Riemannian n-manifold, UTM̃ the unit tan-

gent bundle of M̃ , and ρ0 denotes the standard boundary action of π1M on Sn−1.

Let fρ : M̃ × Sn−1 → UTM̃ denote the π1M -equivariant map obtained by applying
Lemma 3.1 to a representation ρ close to ρ0 in Hom(π1M,Homeo+(Sn−1)). Our next

goal is to use this data to produce a quasi-geodesic foliation on M̃ × Sn−1 that is
ρ-equivariant, so descends to a foliation on the suspension Eρ. When speaking of

endpoints of geodesics, we use the fact that the canonical projection π : UTM̃ → M̃

is a quasi-isometry, giving us an identification of the Gromov boundary of UTM̃ with

∂∞M̃ . We use the notation from Section 2.3, for example Lu(ξ) denotes the unstable
leaf consisting of geodesics with negative endpoint ξ.

Lemma 3.3. If ρ is sufficiently close to ρ0, then for any horizontal leaf L = M̃ × {p}
of M̃ × Sn−1, and any unstable leaf Lu(ξ) in UTM̃ , the intersection fρ(L) ∩ Lu(ξ) is

either empty or a connected, quasi-geodesically embedded bi-infinite line in UTM̃ with
one endpoint equal to ξ.
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Note that the intersection may indeed be empty, for instance, when ρ = ρ0, the leaf
Lu(ξ) has empty intersection with the stable leaf Ls(ξ) comprised of geodesics with
forward endpoint ξ.

Proof of Lemma 3.3. Let U be a small neighborhood of ρ0. Consider the horosphere

foliation B of UTM̃ whose leaves are level sets of the Busemann function b of a geodesic
with forward endpoint ξ (see Section 2.2). For any leaf Ls(ζ) of the stable foliation

of geodesic flow on UTM̃ intersecting Lu(ξ), the geodesic leaf ` = Lu(ξ) ∩ Ls(ζ) is

perpendicular to leaves of B. Since, for any leaf L = M̃ ×{p}, the tangent distribution
of fρ(L) is uniformly C0 close to the stable distribution (Property (5) in Lemma 3.1),
it follows that Lu(ξ) ∩ fρ(L) meets leaves of B at angle uniformly close to π/2. Thus,
the length of the segment of a leaf of Lu(ξ)∩fρ(L) between b−1(t) and b−1(s) is at most
C|t − s| for some constant C > 1, which we may take to be uniform over all leaves,
and this constant will only be decreased by further shrinking the neighborhood U of
ρ0. This shows that connected components of leaves ` are uniform quasi-geodesics.

To show the sets Lξ ∩ fρ(L) are either empty or a single quasi-geodesic line, we use

the fact that π1M acts cocompactly on the space of distinct triples of ∂∞M̃ . As in the

previous section, let x be a basepoint in M̃ . Using cocompactness, and the fact that

quasi-geodesics fellow-travel geodesics in M̃ , we may choose R large enough so that,
for any distinct triple of boundary points (ξ1, ξ2, ξ3), there exists g ∈ π1M so that any

quasi-geodesic in UTM̃ with constant C (as above) between any pair g(ξi) and g(ξj)

has projection to M̃ which passes through the ball BR(x) of radius R about x.
Our construction of fρ means that, provided that ρ is close enough to ρ0, the image

of any leaf M̃×{p} under f will be uniformly C1 close to the stable leaf through p over
the ball B2R(x). Thus if U is chosen sufficiently small, then for any leaf L the projection
of L ∩ Lu(ξ) intersected with BR(x) will either be empty or a single, connected quasi-
geodesic segment. Suppose now for contradiction that there exist leaves L and Lξ such
that Lu(ξ) ∩ fρ(L) is nonempty and not connected. Let α 6= ξ and β 6= ξ be endpoints
of two distinct (quasi-geodesic) connected components of Lu(ξ) ∩ fρ(L). Using our
choice of R, find g so that the quasi-geodesics components of g(Lu(ξ) ∩ fρ(L)) with
pairs of endpoints (gα, gξ) and (gβ, gξ), respectively, satisfy the property that their

projections to M̃ pass through BR(x). (We allow the possibility that α = β.) But then
Lu(gξ)∩fρ(gL) intersects BR(x) along two distinct quasi-geodesic segments, giving the
desired contradiction. �

Thus, after endowing fρ(L) with either its induced metric or that pulled back from

the projection π : UTM̃ → M̃ , the sets Lu(ξ) ∩ fρ(L) (fixing L and varying ξ) give a
quasi-geodesic foliation of fρ(L). We make the following orientation convention; when

ρ = ρ0, this exactly recovers the oriented geodesics from UTM̃ .

Convention 3.4 (Orientation on leaves). We orient the lines of the form fρ(L)∩Lu(ξ)
so that their negative endpoint is ξ.

Since fρ covers the identity on M and is C1 on leaves, its restriction to each leaf L is
a quasi-isometry. Thus, we may pull back the oriented quasi-geodesic foliation on each
leaf fρ(L) via the restriction of fρ to L, and obtain an oriented quasi-geodesic foliation

on L. Doing this on all leaves gives an oriented, quasi-geodesic foliation on M̃ × Sn−1,
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which we denote by FQGρ . Again, π1M -equivariance means that the quasi-geodesic
constants may be taken to be uniform. See Figure 1 for an illustration.

Properties of FQGρ . The fact that fρ is π1M -equivariant and that Fu is a π1M -

invariant foliation on UTM̃ means that the diagonal action of π1M on M̃ × Sn−1

via deck transformations on the first factor and ρ on the second permutes the leaves

of FQGρ . Furthermore, FQGρ has the property that each quasi-geodesic line ` in the

foliation is contained in a horizontal leaf of M̃ × {p} of M̃ × Sn−1. Thus, such a line

` has a positive and negative endpoint on the boundary sphere ∂∞M̃ = Sn−1, giving
positive and negative endpoint maps

e+ρ , e
−
ρ : M̃ × Sn−1 → ∂∞M̃ = Sn−1

which assign to a point x in a leaf ` the positive and negative endpoints e+ρ (x) and

e−ρ (x) of `, respectively. Note that, since fρ covers the identity map on M̃ , one may
equally well look at the sets fρ(L) ∩ Lu(ξ) or their pullbacks under fρ to determine

their endpoints. When ρ = ρ0, the foliation FQGρ is the geodesic foliation of UTM̃ , and
e+ρ0 and e−ρ0 are the usual positive and negative endpoint maps.

Let e±ρ denote the product map (e+, e−) to Sn−1 × Sn−1. The image of this map
avoids the diagonal ∆. By definition, this map factors through the projection to the

leaf space L(FQGρ ) of FQGρ as summarized in the diagram below.

M̃ × Sn−1 (Sn−1 × Sn−1)−∆

L(FQGρ )

e±ρ

eρ

Additionally, since fρ is π1M -equivariant, a straightforward verification from the defi-
nition shows that the same is true of e±ρ , namely

(1) e±ρ (γ · x, ρ(γ)(y)) = γ · e±ρ (x, y)

holds for all (x, y) ∈ M̃×Sn−1 and γ ∈ π1M , where the action on the right hand side of

the equation is by the standard action of π1M on unparametrized geodesics in UTM̃ ,
i.e. the diagonal action of ρ0 on boundary points.

We now prove various continuity properties.

Lemma 3.5. The endpoint maps e±ρ and eρ are continuous.

Proof. Lemma 2.5 implies that the restriction of eρ to each leaf L is continuous. We
will use a similar argument to show global continuity. It suffices to show continuity of
e±ρ , since eρ is the induced map on a quotient space.

Suppose that xn → x∞ is a convergent sequence in M̃ × Sn−1. Let Ln be the
horizontal leaf containing xn, and L∞ the leaf containing x∞. Let fn denote the

restriction of fρ to Ln, considered as a topological embedding M̃ ↪→ UTM̃ . The
definition of fρ implies that the maps fn converge uniformly on compact sets of uniform
diameter, i.e. for any r > 0, ε > 0, there exists N such that for all n > N , the restriction
of fn to the r-ball Br(xn) in Ln is ε-close in the C1-topology to the restriction of f∞
to Br(x∞). It follows that, for any fixed leaf Lu of Fu, the quasi-geodesic segment
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Lu ∩ fn(Br(xn)) lies in some C(r)ε neighborhood of Lu ∩ f∞(Br(x∞)), where C :
[0,∞) → [0,∞) is a continuous, increasing function (depending only on the geometry
of Fu), with C(0) = 0.

Let Lun be the leaf of Fu through fn(xn) = fρ(xn). Since fρ(xn) → fρ(x∞) these
leaves converge on compact sets to the leaf Lu∞ through fρ(x∞). Combined with the
above, we deduce that, for n sufficiently large, Lun ∩ fρ(Br(xn)) lies in the 2C(r)ε
neighborhood of Lu∩fρ(Br(x∞)). Since these are uniform quasi-geodescis, Lemma 2.4
now gives the desired continuity. �

Lemma 3.6. The map ρ 7→ e±ρ , defined on a neighborhood of ρ0 in Hom(π1M,Homeo+(Sn−1))

and with image in the space of continuous maps M̃ × Sn−1 → (Sn−1 × Sn−1) −∆, is
continuous with respect to the compact-open topology.

Proof. This follows from continuity of ρ 7→ fρ and the definition of the topology on the
end space. In detail, let ρ′ be some fixed representation close to ρ0, close enough so that

fρ′ and the endpoint maps are defined. The space of continuous maps M̃ × Sn−1 →
(Sn−1 × Sn−1) − ∆ has the standard compact-open topology, so fix K compact in

M̃ × Sn−1 and an open set O in (Sn−1 × Sn−1) − ∆ containing the image of K.
Continuity of ρ 7→ fρ means that, for any ε, R > 0 if ρ is chosen close enough to ρ′ then
quasi-geodesics through points of K pulled back via fρ will remain ε-close to quasi-
geodesics pulled back via fρ′ on segments of length R. Lemma 2.4 now guarantees
that for R large enough, the endpoints of geodesics through points of K will remain in
O. �

Lemma 3.7 (e−ρ gives local parametrization of leaves). Any local transversal for the

geodesic flow FQGρ0 will be a local transversal for any sufficiently close representation ρ,

in particular, the leaf space L(FQGρ ) is locally homeomorphic to Rn−1 ×Rn−1. Associ-
ating a leaf ` to the pair (e−ρ (`), p), where p ∈ Sn−1 is the point such that ` lies in the

horizontal leaf M̃ × {p}, gives a local chart for L(FQGρ ).

Proof. Continuity of ρ 7→ fρ and the fact that FQGρ is the pullback of the intersection

of (smooth) leaves fρ(L) ∩ Lu implies that a compact local transversal for FQGρ0 will

remain transverse to FQGρ when ρ is sufficiently close to ρ0. By Lemma 3.3, each leaf
Lu(ξ) of Fu intersects a leaf fρ(L) in a (possibly empty) quasi-geodesic with negative
endpoint ξ. Thus, the negative endpoint map locally gives a parametrization of the
leaves of FQG which sit inside a fixed horizontal leaf L. Continuity of fρ and the
negative endpoint map means that these paramatrizations vary continuously with the
leaf L, giving the desired local chart. �

Lemma 3.8. If ρ is sufficiently close to ρ0, then eρ is surjective.

Proof. Take a (2n − 2)-dimensional disc D in M̃ × Sn−1 that is a local transversal

for the geodesic foliation FQGρ0 , chosen large enough so that the interior of the image
ēρ0(D) ⊂ (Sn−1×Sn−1)−∆ contains a compact fundamental domain K for the action

of π1M on the space (Sn−1 × Sn−1)−∆ of unparametrised geodesics in M̃ .
By Lemma 3.7, if ρ is sufficiently close to ρ0, then D will also be a local transversal

for FQGρ , and, by continuity of the endpoint map, ēρ(D) will be C0 close to ēρ0(D) and
hence also contain K. Since e±ρ is π1M -equivariant, it follows that the image of eρ is
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a set that is invariant under the action of π1M on (Sn−1 × Sn−1) −∆. We have just
shown that it contains a fundamental domain, so the image must be everything. �

The following observation will allow us to conclude the proof by arguing that e+ρ
defines a semi-conjugacy.

Proposition 3.9. Under the hypotheses of Lemma 3.8, the restriction of e+ρ to any

horizontal leaf L of M̃ × Sn−1 is constant.

The broad idea of the proof is to use π1M -equivariance and the uniform convergence
group property of the boundary action to promote a (hypothetical) leaf where e+ρ is

non-constant to one where e−ρ is not locally injective, which would contradict the local
structure given by Lemma 3.7.

Proof of Proposition 3.9. Suppose for contradiction that e+ρ is nonconstant on some

leaf L, and let I ⊂ L be a segment such that e+ρ (I) is a nonconstant path with distinct

endpoints in Sn−1. We may even take I to be transverse to FQGρ , if desired, and the
reader may find this helpful in visualizing the proof. Let x and y denote the endpoints
of e+ρ (I). Since the image of (e+ρ , e

−
ρ ) avoids the diagonal, by shrinking I if needed we

may further assume that e+ρ (I) is disjoint from e−ρ (I), in particular x /∈ e−ρ (I).
By the uniform convergence group property of the action of π1M on its boundary

(Proposition 2.1), there exist distinct p, q ∈ Sn−1 and a sequence γn ∈ π1M such that
γn(x) → p and γn(z) → q for all z 6= x. Thus, the image γne

+
ρ (I) = e+ρ ρ(γn)(I)

will contain an arc between some points pn and qn, with pn → p and qn → q; while
γne
−
ρ (I) = e−ρ ρ(γn)(I) pointwise converges to {q}.

Consider the sequence of leaves ρ(γn)(L). Since the leaf space of the horizontal

foliation (on M̃ × Sn−1) is compact, after passing to a subsequence these converge to
some leaf L∞. It will be convenient for us to remain in a compact set of (Sn−1 ×
Sn−1) − ∆, so fix a small open neighborhood N of ∆, and let Jn denote the closure
of the connected component of γne

+
ρ (I)−N containing pn; this is some subinterval of

γne
+
ρ (I). Let D be a compact, local transversal for FQGρ , defined in a neighborhood of

some quasi-geodesic leaf lying in L∞ so that for all n sufficiently large, the projection
of the segments Jn ⊂ ρ(γn)(L) to the leaf space are contained in the image of D. Let
An denote the projection of Jn to D. After passing to a subsequence, the arcs An
converge, in the Hausdorff metric, to some nondegenerate set A ⊂ D that lies in the
leaf L∞. By continuity of the endpoint map, the image of eρ on A contains a connected
set of the form {q} × J , where J is a nondgenerate segment.

However, as in Lemma 3.7, we may choose the transversal D so that the restriction of
this transversal to each horizontal leaf L′ is the parametrization given by the negative
endpoint map e−ρ . This contradicts that we have a nondegenerate subset of L∞ in D
mapping to {q} × J , with negative endpoint constant. �

Conclusion of proof of Theorem 1.1. We have just shown that, for representations ρ

in some neighborhood of ρ0, the endpoint map e+ρ is constant on each set M̃ × {p} ⊂
M̃ × Sn−1, so descends to a continuous map Sn−1 → Sn−1. Lemma 3.8 implies that
this map is surjective, and by construction, we have

e+ρ ρ(γ)(x) = ρ0(γ)e+ρ (x)
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as in Equation (1), so e+ρ is the desired semi-conjugacy between ρ and the standard
boundary action of π1M . Strong topological stability (the claimed control on the semi-
conjugacy) follows from continuity of ρ 7→ e±ρ proved in Lemma 3.6. �

3.3. Topological stability of geodesic flows. We conclude this section with a short
sketch of how our proof above gives a “soft” geometric proof of topological stability of
the geodesic flow in negative curvature, as claimed in Theorem 1.4.

Proof of Theorem 1.4. Let M be a closed manifold of negative curvature and Φt the

geodesic flow on UTM . Suppose that Ψt is a flow such that the flowlines of the lift Ψ̃t

to UTM̃ each ε fellow-travel flowlines of Φ̃t on segments of length R, as in the statement
of Theorem 1.4. The local-to-global principle (Lemma 2.2) implies that there exists N

and c such that, if R ≥ N and ε ≤ c, then flowlines of Ψ̃t project to quasi-geodesics in

M̃ , and so each flowline of Ψ̃t stays within a bounded distance of a unique flowline of Φ̃t,
and so has well defined endpoints. Lemma 2.4 implies that if ε is sufficiently small, as

R→∞ these endpoint maps e± : M̃ → ∂∞M̃×∂∞M̃ , sending a point x to the positive

and negative endpoints of the flowline Ψ̃t(x) converge uniformly on compact sets to the
endpoint map for the geodesic flow. By construction e± are π1(M)-equivariant, so by
the same argument as in Lemma 3.8, we may conclude that e± is surjective onto the

complement of the diagonal in ∂∞M̃ × ∂∞M̃ , which is naturally identified with the

flow space of Ψ̃t. This gives a π1M -equivariant, continuous, surjective map from M̃ to

the flow space of Ψ̃t, which descends to a map defined on the flowspace of Φ̃t.
To improve this map on the level of orbit spaces to a topological equivalence of the

flows, one may now use the averaging trick in Barbot [2, Theorem 3.4] following Ghys
[25, Lemmas 4.3, 4.4]. Specifically, define first a map h0, associating to each point

x ∈ M̃ the closest point to x on the geodesic between e+(x) and e−(x). This maps
flowlines to flowlines, but may not send a flowline injectively onto its image. Rather,

there is simply a continuous function a : R× M̃ satisfying h0(Φ̃t(x)) = Ψ̃a(t,x)(h0(x)).

To remedy this, fix T large, and define A(t) = 1
T

∫ T
0 a(s, x)ds. One checks that, if T

was chosen sufficiently large, the map

h(x) := Φ̃A(t)(h0(x))

sends each flowline of Ψ̃t continuously and injectively onto a flowline of Φ̃t, and descends
to a continuous map M →M giving a topological equivalence of the flows. �

4. Examples

In this section we illustrate some of the phenomena that can appear in Theorem 1.1.
We give two families of examples of actions that are semi-conjugate, but not conjugate,
to the action of the fundamental group of a closed negatively curved manifold on its
boundary. The first uses the work of Cannon and Thurston, and is specific to Kleinian
groups. The second extends the classical Denjoy blow-up and applies to any action of
regularity C1.

Cannon-Thurston Maps. We briefly summarize the construction of the Cannon–
Thurston map (in a special case), following [14]. Let S be a closed, hyperbolic surface,
φ a pseudo-Anosov diffeomorphism, and M a hyperbolic 3-manifold given by the sus-
pension of φ, equipped with the suspension flow ϕt of the pseudo-Anosov map φ. Lifting
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flowlines to the universal cover M̃ = H3 gives a flow ϕ̃t whose flow space is a topological

disk D, which may be identified with the universal cover S̃ ⊂ M̃ of any fiber S of M . It
is easily verified that flow lines of ϕ̃t are quasi-geodesics in H3, so we have continuous
endpoint maps e± : D → ∂∞H3.

Identifying D with S̃, we have the standard boundary compactification D̂ = S̃∪∂∞S̃.

Cannon and Thurston [14] showed the action of π1M extends to the closed disk D̂ in a
way that is compatible with the positive and negative endpoint maps. This gives maps

ê± : D̂ −→ ∂∞H3.

These extensions coincide on the boundary ∂∞S̃ and are π1M -equivariant. Gluing
these together along the boundary, we obtain a π1M -equivariant map

hCT = ê− ∪ ê+ : S2 = (D̂− ∪S1 D̂+) −→ ∂∞H3.

This gives an induced action ρCT of π1M on S2. By equivariance of the construction
and by minimality of the action of π1M on ∂∞H3, we conclude that hCT is surjec-
tive. Additionally, it follows directly from the construction that preimages of points
under hCT are either points, closures of complementary regions of the stable or un-

stable geodesic lamination of ϕ, or closures of geodesics in D̂. In particular hCT has
contractible point-preimages and hence, by Moore [42], it can be approximated by
homeomorphisms. Let hn ∈ Homeo+(S2) be a sequence of homeomorphisms such that
hn −→ hCT in the compact open topology in the space of continuous maps S2 → S2.
Then the conjugate actions hn ◦ ρCT ◦ h−1n converge in the weak sense (element-wise)
to the boundary action.

In other words, in any neighborhood of the boundary action, there are conjugates
of ρCT . Note that none of these are themselves conjugate to the boundary action, as
ρCT is not minimal – it has an invariant circle. We note also that ρCT itself (and hence
any conjugate of it) is rather flexible: the Alexander trick allows one to produce a
continuous deformation from ρCT to an action of π1M on S2 with a global fixed point
by continuously shrinking one hemisphere while enlarging the other.

While we have described this construction for fibered hyperbolic 3-manifolds, it ap-
plies more broadly: work of Frankel [22] shows that the Cannon–Thurston construction
can be modified to give an analogous map on any closed hyperbolic manifold admitting
a quasi-geodesic flow.

A “blow-up” example. We describe how to equivariantly blow up an orbit Γ · z of a
C1 action of a countable group on an n-sphere to produce an action by homeomorphisms
that is semi-conjugate to the original. The semi-conjugacy map h will be injective off
of the preimage of this orbit, and have the additional property that preimages of points
in Γ · z are homeomorphic to closed disks. In particular, h may be approximated by
homeomorphisms.

While our intended application is boundary actions of manifolds admitting negatively
curved metrics, the construction applies quite generally to any C1 action of a countable
group on Sn so we work in this broader context. For actions on S1 a similar construction
works even for actions by homeomorphisms, and can, at least for abelian groups be
smoothed to a C1 action; this is the classical Denjoy blow-up. The construction below
could conceivably be generalized to group actions on any manifolds, however ensuring
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that the space obtained by “blowing up” an orbit is again a manifold requires some
care; here we are able to quote Cannon’s description of Sierpinski spaces.

Proposition 4.1. Let Γ be a countable group and ρ : Γ → Diff1
+(Sn) an action with

dense orbit Z. Then there exists ρ′ : Γ → Homeo+(Sn) and a surjective, continuous
map h : Sn → Sn, such that the pre-image of each point in Z is a closed disk, that is
injective on the complement of h−1(Z), and such that h ◦ ρ = ρ′ ◦ h.

While blowing up a finite orbit under a group action is a standard construction, we
know of no reference in the literature (beyond that for actions on S1) for this result,
so we give a proof.

Proof. Our strategy is to use an inverse limit construction. For simplicity, we assume
that Z is the orbit of a point z with trivial stabilizer, however the construction works
more generally using the fact the point stabilizers act naturally on the tangent space
at any fixed point. Enumerate Γ = {γ1, γ2, . . .}, and let zn = γn(z). Let X0 denote the
unit sphere Sn with the standard round metric. Fix some small ε1 > 0, let D′1 denote
the ε1-ball about z1, and D1 ⊂ D′1 the 1

2ε1 ball about z1. Let X1 = X0 − D1 and
define f1 : X1 → X0 to be a C∞ map that is the identity on X1 −D′1 and is a radial
collapse along geodesics through z1 on the annulus (D′1−D1) ⊂ X1 that sends ∂D1 to

the point z1 and is injective otherwise. In this way f−11 gives an identification of ∂D1

with the positive projectivized tangent space of oriented lines at z1, so that the action
of any C1 diffeomorphism g of Sn fixing z1 naturally extends to a homeomorphism
ĝ of X1 such that f1 ◦ ĝ = g ◦ f1. Additionally, we can ensure this map has the
Lipshitz property that d(f1(x), f1(y)) < 3d(x, y) for all x, y ∈ X1, or equivalently,
d(f−11 (x), f−11 (y)) > 1

3d(x, y).
Now inductively, suppose that for all m ≤ k we have defined Xm ⊂ Sn (topo-

logically, a sphere with m holes) and a C∞ surjective map fm : Xm → Xm−1. Let
Fm : Xm → X0 denote the composition fmfm−1 . . . f1. Choose some εk+1 ≤ εk/2 that
is additionally less than half the distance from F−1k (zk) to the nearest boundary com-
ponent of Xk. Choose rk+1 � 1, and define Xk+1 to be Xk with an open rk+1εk+1-ball
about F−1k+1(zk+1) removed, and fk+1 : Xk+1 → Xk a map that collapses the boundary

of the removed disk to the point F−1k+1(zk+1), with support on a εk+1 disk, defined using
the same procedure as above. If rk+1 is chosen sufficiently small, then we can ensure
that this map has the Lipschitz property

d(f−1k+1(x), f−1k+1(y)) > λk+1d(x, y)

for all x and y (and all choices of points in the preimages in the degenerate case where
x = y = zk+1), moreover λk+1 < 1 can be taken as close to 1 as we like, by choosing rk+1

close to 0. Make such a choice, inductively, so that the product λ1λ2λ3 . . . converges
to some δ > 0.

As before, the induced identification of the projectivized tangent space at zk+1 with
the boundary of the disc Dk+1 means that any diffeomorphism of Xk fixing zk defines a
diffeomorphism of Xk+1. More generally, if g is a diffeomorphism of Sn that preserves
the set {z1, . . . zk+1}, it also defines a diffeomorphism of Xk+1 (via conjugation by Fk+1

on the invariant set Sn − {z1, . . . zk+1} on which F−1k+1 is a diffeomorphism, and on the
inserted boundary disks by the identification of them with the tangent spaces to the
points zi).
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To summarize, these spaces and maps have the following properties:

(i) The sets Xk ⊆ Xk−1 ⊆ Sn form a monotone decreasing family;
(ii) Under the map fk : Xk → Xk−1, each point has a unique preimage, except for

the point z′k = F−1k−1(zk) whose preimage is the boundary of the rkεk-ball Dk

about z′k.

(iii) For each fk we have sup
x∈Xk

d(fk(x), x) ≤ εk ≤
ε1

2k−1
<

1

2k−1
.

(iv) For any x, y ∈ X0 we have d(F−1k (x), F−1k (y)) > δd(x, y) for all k ∈ N.

Let X = lim←−Xk be the inverse limit of the system of maps Xk
fk→ Xk−1, i.e.

X := {(. . . , p2, p1, p0) | pi ∈ Xi and pk−1 = fk(pk)}.
Since each map fk is continuous, X is a closed subset of the product

∏∞
k=0Xk, hence

is also compact. Property (iii) above means that for each element (. . . , p2, p1, p0) ∈ X,
the points p0, p1, . . . form a Cauchy sequence in Sn so limk→∞ pk is well defined; since
pk ∈ Xk ⊂ Xk−1 the limit lies in the intersection ∩kXk. Define φ : X → ∩kXk ⊂ Sn

by setting φ(. . . , p2, p1, p0) = limk→∞ pk. Property (iv) above ensures that φ maps
sequences associated to distinct points to distinct limits, so φ is injective. Since X is
compact and Sn is Hausdorff, φ is therefore a homeomorphism onto its image. Note
that the image of φ contains the union of all boundaries of removed discs Dk, since for
any pk ∈ ∂Dk, the sequence (. . . pk, pk, pk, fk(pk), fk−1fk(pk) . . . Fk(pk)) is an element
of X, with Fk(pk) ∈ Z.

We will now make use of the following result of Cannon.

Theorem 4.2 (Cannon [13]). Let S ⊂ Sn be a closed subset, and let Ui denote the
connected components of Sn−S. Then S is homeomorphic to the (unique up to home-
omorphism) n− 1 dimensional Sierpinski space if and only if the following hold

(1) For each i, Sn − Ui is an n-cell
(2) The closures of the Ui are pairwise disjoint
(3)

⋃
i Ui is dense in Sn, and

(4) U1, U2, . . . is a null sequence, meaning that diam(Un)→ 0.

Cannon’s result is stated for n 6= 4, but applies in all dimensions given Quinn’s proof
of the Annulus theorem in dimension 4. Apply this to the set S = ∩nXn. The
complementary regions are the discs Di. By construction, they have pairwise disjoint
closures, Sn −Di is an n-cell, and the sets form a null sequence. To see that

⋃
iDi is

dense, suppose for contradiction that some open ball B of radius ε > 2−k was in the
complement of the closure of

⋃
iDi. Consider the sequence of maps fk+m◦. . . fk+2◦fk+1

defined on ∩nXn, for k fixed, as m → ∞. By property (iii) above, these pointwise
converge to a map ∩nXn → Xk which moves all points distance at most 2−k−1. Thus,
the image of B under the limit contains an open set in Xk. However, such a set must
intersect the dense set F−1k (Z), contradicting the fact that B does not intersect the
closure of the union of the discs Di. We conclude that S is a Sierpinski space.

Since φ is a homeomorphism from the compact space X whose image contains a
(closed) dense subset of the Sierpinski space ∩nXn, we conclude that φ(X) = ∩nXn.
We claim now that the projection F : X → X0 = Sn, (. . . , p2, p1, p0) 7→ p0 gives a
homeomorphism between the set X − F−1(Z) and Sn − Z and that there is an action
of Γ on X by homeomorphisms such that the restriction to X −F−1(Z) agrees (under
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this homeomorphic identification) with the original action of Γ. Given this, collapsing
each boundary of a connected component of the compliment of X ∼= φ(X) to a single
point gives a sphere X, and F induces a continuous, surjective map X → Sn that
intertwines the two actions, as desired. As we have already observed the restriction
of F to X − F−1(Z) is injective, which implies that F : X − F−1(Z) → Sn − Z is a
homeomorphism, since it is a continuous bijection induced from the map F , and F is
a continuous map between compact metric spaces, hence closed.

The action of Γ on X comes from our description of the Xi as a blow-up of the
tangent space to a point. For each i, the set F−1(zi) is a circle, identified with the
projectivized tangent space (the space of oriented lines in Tzi(S

n)), via projection to
Xi and the identification there. This gives an action of Γ by bijections of X; it remains
to show that it is in fact an action by homeomorphisms. For this it suffices to check
continuity of the action of each γ ∈ Γ. Let xn → x∞ be a sequence of points in X. If
x∞ /∈ F−1(Z), that γ(xn) converges to γ(x∞) follows directly from our construction
and the definition of the inverse limit. If x∞ ∈ F−1(zj) for some zj , then it suffices to
project to Xj and work there. That xn converges to x∞ in Xj , where x∞ is a boundary

point means precisely that, as n→∞, the points Fj(xn) converge to zj and
Fj(xn)−zj
||Fj(xn)−zj ||

converges to the tangent direction v represented by z∞. Continuous differentiability
of γ at zj is all that is required to have γ(xk) → γ(x∞), this is why we assumed our
original action was of class C1. �

5. Global rigidity of slitherings from skew-Anosov foliations

In this section we specialize to actions of fundamental groups of certain 3-manifolds
on S1. In this case, Lemma 3.1 gives a homeomorphism rather than a continuous
map, and we will exploit this property to prove a global rather than local rigidity
result for (lifts of) boundary actions and the more general case of actions induced by
“slitherings” from skew-Anosov flows. We begin by summarizing some standard results
and framework needed for the proof.

5.1. Anosov Flows. A flow Φt generated by a vector field Y on a closed 3-manifold
M is Anosov if the tangent bundle splits as a sum of (continuous) line bundles that are
invariant under the flow

TM = Ess ⊕ 〈Y 〉 ⊕ Euu

with the property that for some choice of metric on M , there are constants C, λ > 0
such that

||(φt)∗(vs)|| ≤ Ce−λt||vs|| and ||(φt)∗(vu)|| ≥ C−1eλt||vu||
holds for all t ≥ 0 and all vu ∈ Euu, vs ∈ Ess. By averaging the metric over long time
intervals and decreasing λ, one can assume that C = 1. Such a metric is called adapted.

The line fields Euu, Ess are called the strong unstable and strong stable directions
of the flow. It is a classical fact that these distributions are uniquely integrable. The
foliations to which they are tangent are characterized by the dynamical property that
their leaves consist of sets of points that are asymptotic under the flow in forward,
respectively backward, time. One also obtains foliations Fs and Fu tangent to the
integrable plane fields

Es = Ess ⊕ 〈Y 〉 , Eu = Euu ⊕ 〈Y 〉
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respectively; these are called the weak stable and unstable foliations of the flow. In
the examples of interest to us the line fields Ess and Euu will always be orientable, i.e.
trivial as line bundles, so from now on we take orientability to be a standing assumption.

The following proposition collects some well-known properties of the weak foliations
of an Anosov flow that we will need going forward. The additional C1 structure given
by point (1) below will be important in the proof of Theorem 1.2.

Proposition 5.1. Let Φt be an Anosov flow on a closed 3-manifold M . Then the
following hold

(i) (Hirsch-Pugh [33]): The weak stable and unstable foliations Fs and Fu are of
class C1.

(ii) M admits a metric such that the induced metric on weak stable and unstable

leaves in M̃ is uniformly bi-Lipschitz equivalent to a metric of constant cur-
vature −1. In this metric, the flowlines on each leaf are quasi-geodesics; on a
leaf of Fs, flowlines share a unique common forward endpoint, and on Fu a
common negative endpoint.

For completeness, we give an outline of the proof. The reader may consult [17,
Section 5] for more details and general background.

Proof. Item (1) follows from the proof of the Smoothness Theorem part (i) in [33].
Specifically, one applies the graph transform argument there to the quotient bundle
TM/〈Y 〉 upon which the flow acts. This action has two invariant sub-bundles E

s
, E

u

given by the images of the weak stable and unstable subbundles. Since these are
uniformly contracted and expanded, respectively, by DΦt, the C1-section Theorem
[32] then implies that E

s
and E

u
are C1. Pulling back to TM , one deduces that the

subbundles Es, Eu are of class C1 as well. Since they are invariant under the flow, it
follows that they are tangent to C1-foliations.

To show item (2), take a C0-metric on M so that the strong stable/unstable direc-
tions and the flow direction are all orthogonal, and the generating vector field has unit
length. Without loss of generality we assume that this metric is adapted to the Anosov
flow. In general, this metric may only be continuous, but we do not need any higher
regularity for the argument. Let L be a leaf of the weak unstable foliation, and `s a
strong-stable leaf through some point p ∈ L. Then `s is a section for the restriction

of Φt to L. Parametrize `s by arc length and call this coordinate x. The lift ˜̀s gives

a section for the induced flow on the universal cover L̃ and hence a global coordinate

system (x, t) on L̃ so that the pulled-back metric is of the form(
f2(x, t) 0

0 1

)
In particular, the flow lines are geodesics with respect to this metric. By construction
f(x, 0) = 1 and the Anosov condition gives the bounds

εe−λt ≤ f(x, t) ≤ e−λt.

This implies that the the metric on L̃ is uniformly bi-Lipshitz equivalent to the pull-back
of the flat metric on R2 by (x, t) 7→ e−λt, i.e. a constant negative curvature hyperbolic
metric on the upper half plane, hence bi-Lipshitz equivalent to standard hyperbolic
metric of constant curvature -1. In the hyperbolic metric, vertical lines are geodesics
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ou

ol

Figure 2. The flow space O of a skew-Anosov flow. The two black
points are related by the natural map η on O

with the same forward endpoint, and these correspond to flowlines under our bi-Lipshitz
identification. The case of the unstable foliation follows mutatis mutandis. �

5.2. Slitherings and skew-Anosov flows. We first recall the notion of a slithering,
as introduced by Thurston in [47].

Definition 5.2 (Slithering). Let M be a closed 3-manifold. A slithering of M over S1

is a fibration s : M̃ → S1 with 2-dimensional fibers such that deck transformations are
bundle automorphisms for s, taking fibers to fibers. This means that the foliation of

M̃ given by the fibers of s descends to a foliation on M .

Since deck transformations take fibers to fibers, a slithering s : M̃ → S1 also induces
a natural slithering action ρs : π1M → Homeo+(S1) on the circle. Following our earlier
convention, we continue to assume that all foliations are oriented, so this slithering
action is by orientation preserving homeomorphisms. Slitherings generalize both the

notion of a fibering over S1 (where s is simply the lift of the bundle projection to M̃),
and the notion of a foliated S1-bundle, where s is the projection to the fiber on the

induced foliated bundle over M̃ . Skew-Anosov flows (a generalization of geodesic flows
on negatively curved surfaces) provide another important source of examples.

Example 5.3 (Skew-Anosov flows). Let Φt be an Anosov flow on a closed 3-manifold
M , whose stable foliation is oriented and R-covered, meaning that the leaf space on
the universal cover is Hausdorff (or equivalently, is homeomorphic to R). Results of
Fenley [17] and Barbot [2] show that a flow with this property is either the suspension
of an Anosov diffeomorphism of T 2 or is skew, meaning that the orbit space of the lift

of the flow to M̃ is homeomorphic to the infinite diagonal strip

O = {(x, y) ∈ R2 | |x− y| < 1}
in such a way that the preimages of horizontal (respectively, vertical) intervals are the
stable (resp. unstable) leaves of the flow, as illustrated in Figure 2.

In this model, each point o ∈ O can be assigned a point ou on the upper boundary
by following the unstable leaf through o, and a point ol on the lower boundary by
following the unstable leaf. Taking the intersection of the stable leaf through ou and
unstable through ol defines a continuous, fixed point free map η : O → O. This map
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sends stable leaves to unstable leaves and vice versa, so τ = η2 descends to a map on
the leaf space Λs of the weak stable foliation. This map is strictly monotone, and the
quotient map.

M̃ → Λs → Λs/τ

defines a slithering of M . By construction, the foliation associated to this slithering is
the weak stable foliation of Φt.

The map η has many remarkable properties. A concise summary is given in [5,
§4]; we will simply state those which are of use to us. First, η is a π1M -equivariant
homeomorphism and can be induced from a continuous self-map ηM of the underlying
manifold M [2, 17]. Barbot [2, Theorem 3.4] showed, using an averaging argument,
that this map ηM can actually be taken to be a homeomorphism of M . An alternative
description of ηM map is given in [47, Prop 7.4 ii)]. Futhermore, if some element of the
fundamental group fixes a point o of the leaf space, then it also fixes ηk(o) for all k,
and the corresponding periodic orbits of the flow are freely homotopic. It is not hard
to see that the converse is also true: any two periodic orbits of a skew-Anosov flow
that are freely homotopic are related by some power of the map η on the flow space.
We note this fact for later use.

Proposition 5.4 (see [2, 17]). Let α, β be freely homotopic orbits of a skew-Anosov
flow with orientable splitting on a closed manifold M . Then β = ηkM (α) for some
integer k, where ηM is a homeomorphism of M that induces the map η on the flow
space.

We will also need to use the following result of Barbot on minimality of the slithering
action associated to a skew-Anosov flow.

Proposition 5.5 ([2] Theorem 2.5). Any skew-Anosov flow is transitive and its asso-
ciated slithering action ρs : π1M → Homeo+(S1) is minimal.

Universal circles. Let Fu and Fs denote the lifts to M̃ of the unstable and stable
foliations of an Anosov flow. Following Proposition 5.1 ii), the leaves of these foliations
have a natural large-scale hyperbolic structure, hence can be compactified by a bound-
ary at infinity. In the case of a skew-Anosov flow, Thurston [47] observed that these
foliations are uniform, meaning that any pair of leaves is lie a bounded distance apart
from each other, and hence the leafwise boundaries can be canonically identified:

Lemma 5.6 (Lemma 4.1 and Corollary 4.2 of [47]). For each pair of leaves L and
L′ of Fu, and every infinite geodesic g on L, there is a unique geodesic g′ on L′ at a
a bounded distance from g. This produces a canonical identification of the circles at
infinity for all the leaves of Fu. We call the result the universal circle at infinity. The
same holds with Fs in the place of Fu.

An alternative way to describe Thurston’s universal circle is by considering the in-
tersection of Fu and Fs. For a fixed leaf L of Fu, the leaves of Fs intersect L as
quasi-geodesics with a common forward (using an induced orientation) endpoint, with
respect to the large-scale hyperbolic structure. Thus, the boundary of L, minus one
point, can be identified with a subset of the leaf space of Fs, and there is a natural map
defined on subsets of boundaries of any two nearby leaves L and L′ of Fu via leaves of
Fs. This gives the following.
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Proposition 5.7 (Prop 7.1 of [47]). Let S1
u denote the universal circle obtained from

Lemma 5.6. There is an identification of S1
u with Λs/τ , under which the action of π1M

on S1
u (i.e. as obtained from the action on the leaf space) agrees up to conjugacy with

the slithering action of the foliation.

In other words, S1
u can be thought of as the space of vertical lines (mod τ) of the

orbit space O depicted in Figure 2.

5.3. Proof of Theorem 1.2. In this section we use the following notion of semi-
conjugacy for circle maps, as defined by Ghys in [26]. Though the terminology “semi-
conjugacy” is now widespread, this is not the same as the standard dynamical notion
of semi-conjugacy defined in Section 2. To avoid confusion, we will follow [39] and use
the term weak conjugacy for Ghys’ definition.

Definition 5.8. Let ρ1 and ρ2 : Γ → Homeo+(S1) be two actions of a group Γ on
the circle S1 = R/Z. These actions are weakly conjugate if there is a monotone map
h : R → R commuting with x 7→ x + 1, and lifts of each element ρi(γ) to Homeo+(R)

satisfying h ◦ ρ̃1(γ) = ρ̃2(γ) ◦ h.

The map h in the definition above is not required to be continuous or surjective.
However, if ρ2 is minimal, any weak conjugacy h between ρ2 and any other represen-
tation ρ1 is necessarily continuous and surjective. Note that, since h commutes with
integer translations, it descends to a map of S1. A map of S1 so induced is called a
degree one monotone map. It is easy to verify that the surjective, degree one monotone
maps of S1 are precisely the orientation-preserving maps of S1 which are approximable
by homeomorphisms.

We divide the proof of Theorem 1.2 into two propositions, covering first the local
then the global result.

Proposition 5.9 (Local Rigidity). Let Fs be the weak stable foliation of a skew-Anosov
flow Φt on M3 with associated slithering action ρs : π1M → Homeo+(S1). Then there
exists a neighborhood U of ρs in Hom(π1M,Homeo+(S1)) consisting of representations
weakly conjugate to ρs.

Proposition 5.10 (Global Rigidity). Under the hypotheses above, one can in fact take
U to be the connected component of ρs in Hom(π1M,Homeo+(S1)).

The proof of the local version follows roughly the same strategy as that of Theorem
1.1 in Section 3. However, here the suspension of the action is one dimension larger
than that considered there, forcing us to make use of a natural section in order to
cut down a dimension. The proof of the global result is then a quick consequence of
approximability of weak conjugacy maps by homeomorphisms.

Proof of Proposition 5.9. Let Fs be the weak stable foliation of a skew-Anosov flow

Φt on a closed 3-manifold M , let s : M̃ → S1 be the associated slithering, and let
ρs : π1M → Homeo+(S1) be the slithering action. For clarity, we divide the proof into
steps, as indicated by the paragraph headings.

Setup: a canonical section. Consider the lift of Fs to M̃ . As in Section 3, we

abuse notation slightly and let Fs also denote the lifted foliation to M̃ , with leaf space

Λs ∼= R. By Proposition 5.1, Fs is of class C1, giving a C1 identification M̃ ∼= R2×Λs,
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Λs

H2

Figure 3. A picture of σ̃(M̃) in the familiar case M = UTΣ as in [47].

The infinite cylinder is σ̃(M̃) ∼= M̃ = H2 × Λs i.e. the height of a point
in the stack of copies of H2 corresponds to the positive endpoint of a
unit tangent vector based at that point. Horizontal planes are leaves of
Fs, one is shown in blue. A leaf of σ̃(Fu) is shown in red, the hyperbolic
metric on the leaf is that lifted from the projective model of H2 shown
below. In this model, one endpoint at infinity of the unstable leaf is
blown up to an interval.

and an action of π1M on Λs by C1 diffeomorphisms. As explained in our discussion
earlier (see Example 5.3), this action commutes with the map τ : Λs → Λs used in
defining the slithering, and ρs is simply the induced action of π1M on the (topological)
circle Λs/τ . Note, however, that the map τ is in general only a homeomorphism and
so ρs need not be an action by C1 diffeomorphisms. It is for this reason that we work
with the lifts to Λs. Let ρ̂ denote the action of π1M on the leaf space Λs. This is a lift

of ρs and the holonomy of the foliation Fs on M̃

Let E = (M̃ × Λs)/π1M be the suspension of ρ̂. Fixing notation, for p ∈ M̃ ,

let `(p) ∈ Λs denote the leaf containing p. Define a section σ̃ : M̃ → M̃ × Λs by
p 7→ (p, `(p)). This satisfies the ρ̂(π1M)-equivariance

γ · p 7→ (γ · p, ρ̂(γ)(`(p)))

so induces to a section σ : M → E. Since ρ̂ is a C1 action, the section σ̃ (and hence

also σ) are C1 embeddings. Also, σ̃ is transverse to the leaves M̃×{l} of the horizontal

foliation on M̃×Λs since the composition of σ̃ with the projection to Λs is precisely the
quotient map to the leaf space Λs, which is a non-singular C1 map. By definition, the
leaves of σ̃(Fs) are simply the intersection of σ̃(M) with the leaves of the horizontal
foliation of the suspension E. This means that the C1 foliation σ̃(Fs) is transverse to

σ̃(Fu) in σ̃(M̃).



26 JONATHAN BOWDEN AND KATHRYN MANN

Nearby actions give nearby foliations. Let ρ′ be a small perturbation of ρs,
and let ρ̂′ denote the lift of ρ′ to Hom(π1M,HomeoZ(R)) that is a small perturbation
of ρ̂. Since Eρ̂ is a foliated R bundle over M with C1 foliation, and ρ̂′ is a small
perturbation of the holonomy, following the proof of Lemma 3.1 verbatim produces
a homeomorphism fρ′ : Eρ̂′ → Eρ̂ taking leaves of the suspension foliation on Eρ̂′ to
a foliation with tangent distribution uniformly close to the horizontal distribution on
Eρ̂. “Close” can be made as small as we like by choosing ρ′ sufficiently close to ρs.
Since ρ̂′ and ρ̂ are both representations into HomeoZ(R), as in the last step of the proof
of Lemma 3.1 the resulting homeomorphism will descend to a map Eρs → Eρ′ of the
respective fiberwise quotients.

Let F̃ ′ denote the image of the horizontal foliation under fρ′ . Since F̃ ′ has tangent
distribution close to that of the horizontal distribution on Eρ̂, its restriction to the
section σ̃(M) is transverse to is transverse to σ̃(Fu). Abusing notation slightly, we

now let F̃ ′ denote the restriction of this foliation to σ̃(M). We will study the foliations

σ̃(Fs) and F̃ ′ on σ̃(M̃), and the induced foliations σ(Fs) and F ′ on the quotient σ(M).

Leafwise quasi-geodesic foliations and the endpoint map. We adapt the line of
argument carried out in Section 3.2, using “endpoint maps” to define a weak conjugacy
between ρs and ρ′. By Proposition 5.1 (ii), we may fix a metric on M so that leaves
of Fs are uniformly bi-Lipschitz equivalent to H2 and and the foliation Fu ∩ Fs is
uniformly quasi-geodesic.

Since the tangent distribution of F̃ ′ is C0 close to the horizontal in M̃ × Λs, for

any fixed leaf L of σ̃(Fu), the intersection of F̃ ′ with L will give a foliation of L with
tangent distribution close to that of the flowlines Fu∩Fs. Thus, under our bi-Lipschitz

identification of L with H2, the foliation F̃ ′ is quasi-geodesic on L. Recall also from
Proposition 5.1 (ii) that flowlines of Φt on L share a common negative endpoint, say
ξ ∈ ∂H2. Since the bi-Lipschitz equivalence L ∼= H2 maps strong unstable leaves to

horocycles and flowlines to geodesics, the leaves of F̃ ′ ∩ L will be nearly orthogonal to
horocycles based at ξ. The argument from Lemma 3.3 (repeated essentially verbatim)

shows that F̃ ′ ∩ L is uniformly quasi-geodesic. The fact that the action of π1(M) on
triples of ordered distinct points in S1

u is cocompact (cf. [47, Proposition 7.4]), together
with the argument from Lemma 3.3 also shows that the intersection of any leaf L of
Fu with F ′ is connected. Thus, varying L we obtain a uniform quasi-geodesic foliation

of M̃ . Denote this foliation by FQG. Furthermore, for each leaf L of Fu, we have
endpoint maps e+L and e−L taking leaves of FQG in L to their positive and negative
endpoints on the ideal boundary of L.

By Lemma 5.6, the boundaries of leaves of Fu may be identified to give a universal
circle S1

u, allowing us to piece together the maps e+L and e−L to obtain globally defined

maps e+ and e− from the leaf space of FQG to S1
u. The proof of Lemma 3.5 shows

that, for each leaf L of Fu, the map e+L is continuous. Since Fu is a uniform foliation
[47], the inclusion of any leaf into a neighbourhood Nε(L) is a uniform quasi-isometry
and L′ ⊂ Nε(L) for any sufficiently close leaf L′. Now nearby leaves of FQG lying in
L,L′ respectively of remain close on long segments, hence their end points are close in
the ideal boundary ∂∞Nε(L) which is then canonically identified with ∂∞L, ∂∞L

′ via
the inclusion. We can now argue exactly as in Lemma 3.5, to show that the globally
defined maps e+ and e− are continuous on the whose manifold as well.
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Straightening quasi-geodesics to produce the semi-conjugacy. To conclude
the proof, we follow a modified version of the argument from 3.9. Since leaves of
FQG are transverse to the image of the strong unstable foliation σ̃(Fuu), they can be

continuously homotoped via a π1M -equivariant homotopy h̃t along the one-dimensional
leaves of the strong unstable foliation in such a way so that the image of each leaf of

FQG under h̃1 is the flow line of Φt with the same ideal endpoints in the given leaf.

Figure 4. Quasi-geodesics in a leaf of Fu and their images under h̃1;
leaves with common endpoints are identified. The red circle is a leaf of
Fuu

The time-one map h̃1 of the homotopy descends to a map h1 from the leaf space
of FQG to the orbit space of the flow (which we denote by O), making the following
diagram commute.

σ̃(M̃) M̃

σ̃(M̃)/FQG O.

h̃1

h1

We claim that for each leaf L′ of F̃ ′, its image h1(L
′) agrees with the image in O

of some leaf of Fs. Equivalently, we need to show that the positive endpoint map is

constant on each leaf L′ of F̃ ′. To show this, we will use the picture given by Thurston’s
universal circle perspective, as stated in Proposition 5.7. Following this, the negative
and positive endpoint maps give local (first and second) coordinates on O. Fix any

leaf L′ of F̃ ′. Note first that e−(h1(L
′)) is nonconstant, i.e. its image in O does not

correspond to a vertical segment in O. This is simply because L′ intersects at least two
distinct leaves of Fu. We wish now to show that h1(L

′) is horizontal.
Suppose for contradiction that this is not the case. By Proposition 5.5, the skew-

Anosov flow Φt is transitive, and so its periodic points are dense. It follows that the
image of L′ intersects both the unstable leaf and the stable leaf of some periodic orbit.
Let γ ∈ π1M be the element represented by this periodic orbit, thought of as a closed
curve in M .

Since h̃1(FQG) is a π1M -equivariant foliation, γnh̃1(L
′) are also leaves in the image

of h̃1. See Figure 5 for a schematic picture. Since we are assuming that h̃1(L
′) is not

horizontal, then the sequence of leaves γnh̃1(L
′) approaches (uniformly on compact sets)

a vertical segment. The fact that the foliation F̃ ′ is lifted from a flat S1-bundle structure
gives us compactness of the leaf space mod τ , so after passing to a subsequence, in the
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Figure 5. The image of a leaf in the flow space O which is non-
horizontal is shown in light green. The black point is a periodic orbit
corresponding to γ ∈ π1M and the lines in darker shades of green show
the first few iterates under the action of γ.

quotient by τ the leaves γnh̃1(L
′) converge to some limit leaf L∞. By continuity of the

map h̃1, the image of this leaf is vertical, contradicting our earlier observation.

We conclude that leaves of F̃ ′ map to (subsets of) leaves of Fs. We now argue that
leaves are sent onto leaves; in other words, the straightening map h1 defines a map from

the leaf space of F̃ ′ to that of Fs on M̃ . To see this, consider first a leaf L′ of F ′ whose
image contains a periodic orbit representing some α ∈ π1M . The π1M -equivariance of
our construction means that L′ is also invariant under the action of α, and its image
under h1 is a α-invariant subset of a stable leaf. We additionally know that, under the
negative endpoint map, this subset contains an interval. Thus, it must necessarily be
the full leaf. The general case (for leaves not necessarily containing a periodic orbit)
now follows from the density of periodic orbits of the flow and continuity.

In summary, we have the following induced π1M -equivariant maps, where the vertical
maps denote the maps to the respective leaf spaces:

σ̃(M̃) M̃

σ̃(M̃)/F̃ ′ M̃/Fs = Λs

h̃1

h1

Note that the map h1 preserves the (weak) order of leaves in the leaf space, so it is
monotone, and it is surjective and equivariant with respect to the action of τ . Thus,

after quotienting out by the action of τ on M̃ and R respectively, we obtain a surjective
monotone map h on the circle S1 = R/τ that provides the desired weak conjugacy. �

Proof of Proposition 5.10. Let ρ be a representation as in the statement of Proposition
5.9. We show that the property of being weakly conjugate to ρ is both an open and
closed condition in Hom(π1M,Homeo+(S1)).

Closedness. It follows from work of Ghys [26] and Matsumoto [40] that, for any
discrete group Γ, the closure of a conjugacy class in Hom(Γ,Homeo+(S1)) is a weak
conjugacy class (called semi-conjugacy rather than weak conjugacy by these authors).
This is because weak conjugacy classes can essentially be specified by rotation numbers
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of elements, rotation number being a continuous function on Homeo+(S1)), or by the
integer bounded Euler class. A detailed exposition is given in [39, §2].

Openness. This follows from Proposition 5.9 and approximability of weak conjuga-
cies on S1 by homeomorphisms. (See the remark after Definition 5.8.) Let U be the
neighborhood given by Proposition 5.9. Let ρ′ be weakly conjugate to ρ via a degree
one monotone map h : S1 → S1 satisfying h ◦ ρ′ = ρ ◦h; since ρ is minimal by Proposi-
tion 5.5, h is continuous. If h0 ∈ Homeo+(S1) is a sufficiently close C0 approximation
to h, then h0ρ

′h−10 ∈ U so admits a neighborhood V consisting of weakly conjugate

representations; and h−10 V h0 is the desired neighborhood of ρ′. �

5.4. Application: global rigidity of geometric representations. As a first ap-
plication of Theorem 1.2, we give a new proof of the main result of [38]. A second
application is discussed in the next section. Both use the following standard construc-
tion; further discussion of which can be found in [38].

5.5. Fiberwise covers of the geodesic flow. Let Σ be a closed hyperbolic surface.
Then Σ = H2/ρ0(π1Σ) where ρ0 is an embedding as a cocompact Fuchsian sugroup of
PSL2(R). The action of ρ0(π1Σ) ⊂ PSL2(R) on ∂∞H2 = S1 by Möbius transformations
gives a realization of the boundary action of π1Σ. As in Example 5.3, the corresponding
suspension foliation of this representation can be naturally identified with the weak
stable foliation of the geodesic flow.

Lifts of ρ0 to the extension Z/kZ → PSL
(k)
2 (R) → PSL2(R) are precisely the ho-

lonomy representations of the weak stable foliations of the possible lifts of the geo-
desic flow to a k-fold fiberwise cover of M → UTΣ. Such lifts exist if and only if k
divides the Euler characteristic χ(Σ); in which case for a genus g surface there are
k2g = |Hom(π1Σ,Z/kZ)| distinct lifts. These lifts can be also be distinguished dynam-

ically: thinking of PSL
(k)
2 (R) ⊂ Homeo+(S1), via the natural identification of lifts of

Möbius transformations to the k-fold cover of S1, one can classify distinct lifts by the
rotation numbers of a standard generating set. The images of a standard generator
under different lifts differ by rigid rotations through angles that are multiples of 2π/k.

Remark 5.11. Topologically speaking, the effect of modifying the action of a generator
α by a rotation is to modify the closed orbits of the lifted flow that project to α under
the map π1(M) → π1(Σ). In detail, that some standard generator γ for π1Σ has
image ρ̂(γ) ∈ Homeo+(S1) with rotation number 2πn/k, means precisely that in the
suspension of ρ̂, the projection to the S1 fiber of the horizontal lift of γn to a closed
orbit, considered as a map S1 → S1, has degree k. We will use this perspective again
in the proof of Theorem 1.3.

The following is the main result of [38] (reproved using a different argument by Mat-
sumoto in [41]). By quoting Theorem 1.2, we may give another, shorter independent
proof.

Theorem 5.12 (Mann [38]). Let Σ be a surface of genus g ≥ 2, and ρ : π1Σ →
PSL2(R) ⊂ Hom(π1Σ,Homeo+(S1)) an embedding as a cocompact Fuchsian group.
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Consider any lift ρ̂ of this action to the k-fold cover of S1 zk−→ S1:

Homeo
(k)
+ (S1)

π1Σ Homeo+(S1).

zk
ρ̂

ρ

Then the connected component of ρ̂ in Hom(π1Σ,Homeo+(S1)) is a single weak conju-
gacy class.

Proof. Equip Σ with a hyperbolic metric and let UTΣ be its unit tangent bundle. The
geodesic flow on UTΣ is skew-Anosov, so determines a slithering action ρs : π1(UTΣ)→
Homeo+(S1). We consider lifts ρ̂ of ρ = ρs as per our discussion above. Each lift ρ̂
is the holonomy of the lift of the weak stable foliation of the geodesic flow to a k-fold
fiberwise cover of UTΣ. Let M be such a k-fold cover, so π1M sits in a central extension

1 −→ Z = 〈z〉 −→ π1M −→ π1Σ −→ 1.

The lift of geodesic flow to M is also skew-Anosov, so has a slithering ρsk : π1M →
Homeo+(S1). It is easily verified from the definitions that these representations satisfy
ρsk(z) = id, so descend to representations π1Σ → Homeo+(S1), which are precisely
those appearing in the statement of Theorem 5.12. Theorem 1.2 states that the repre-
sentation ρsk is globally rigid in Hom(π1M,Homeo+(S1)). This now implies rigidity of
the surface group action obtained by restricting ρsk to π1(Σ), since any element of its
connected component in Hom(π1Σ,Homeo+(S1)) can be extended to a representation
of π1(M) by declaring the central Z subgroup to act trivially. �

A further consequence of Theorem 1.2 is the following.

Corollary 5.13. Let M be a closed 3-manifold admitting a skew-Anosov flow. Then
the component of the space Hom(π1M,Homeo+(S1)) with trivial Euler class is not
connected.

Proof. The slithering action ρs corresponds to Thurston’s universal circle action given
by compactifying leaves of Fs in the universal cover, as described above. The Euler
class of this action agrees with the Euler class of Fs, which is trivial since the tangent
bundle to Fs admits a nowhere vanishing section determined by the flow. But ρs is
not in the same component as the trivial representation by Proposition 5.10, although
they have the same Euler class. �

6. Topologically inequivalent Anosov flows on hyperbolic manifolds

In this section we prove Theorem 1.3 using ideas developed above. Recall that
two non-singular flows on a manifold are topologically equivalent if the one-dimensional
foliations given by their flow lines are conjugate as foliations. We will consider examples
of skew-Anosov flows obtained by lifting geodesic flows to a k-fold fiberwise cover of
the unit tangent bundle of a hyperbolic surface (for large k), then performing integral
Dehn surgery along a closed orbit. (We assume that the reader has some familiarity
with hyperbolic Dehn surgery e.g. as described in [46]. A brief description of surgery
for flows is given below in paragraph 6.1.)
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b

a

Figure 6. The curve c3,5 on T

Remark 6.1 (Lifts to a fiberwise covers up to topological equivalence, [4]). Recall
from Section 5.5 that the different lifts of geodesic flow on UTΣ to the k-fold fiberwise
cover of UTΣ are determined by cohomology classes in H1(UTΣ,Zk) that pair with the
generator to give 1. It is straightforward to check that the group of fiberwise rotations
(i.e. smooth gauge transformations of the cover), which can be identified with the
group of smooth maps Σ → U(1) = S1, acts transitively on this affine subspace of
cohomology. Note that these equivalences change the isotopy class of the flow as the
homotopy classes of periodic orbits will change. However, the mapping class group of
UTΣ also contains the mapping class group of the base. By carefully considering the
action on both the flow and the covering Barbot and Fenley [4] show that there are
two distinct Anosov flows up to equivalence in the case that k is even and only one
in the case that k is odd. Moreover, in this case, all equivalences can be realized by
diffeomorphisms of the ambient manifold.

Barbot and Fenley’s result as described above implies that some extra ingredient is
required to produce many inequivalent flows. This is where Dehn surgery comes into
the picture.

Asymmetric Knots. The first ingredient is the following construction of highly asym-
metric filling geodesics on surfaces. We will later lift these to a fiberwise cover of the
unit tangent bundle and perform Dehn surgery along the resulting curve.

Notation 6.2. Let T be a one-holed torus, and a, b simple, oriented curves representing
standard generators of π1(T ). Let cm,n denote a properly embedded arc with endpoints
on ∂T , constructed by first following a simple subarc that wraps n times in the a
direction, and then a simple arc wrapping m times in the b direction, as shown in
Figure 6. The complementary regions to cm,n are quadrilaterals, with the exception of
one 5-gon, and one 7-gon containing an arc of ∂T .

The next lemma says that arcs of the form cm,n on disjoint one-holed tori can be
pieced together to give a curve on a higher genus surface that has the same self-
intersection pattern as its geodesic representative in any hyperbolic metric. For the
set up, fix g > 2 and fix a decomposition of Σg into g punctured tori T1, T2, . . . Tg and
one g-holed sphere S. Let m1, n1 = 3, 5, and for i = 2, 3, . . . g, choose mi > ni + 1 and
ni > mi−1 + 1. Let c be a closed curve on Σg whose restriction to Ti is the arc cmi,ni ,
and such that c has no points of self-intersection in S.
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Figure 7. Part of the curve c from Lemma 6.3

Lemma 6.3. For any curve c as above, the following hold:

(1) For any hyperbolic metric on Σg, the geodesic representative of c has the same
self-intersection pattern as c.

(2) If f is a finite order homeomorphism of Σg such that f(c) is ambiently isotopic
to c, then f is the identity. The same statement holds when c is replaced with
its geodesic representative in any hyperbolic metric.

Proof. First, note that by construction no complementary region of c is a monogon,
bigon, or triangle. Fix any hyperbolic metric on Σg, and consider the geodesic rep-
resentative cgeo of c in this metric. We claim that it has the same combinatorics as
the curve c depicted in the figure. To see this, we use the disk flow of Hass and Scott
defined in [30]. Starting with a curve in general position, this flow may change the
combinatorics of a curve via a) eliminating a monogon or bigon bounding a disk (thus
decreasing the self-intersection number of the curve) or b) moving one edge of a trian-
gle across the opposite vertex, preserving the self-intersection number. Hass and Scott
show [30, Thm 2.1, 2.2] that any curve is homotopic to a representative with minimal
self-intersection number through this process, and that any two distinct representatives
of a curve, each having minimal self-intersection number, are homotopic to each other
through moves of type b) and ambient isotopy of the surface. Since no complemen-
tary regions of c are monogons or bigons, moves of type a) are not possible. Thus, c
has minimal self-intersection number. Since no regions are triangles, Hass and Scott’s
theorem implies that cgeo (which is a geodesic, hence also has minimal self-intersection
number) must be attainable from c by ambient isotopy of Σg. This proves (1).

For the second assertion, suppose that f is a finite order homeomorphism of Σg, and
h a homeomorphism isotopic to identity such that hf(c) = c, setwise. Then hf induces
an automorphism of the graph on Σg formed by the image of c. We claim that this
graph has no nontrivial automorphisms. To see this, note that (with appropriate choice
of orientations on the tori Ti), the two complementary regions to c that intersect S are a
p-gon and q-gon for p 6= q > 5, so much each be preserved. The choice of ni > mi−1 +1
and mi > ni + 1, ensures that the “grids” of quadrilaterals which distinguish the torus
subsurfaces have no nontrivial symmetries and cannot be permuted, from which one
deduces inductively that each complementary region is fixed. We leave the details as
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an elementary exercise. Thus, hf induces a trivial graph automorphism. Since hf
is isotopic to the finite order homeomorphism f , and preserves each complementary
region of the filling curve c, it must be isotopic to the identity, as follows from the
standard Alexander trick argument, hence f is the identity. This argument only relied
on the combinatorics of c and its complementary region, so by the first assertion it also
holds when c is replaced by a geodesic representative. �

The next step is to show that removing the geodesic representative of such a curve c
from the 3-manifold UTΣ, or removing a lift of it to a fiberwise cover of UTΣ, gives a 3-
manifold which admits a complete hyperbolic structure. This comes from the following
folkloric result.

Lemma 6.4 (Calegari/Folklore). Let c ⊂ Σ be a closed, filling geodesic in a hyperbolic
surface. Then the complement of its image in UTΣ is irreducible and atoroidal. More
generally, if M → UTΣ is a k-fold fiberwise cover, and K a connected component the
preimage of c in M , then M −K is irreducible and atoroidal.

This is stated and proved in detail for the case where M = UTΣ in [20, Appendix
B], where Foulon and Hasselblatt use it to construct examples of contact Anosov flows
on hyperbolic manifolds. However, the proof carries over verbatim when the bundle
UTΣ → Σ is replaced by any finite fiberwise cover. See also [11] for an alternative
exposition.

For the next two lemmas we will use the following set-up. Let M → UTΣ be a k-fold
fiberwise cover of UTΣ where Σ is a hyperbolic surface of genus g ≥ 3. As in Lemma
6.4 above, let K ⊂M be a connected component of the preimage of a geodesic c in Σ,
where c is chosen as in Lemma 6.3.

Lemma 6.5. If h ∈ Homeo(M) is homotopic to a finite order homeomorphism of M ,
and h(K) is isotopic to K, then h is homotopic to the identity.

Note that h need not be equal to the identity, for instance it may rotate the fibers
of the fibration M → Σ.

Proof of Lemma 6.5. Consider the action of h on π1M . This action preserves the center
of π1M , which is the fundamental group of the fiber, so descends to an action h on
π1Σ modulo inner automorphisms, i.e. a map h ∈ Out(π1Σ). Since h is finite order,
Nielsen realization implies that h can be realized as an isometry for some hyperbolic
structure on Σ. Since h preserves K up to isotopy, the isometry realizing h preserves c
up to free homotopy, so preserves the geodesic representative of c in this metric. Since
c was chosen as in Lemma 6.3, this isometry is in fact trivial, so h is a trivial outer
automorphism of π1Σ.

Now M is a K(π, 1) space, so homotopy classes of maps M → M are determined
by the action on the fundamental group, and so homotopy classes of maps that induce
the trivial outer automorphism of π1Σ can be identified with elements of Hom(π1Σ,Z),
which is torsion free. Since h was assumed finite order, it must therefore be homotopic
to the identity. �

The following is the main technical result of this section.

Lemma 6.6. Let Mp denote the integral Dehn filling on M − K of slope p. After
excluding finitely many slopes, the following hold.
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(1) The manifold Mp is hyperbolic and each homeomorphism of Mp preserves the
homotopy class of the core curve of the filling torus.

(2) Each homeomorphism φ ∈ Homeo+(Mp) that preserves the core of the filling
torus determines a homeomorphism φM of M that preserves the isotopy class of
K, agrees with φ away from a tubular neighbourhood of K, and is homotopic to
the identity. This tubular neighborhood of K may be chosen arbitrarily small.

Remark 6.7. The first point is true (after excluding finitely many slopes) whenever
K is obtained by lifting a filling geodesic on the surface. The fact that φM in point (2)
is homotopic to the identity comes from our choice of c from Lemma 6.3.

Proof of Lemma 6.6. By Lemma 6.4 the complement M − K is atoroidal and irre-
ducible, and thus admits a complete hyperbolic metric by geometrisation. Fix this
hyperbolic metric, and consider the action of the isometry group Isom(M −K) on the
fundamental group of the cusp, which we identify with Z × Z using generators com-
ing from the meridian and longitude of a tubular neighborhood of K. Recall that,
by Mostow–Prasad rigidity, Isom(M −K) is finite. For each of the isometries whose
action on Z× Z is not by ±I, record any eigenspace of eigenvalue ±1. This gives us a
collection of finitely many slopes, which we exclude from the possible slopes of Dehn
filling.

Since M−K is hyperbolic, Thurston’s hyperbolisation theorem [46] states that, with
finitely many exceptions, the result of Dehn filling M − K is a hyperbolic manifold,
in which the core of the filling torus is a closed geodesic of shortest length for this
hyperbolic structure. Excluding these finitely many exceptional slopes as well, we
claim that Mp will have all the desired properties.

First, suppose that φ is a homeomorphism of Mp. By Mostow rigidity, it is homotopic
to an isometry; denote this isometry by ψ. Since the core of the filling torus is a geodesic
of shortest length, it is preserved by ψ, so φ preserves this curve up to homotopy,
finishing the proof of item (1).

For the second item, observe that ψ induces a homeomorphism of the cusped mani-
fold M −K preserving the (unoriented) isotopy class of a longitude given by the Dehn
Surgery slope, which we identify with K. Again, by Mostow Rigidity, this homeomor-
phism is homotopic to an isometry, and by our restriction on the choices of slope p, we
conclude that the action on the fundamental group of the cusp is by ±I. This means
also that ψ can be extended to a homeomorphism, say ψM , of M by coning off over
meridian discs. Furthermore, since an isometry of a complete hyperbolic manifold has
finite order, we take an extension that also has finite order, since the extension over
meridian discs preserves this property.

Suppose now that φ itself has the additional property that it preserves the core of the
Dehn filling torus. By the same argument as above, φ then induces a homeomorphism
of M − K preserving the isotopy class of the longitude K and inducing ±I on the
fundamental group of the cusp and so we can extend the action of φ over meridian
discs to give a homeomorphism φM of M preserving the isotopy class of K.

Since M is a K(π, 1) space, the extension of any map over a tubular neighbourhood
N of K is well-defined up to homotopy. Moreover, any homotopy of maps on M −N
extends to M . In particular, if ψ is the isometry homotopic to φ, using the notation as
above, then φM is homotopic to ψM , which is finite order. By Lemma 6.5, we conclude
that φM is homotopic to the identity. Finally, since φ preserves K, this homeomorphism
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φM can be obtained from φ by undoing the original Dehn surgery in an arbitrarily small
neighborhood of K. �

6.1. Dehn Surgery and Anosov flows. Given any Anosov flow and a periodic orbit
γ Goodman [28] and Fried [24] have described how to perform integral Dehn surgery
on γ in a manner compatible with the flow, giving the following.

Proposition 6.8 (Dehn surgery on Anosov flows [24, 28]). Let Φt be an Anosov flow
on a manifold M and let γ be a periodic orbit. Then the manifold Mp(γ) obtained by
integral surgery of slope p admits an Anosov flow that is conjugate to the original flow
away from the core of the filling torus.

Goodman’s original construction in [28] produces a smooth Anosov flow. Fried [24]
gives an alternative construction which has, a priori, less regularity, but has the prop-
erty that the dynamics of the flow after surgery are identical to those of the original
flow in the complement of the periodic orbit given by the core of the Dehn filling torus.
In outline, one simply blows up M along the normal bundle of the periodic orbit to
obtain a manifold homeomorphic to the complement of a small open neighborhood of
γ in M , with a torus boundary to which the flow extends in a natural way, having
four periodic orbits on the boundary. Choosing a foliation of the torus boundary by
circles transverse to the flow, such that each circle leaf intersects each of the periodic
orbits in a single point and identifying each circle to a point, one obtains a flow on an
integral Dehn-filling of M − γ so that the core of the filling torus (the points obtained
by collapsing circles) is a periodic orbit.

While the dynamics under Goodman’s construction are somewhat mysterious, in
Fried’s version as described above it is obvious that any Dehn surgery can be undone,
on the level of Anosov flows, by an inverse surgery. The drawback of Fried’s construc-
tion is that the flows he constructs are not obviously genuinely Anosov, they are only
topologically Anosov. It has been largely assumed in the literature that both these
surgeries produce topologically equivalent flows, so that in both cases one obtains flows
that are Anosov in the usual sense. This has only recently been settled by Mario Shan-
non [44] for transitive flows, which includes as a special case surgery of skew-Anosov
flows (the case of interest to us). This will be crucial in our construction.

The surgery construction as well as some of its properties have been analyzed by
Fenley [17]. He shows in particular that surgery on certain Anosov flows produces
skew-Anosov examples. We note this for future use.

Proposition 6.9 (Dehn surgery on skew-Anosov flows [17]). If the original flow is a
cover of the geodesic flow on UTΣ, then for p > 0 the flow on M−p(γ) given by Dehn
surgery of slope −p is skew-Anosov.

Constructing inequivalent Anosov flows. Using the tools above, we now produce
examples of hyperbolic 3-manifolds supporting N topologically inequivalent Anosov
flows, proving Theorem 1.3. Recall that this will be done by performing Dehn surgery
on fiberwise covers of the unit tangent bundle of a hyperbolic surface.

Proof of Theorem 1.3. Let Σ be a hyperbolic surface, with hyperbolic structure defined
by a representation ρ : π1Σ → PSL2(R). Fix some k ∈ N dividing the Euler charac-
teristic of Σ, for concreteness one may take k = g − 1, where g is the genus of Σ. We
will give a construction that produces a number of inequivalent skew-Anosov flows via
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surgery on the k-fold cover of UTΣ, where that number grows linearly in k (and hence
can be taken as large as desired by taking g large).

Recall from Section 5.5 that for fixed k, the lifts of ρ to the k-fold central extension
of PSL2(R) are in bijective correspondence with Hom(π1Σ,Z/kZ), parametrized by the
rotation numbers of a standard set of generators of π1Σ. As discussed in Remark 5.11,
these lifts can also be distinguished by understanding the degree of projection to the
fiber of horizontal lifts of closed curves from Σ to the suspension Eρ̂. Each lift defines
an Anosov flow on the k-fold fiberwise cover of UTΣ, (whose weak stable foliation is the
suspension Eρ̂ of the lift ρ̂ of ρ) but, as noted in Remark 6.1, these are all topologically
equivalent flows. To produce inequivalent flows, we will use Dehn surgery along the
natural lifts of a fixed filling geodesic as constructed in Lemma 6.3.

Set-up and standing assumptions. Let T1 ⊂ Σ be a one-holed torus and c a
geodesic on Σ as in Lemma 6.3, with α1, β1 the standard generators of π1(T ). Complete
this to a standard generating set α2, β2, . . . αg, βg for π1Σ. We will consider lifts of ρ
that differ only on α1 and β1, agreeing on all other generators.

Identify the curve c with an element of π1Σ and fix a lift ρ̂ of ρ to PSL
(k)
2 (R) such that

ρ̂(c) has rotation number 0. Topologically, having rotation number zero corresponds to
the fact that the “horizontal lift”of c, meaning the pre-image of the geodesic c under
the covering map Eρ̂ → UTΣ, has k connected components, each one a periodic orbit
of the lift of the geodesic flow to Eρ̂. The following argument shows that there are at
least bk/3c choices for such lifts ρ̂; all of which agree on αi, βi for i ≥ 2: Recall that c, as
an element of π1Σ has the form wα3

1β
5
1 where w is a word in α2, β2, . . . αg, βg. Varying

the lifts of ρ(α1) and ρ(β1), while preserving the chosen lifts of the other generators
amounts to replacing ρ̂(α1) with its composition with a rotation by 2πr1

k , and ρ̂(β1)

with its composition by some rotation of the form 2πr2
k . This changes the rotation

number of ρ̂(c) by 3r1 + 5r2 mod k. For any choice of r1 ∼= 5x mod k, we may choose
r2 ∼= −3x mod k so that the rotation number does not change.

We will further restrict our choice of lifts of ρ so that the horizontal lifts of c are
all isotopic curves in the k-fold cover of UTΣ. Following the discussion above, when
k is large, we may choose r1 and r2 to vary by only a small family of rotations, so
that the holonomies of the lifted representations, which differ by rigid rotation of 2πri

k ,

remain C∞ close to each other in Hom(π1Σ,Diff(S1)). This will give us some number
C(k) of lifts of c which are sufficiently close to each other to be isotopic, where C(k)
grows linearly in k. While the genus of Σ must increase as k increases (since k needs
to divide χ(Σ) for a lift to exist), this does not pose any problem as we are performing
these modifications only over the fixed torus subsurface T1. Restricting to such lifts of
ρ, fix p = p(k) ∈ N large enough so that Proposition 6.9 ensures that Dehn surgery
of slope −p on any connected component of any horizontal lift of c for any one of this
restricted class of lifts gives a skew-Anosov flow. Further restricting p if needed, we
may also ensure that all homeomorphisms of the Dehn-surgered manifold preserve the
free homotopy class of the core curve by Lemma 6.6.

The restriction we imposed on our lifts of ρ ensuring that connected components
of lifts of c are always isotopic means that performing a slope −p Dehn surgery on
any horizontal lift of c to any of the covers will produce diffeomorphic hyperbolic
manifolds. Thus, the remainder of the proof is devoted to showing that the flows
produced in this way are inequivalent whenever the lifts of ρ differ among our C(k)
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choices. This means that the Dehn-surgered manifold described above admits C(k)
inequivalent skew-Anosov flows. For this, we need to describe the construction a bit
more carefully, setting some more precise notation along the way.

Proof of inequivalence of flows. Fixing notation, let M denote the k-fold fiberwise
cover of UTΣ and let ρ̂ and ρ̂′ be two lifts of ρ chosen so as to satisfy the restrictions
imposed above. The manifold M is, topologically, both the suspension Eρ̂ of ρ̂, and the
suspension of ρ̂′. Since ρ̂′ is close to ρ̂ (because of our restrictions), we may realize ρ̂′

as the holonomy of a foliation on M that is C1 (and in this case actually C∞) close to
the horizontal foliation defined by Eρ̂. Going forward, we let Eρ̂′ denote M equipped
with this nearby foliation.

Fix a connected component K of the horizontal lift of c to Eρ̂, and a connected
component K ′ of the horizontal lift of c to Eρ̂′ , isotopic to K in M . It will be convenient
to fix an identification of K and K ′, so let g : M → M be an isotopically trivial
homeomorphism such that g(K) = K ′. Then gΦ′tg

−1 and Φt each have K as a periodic
orbit. Now perform integral Dehn–Fried–Goodman surgery of slope −p on the knot K
to modify the flow Φt to a new skew-Anosov flow Ψt on the Dehn-surgered manifold
M−p, and separately perform integral Dehn–Fried–Goodman surgery of slope −p on
K to modify gΦ′g−1 to obtain a flow Ψ′t on M−p. Note that the latter construction is
simply the result of performing surgery on the knot K ′ in M , under our identification
of K and K ′ via g.

What we wish to show is that Ψt and Ψ′t are inequivalent. Suppose for contradiction
that this is not the case, so there is some homeomorphism f : M−p → M−p taking
flowlines of Ψt to flowlines of Ψ′t. Let γ denote the core of the filling torus on M−p.
By Lemma 6.6, f(γ) and γ lie in the same free homotopy class, so by Proposition 5.4,
there is a homeomorphism h of M−p, inducing some power of η on the flow space of
Ψ′t, such that hf(γ) = γ. So we now may as well consider hf as the homeomorphism
conjugating the foliations defined by the two flows.

Restricting hf to M−p − γ defines a homeomorphism φ of M − K. As in Lemma
6.6, this determines a homeomorphism φM of M agreeing with φ on the complement of
a neighborhood of the end, a neighborhood which can be chosen as small as we wish.
Choose such a neighborhood small enough so as not to contain any horizontal lift of any
power of the curves α1 or β1 to either Eρ̂ or to (the conjugate by g of) Eρ̂′ . By Lemma
6.6 (2), the map φM is homotopic to the identity, and, by construction, outside of a
small neighborhood of K, φM maps flowlines of Φt to those of gΦ′tg

−1. This is where
we will derive a contradiction. The curves α1 and β1 each have a power, say n and m
which admits a horizontal lift to a closed orbit of the flow Φt. Let α̂1 and β̂1 denote
these closed orbits. Since φM is homotopic to the identity, it maps these to closed orbits
of gΦ′tg

−1 that are freely homotopic to the orbits α̂1 and β̂1, respectively. In particular,

the projection of φM (α̂1) and φM (β̂1) to curves on Σ are freely homotopic to αn1 and

βm1 . Thus, φM (α̂1) and φM (β̂1) are also the (conjugates under g of) horizontal lifts of
αn1 and βm1 to closed orbits of Φ′t. By design, we chose ρ̂′ to give these curves different
rotation numbers than their rotation numbers under ρ̂. By the discussion in Remark
5.11, this means that their horizontal lifts are not freely homotopic, since they wind a
different number of times around the fibers over the representative curves on Σ. This
gives the desired contradiction. �
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7. Further questions

We conclude by suggesting a few directions for further study.

7.1. On boundary actions and rigidity.

Problem 7.1. Suppose that Γ is a hyperbolic group with Gromov boundary a topological
sphere. Is the action of Γ on its boundary topologically stable?

As a starting point to this problem, one could look for a new proof, or a direct
modification of our proof, of Theorem 1.1 that leans more heavily on coarse geometry
(quasi-geoesdics) and less heavily on the Riemannian structure of M (stable foliations
for geodesic flow). While Problem 7.1 is intended to be strictly more general, the
issue of which hyperbolic groups with sphere boundary are not already covered by
Theorem 1.1 is actually somewhat subtle. Bartels–Lück–Weinberger [6] proved that
a torsion-free hyperbolic group with sphere boundary is the fundamental group of
a closed, aspherical manifold, provided that the boundary has dimension at least 5.
However, whether this manifold can be taken to have a Riemannian metric of negative
(or even nonpositive) curvature is a separate question. One could also consider the
case where the metric is not assumed Riemannian, but only locally CAT(-1), which is
again potentially a separate case; in fact Davis–Januszkiewicz–Lafont [16] ask whether

there is any example of a smooth, locally CAT(-1) manifold M such that ∂∞M̃ ∼= Sn−1

but does not support any Riemannian metric of nonpositive sectional curvature. To
our knowledge this question has not yet been answered. Given the subtleties of such
metric issues, the spirit of Problem 7.1 is really to ask for a coarse geometric proof of
Theorem 1.1, to the extent that this is possible.

There are two other natural directions in which one could attempt to generalize
topological stability, the first being a version for closed manifolds with boundary.

Problem 7.2. Formulate a relative version of Theorem 1.1 for compact negatively
curved manifolds with geodesic boundary, or for finite-volume manifolds of strict nega-
tive curvature.

Much more ambitiously, one could attempt a rephrasing of Problem 7.1 for appro-
priate classes of relatively hyperbolic groups. The basic motivating example for the
problem is Thurston’s result that the deformation space of hyperbolic structures on a
hyperbolic 3-manifold with torus boundary (equivalently, the space of representations
of its fundamental group into PSL2(C) ⊂ Homeo(S2), up to PSL2(C)-conjugacy) has
complex dimension equal to the number of boundary components; fixing the structure
on the boundary fixes the conjugacy class of the representation. Problem 7.2 asks for
a C0 analog of this in a more general setting.

Finally, it is natural to ask whether any existing techniques can be used to improve
the regularity of the (semi)-conjugacy between representations, given higher regularity
of the representations. If, in the context of Theorem 1.1, one knows that both ρ and a
C0-close representation ρ′ are of class Ck, for some k > 0, does it follow that they are
in fact conjugate, and if so, conjugate by a Ck diffeomorphism? Many existing local
rigidity results for group actions use the presence of hyperbolic elements to improve the
regularity of a conjugacy (see for instance the foundational work of Katok and Lewis
[36], as well as Fisher and Margulis [19], and Ghys’ differentiable rigidity for surface
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group actions on the circle [27]). It is quite possible that some such strategy would
directly apply to our case, but we have not pursued this issue.

7.2. On skew-Anosov flows and slitherings. Perhaps the most obvious question
arising from this work is the following (folkloric) variant of Christy’s question.

Question 7.3. Does there exist a closed hyperbolic 3-manifold that supports infinitely
many inequivalent (skew) Anosov flows?

It is our impression that the answer is generally believed to be negative. The question
remains open, and we do not consider our construction of inequivalent flows via surgery
to provide any evidence in either direction.

Following the work of Foulon and Hasselblatt [20], the flows that we construct in the
proof of Theorem 1.3 are contact Anosov, meaning that Euu ⊕ Ess defines a contact
structure with this flow the associated Reeb flow. Contact Anosov flows obtained by
integral Dehn surgery are studied further in recent work of Foulon, Hasselblatt, and
Vaugon, where they ask specifically whether this construction can lead to different
contact structures on the same manifold. (See discussion and remarks in [21], Section
2.2.) In this context one can ask the following.

Question 7.4. Does there exist a hyperbolic 3-manifold carrying N distinct contact
structures whose Reeb flows are Anosov?

The examples we produce seem to be natural candidates for this, and hence also for an
answer to Foulon–Hasselblatt–Vaugon.
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