The structure of homeomorphism and diffeomorphism groups

Kathryn Mann *

My favorite opening to a math talk is from a 2014
lecture of Etienne Ghys. Part of a minicourse for
young researches in geometric group theory, he be-
gins the lecture with “My second favorite group [dra-
matic pause...] is the group of all diffeomorphisms
of a compact manifold.” Beyond the obvious ques-
tion what is your first favorite, then? — presumably
this is answered by the rest of the lecture series —
there is another subtle hook that I like even better.
Ghys’ statement is a bit like answering the question
“what is your favorite food” with “my favorite food
is dessert!” That’s a great response, I couldn’t agree
more, but didn’t you just cheat there by naming an
infinite class of things in place of a single thing? For it
has been known since the 1980s that varying the man-
ifold M and even varying what you mean by diffeo-
morphism (smooth, C1, C?,...) produces an infinite
family of pairwise non-isomorphic groups. In other
words, manifolds are completely classified by the al-
gebraic structure of their diffeomorphism groups.

However, to Ghys’ credit, many of the tools we
have to approach the study of these groups are broad
principles that can be applied to large classes of ex-
amples. Amazingly, some structural results about
diffeomorphism groups also hold for groups of home-
omorphisms, although the absence of differentiability
typically necessitates a different toolkit for the proof.
My goal here is to give you a quick tour of what we
know of the structure theory of homeomorphism and
diffeomorphism groups and highlight a few recent de-
velopments both in this theory and in its relationship
with the modern study of dynamical systems. Most
of us are comfortable with imagining examples of dif-
feomorphisms between spaces, but much less so with
conceptualizing the group of all self-diffeomorphisms
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of a given manifold. So to begin, I will mention a few
contexts in which these groups naturally arise.

Why study diffeomorphism groups?

We understand mathematical objects by understand-
ing their symmetries — this is the essence of Felix
Klein’s Erlangen Program and a guiding principle in
many areas of mathematics. Following this principle,
anyone who studies topological or smooth manifolds
should seek to understand the groups Homeo(M)
and Diff (M) of self-homeomorphisms or, respectively,
self-diffeomorphisms of a manifold M. Topologists
are also interested in these groups for many other
reasons, including the role they play in surgery the-
ory, K-theory, and the theory of fiber bundles. To
give a concrete and relatively elementary example,
the group cohomology of Homeo(M) and Diff (M)
(that is to say the cohomology of their classifying
spaces) gives the characteristic classes of topologi-
cal and smooth M-bundles, respectively, while their
cohomology as discrete groups gives characteristic
classes for flat bundles, or bundles with a foliation
transverse to the fibers. Thus, both the homotopy
type and the algebraic structure of these groups play
a crucial role in classifying fiber bundles over an ar-
bitrary base space.

Another source of motivation for the study of dif-
feomorphism groups comes from dynamical systems.
In its most general sense, dynamics is simply the
study of transformations under iteration. Classically,
dynamicists studied the behavior of a single transfor-
mation and its iterates, that is to say a cyclic sub-
group of Homeo(M) or of Diff (M). In the past fifty
years, the field has widened to encompass the study
of larger systems of transformations obeying some al-
gebraic laws, i.e. very general (typically infinite but



finitely generated) subgroups of homeomorphism or
diffeomorphism groups. A major motivating ques-
tion is to understand to what extent the algebraic
structure of a subgroup G C Homeo(M) influences
or constrains the possible dynamics of actions of G
on M. In this way we can start to build a dictio-
nary between algebraic properties such as nilpotency,
torsion, subgroup distortion, amenability and so on,
and dynamical properties such as entropy, existence
of fixed points, or stability under perturbation.

To give one further perspective, one can also (some-
what tautologically) view the groups Homeo(M) and
Diff (M) as examples of automorphism groups of a lo-
cally homogeneous space — namely, the manifold M
itself, with its topological or smooth structure. But
these groups also act transitively on many natural ob-
jects associated with M, especially in the case where
M is connected. These include the space of labeled
or unlabeled n-tuples of points in the case where the
manifold has dimension at least two, the space of or-
dered tuples in the 1-dimensional case, spaces of em-
bedded discs, of simple closed curves (non-separating
simple closed curves when M is a surface), and so
on. As such, they are also groups of automorphisms
of the configuration spaces of points, curves, discs,
etc. The standard compact-open or C*° topology
makes Homeo(M) and Diff (M) examples of Polish
(completely metrizable) spaces, fostering some recent
interactions with descriptive set theory, which has a
rich toolkit to study Polish groups and automorphism
groups of a wide class of structures.

A guiding principle: analogies with

simple Lie groups

The main barrier to understanding the groups
Homeo(M) and Diff (M) is the fact that these groups
are just intractably huge, even when M itself is low-
dimensional or otherwise of low complexity. For in-
stance, for every manifold M of dimension at least 2,
it is an open question whether there exists a finitely
generated, torsion-free group that is not isomorphic
to some subgroup of Homeo(M). This question has
only recently been answered (negatively) for embed-
dings into diffeomorphism groups; this is the solu-
tion to Zimmer’s conjecture of Brown, Hurtado and
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Figure 1: A local chart for Diff (M) to the space of
vector fields on M

Fisher as explained in Fisher’s recent article in this
series [Fis20].

A helpful organizing principle is to think of
homeomorphism and diffeomorphism groups as loose
analogs of simple Lie groups. The group Diff(M)
is in fact, in a precise sense, an infinite-dimensional
Lie group with a Frechet manifold structure, locally
modeled on the infinite-dimensional vector space of
smooth vector fields on M. A local chart from a
neighborhood of the identity in Diff (M) to the space
of vector fields is given by mapping a diffeomorphism
g to the vector field X (p) := exp, 'g(p) where exp, is
the Riemannian exponential map on a neighborhood
of the identity in the tangent space T,(M). Charts
based at other points than the identity element may
be obtained by composing with left multiplication.
This gives Diff (M) a smooth structure for which left
multiplication and inverses are smooth maps, and its
“Lie algebra” is the Lie algebra of vector fields on M.

However, the local chart above is not the usual Lie
algebra exponential map! In fact, the Lie algebra ex-
ponential — assigning to a vector field the time one
map of the flow generated by this vector field — is not
surjective onto any neighborhood of the identity, even
in the simple case where M = S!. (It is a pleasant
exercise to identify some such diffeomorphisms that
are not the time one map of any flow. In the circle
case these are diffeomorphisms with some, but not
all, points being periodic with finite period greater
than one.) For this reason, the Lie group structure
on Diff (M) is — perhaps counterintuitively — not usu-
ally the source of analogy with finite dimensional sim-
ple Lie groups. Additionally, the group Homeo(M)
has no natural smooth structure or Lie algebra, but
many of the known parallels between diffeomorphism



groups and simple Lie groups also hold here. Rather,
I believe that the important feature shared by all of
these groups is the fact that they are the automor-
phism groups of highly homogeneous structures.

The remainder of this article is organized to il-
lustrate specific instances of this analogy between
simple (and occasionally semisimple) Lie groups and
diffeomorphism groups, beginning with simplicity it-
self. To keep things within a reasonable scope, I
have chosen to focus primarily on the identity com-
ponents Homeog(M) and Diffg(M) of the homeo-
morphism and diffeomorphism groups of a mani-
fold M, as discussion of the mapping class groups
Homeo(M)/ Homeop(M) (and analogously for Diff)
would take us much further afield.

Simpleness

Recall that a Lie group is simple if its Lie alge-
bra is nonabelian and has no nontrivial proper ide-
als. The best analog of this for topological groups
is to ask whether the identity component of the
group has no nontrivial proper normal subgroups.
When M is a non-compact manifold, the subgroup of
compactly supported homeomorphisms or diffeomor-
phisms — those which pointwise fix the complement of
some compact set — is an obvious normal subgroup, so
the relevant object of study is its identity component,
denoted Homeo.(M) or Diff.(M). Of course, when
M is compact, these are just the groups Homeog (M)
and Diffo(M) themselves.

In both the smooth and topological cases, simplic-
ity (in the algebraic sense described above) was es-
tablished in the 1970s by Edwars, Kirby, Thurston
and others, as a consequence of the following three
general properties:

1.  Fragmentation. Let O be an open cover of
M. Then Diff (M) and Homeo.(M) are generated
by homeomorphisms supported on elements of O.

2. Localized perfectness. Let B be an open ball in
M. Any element of Diff .(B) or Homeo.(B) can be
written as a product of commutators.

3. Simplicity of the commutator group. Let g # id
in Diff (M) and let B C M be an open ball. Then
any commutator in Diff.(B) lies in the normal clo-
sure of g. The same holds replacing Diff with Homeo.

While T have deliberately stated these in parallel
for Diff and Homeo, the proofs of 1 and 2 are entirely
different in the smooth and C° case. Fragmentation
is easy for diffeomorphisms: an element of Diff.(M)
is always the time one map of a compactly supported
time dependent vector field, and cutting that vector
field off by smooth bump functions is the only tool
required for fragmentation. No such strategy works
for homeomorphisms, rather, the proof is a deep re-
sult of Edwards and Kirby using the same machinery
that goes into proving the annulus theorem.

Similarly, perfectness of Homeo.(B) is an old trick
(perhaps first appearing in this form in a paper of R.D
Anderson in 1958) but for Diff.(B) it is a hard theo-
rem of Thurston tied to the cohomology of classifying
spaces, and it uses results of Herman for diffeomor-
phisms of the circle and the torus that rely heavily
on KAM theory.

The common point is that localized perfectness im-
plies simplicity. This is a short argument which uses a
clever trick of “displacing supports”. Given a home-
omorphism g (other than the identity), one wishes
to show that any other homeomorphism f can be
written as a product of conjugates of g. T'll give
the essence of the argument here, in the special case
where f has support on some small ball B such that
g(B)N B = (. If g is not the identity, such a ball
is guaranteed to exist, and stepping from here to the
general case is not too difficult.

So suppose f is such a homeomorphism, and that
f can be written as a commutator f = aba~1b~! (the
argument is essentially the same if f is a product of
several commutators — this is where we are using local
perfectness.) Going forward, I'll use the standard no-
tation [a, b] for aba='b~!. Recall that g(B) N B = 0.
Take any homeomorphism h that pointwise fixes B
and moves g(B) disjoint from B U g(B). One now
checks by hand that f = [[a, g], [b, hgh™']] which, if
you write it out and unpack all the commutators,
is easily seen to be a product of conjugates of g.
The trick to showing that f agrees with this nested
commutator is the elementary fact that homeomor-
phisms with disjoint support commute. The conju-
gate ga~1g~! has support on g(B), so [a, g] has sup-
port on B U g(B) and agrees with a on B. Simi-
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Figure 2: Schematic for the simplicity argument. The
commutator [a, b] can be written as [[a, g], [b, hgh™]]

larly, [b, hgh—1] agrees with b on B and has support
on B U hg(B). Thus, on g(B) and on hg(B) these
two commutators commute, so [[a, g, [b, hgh™']] is
supported on B and agrees with [a,b] there. Varia-
tions, some quite sophisticated, of this trick of dis-
placing supports to produce commuting elements ap-
pear throughout the literature cited below.

Indicative of the subtleties involved in the ques-
tion of simplicity, there is one case which we still do
not know how to treat. In between Homeo.(M) and
Diff (M) lie the groups Diff} (M) of C” diffeomor-
phisms for r = 1,2,3,... etc. Mather, also in the
1970s, showed with yet a different strategy that the
groups Diff] (M) are also perfect — except in the case
r = dim(M) + 1, where it remains open! To this day,
whether Diﬁ"(Q)(S 1) is a simple group remains an open
question; the sticking point here is exactly the prob-
lem of local perfectness. Further introduction can be
found in [Ban97].

Automatic continuity

A broad question, applicable to any topological
group, is to what extent does the algebraic structure
of the group determine its possible group topologies?

Along this line, in the 1930’s and 40’s, Cartan,
van der Waerden, Freudenthal and others studied
abstract homomorphisms between simple (and also
semisimple) Lie groups. A sample consequence of
their work is the following:

Theorem 0.1. An abstract algebraic isomorphism
between compact semisimple Lie groups, or between
absolutely simple real Lie groups, is necessarily con-
tinuous.

Further notable work in this direction was done by
Borel and Tits in the 1970s. Much more recently, L.

Kramer removed the hypothesis that the target group
be a Lie group, showing:

Theorem 0.2 (Kramer, [Krall]). An abstract iso-
morphism between an absolutely simple real Lie
group and a locally compact, o-compact group is nec-
essarily continuous.

As a consequence of this, one can show that the
standard Lie group topology is the unique locally
compact, o-compact group topology on such a group
(a result proved earlier for compact Lie groups by
Kallman). The hypothesis “absolutely simple” pre-
vents such counterexamples as a discontinuous al-
gebraic automorphism of R obtained from a linear
transformation of R as a vector space over Q, or a
discontinuous algebraic automorphism of SL,,(C) in-
duced by a wild automorphism of C. But these are,
in a sense made precise by Kramer, the only kinds of
pathologies that can occur.

Theorems 0.1 and 0.2 are instances of automatic
continuity results, promoting an algebraic morphism
to a topological one. While their proofs rely on Lie
theoretic techniques, Hurtado recently showed that
a form of automatic continuity holds for diffeomor-
phism groups as well.

Theorem 0.3 (Hurtado [Hurl5]). Let M be a com-
pact manifold, and N any manifold. Any homomor-
phism @ : Diffo(M) — Diffy(NV) is necessarily con-
tinuous.

Homeomorphism groups satisfy an even stronger
version of automatic continuity, analogous to
Kramer’s result.

Theorem 0.4 (Rosendal, Solecki [RS07], Mann
[Manl6]). Let M be a manifold, compact or homeo-
morphic to the interior of a compact manifold with
boundary, and G any separable topological group.
Then any homomorphism ® : Homeo(M) — G is
necessarily continuous.

This says the algebraic structure of the group “re-
members” the topology, in a very strong way. Sep-
arability of the target G is needed as a hypothe-
sis to eliminate obvious counterexamples such as the
(discontinuous) identity map from Homeo(M) (with



its usual compact-open topology) to Homeo(M)
equipped with the discrete topology.

Other examples of groups recently found to sat-
isfy strong forms of automatic continuity include
the group of an infinite-dimensional, separable, com-
plex Hilbert space with the strong operator topology,
the isometry group of the Urysohn universal metric
space, and automorphism groups of Lebesgue proba-
bility spaces. (These are results of Tsankov, Sabok,
and Ben Yaacov — Berenstein — Melleray, respec-
tively.) Many of these results rely on the technique of
ample generics in Polish groups developed by Kechris
and Rosendal. Rosendal’s survey [Ros09], though by
now slightly out of date, is a good invitation to the
subject.

While the statements of Theorems 0.3 and 0.4 mir-
ror each other — taking G = Homeo(NN) for some
other manifold IV in the statement of 0.4 gives the C°
counterpart of Hurtado’s smooth version — as was the
case for simplicity, the proofs of these two results are
essentially different. The C° case, with the exception
of the line and the circle, relies on a kind of diagonal
argument common in these proofs for other automor-
phism groups, together with commutator tricks like
the one in the proof of simplicity explained above —
see [Manl16]. The smooth case uses the idea of aver-
aging a metric under a sequence of diffeomorphisms
to show that any sequence tending to the identity in
Diffo(M) converges along a subsequence to an isome-
try in Diffg(NV). This is then improved to convergence
to the identity, from which one concludes continuity.
Establishing such convergence requires maintaining
control on derivatives of diffeomorphisms, motivating
ideas that would later lead Hurtado to work on the
Burnside problem for diffeomorphisms of the sphere,
and the Zimmer program explained in the last section
of this article.

Interestingly, automatic continuity (either in Hur-
tado’s sense with a restricted target, or the very gen-
eral sense) for the groups Diff§(M) when 0 < r < 00
remains open. As some positive evidence towards
this, a result of Kallman from the 1980’s, states that
the C" topology is the unique Polish topology on
Diff"(M). This implies in particular that there can
be no discontinuous automorphisms of such a group.
But in fact, a much stronger statement about au-

tomorphisms was known even earlier: any automor-
phism of Diff" (M) is inner. This kind of rigidity of
the group structure is best framed as a “reconstruc-
tion” result, which brings us to our next topic.

Reconstruction theorems

While automatic continuity says that the algebraic
structure of a homeomorphism group “remembers”
its group topology, it was known decades earlier that
the algebraic structure remembers the underlying
manifold. This is a 1963 result of Whittaker, which
states that the existence of an abstract isomorphism
® : Homeog(M) — Homeoy(N) implies that M is
homeomorphic to IV and @ is induced by conjugation
by a homeomorphism.

Whittaker’s work also applies to more general
topological spaces, and does not require that man-
ifolds be compact. However, some care is needed in
the hypotheses because (for example) Homeog(R) is
abstractly isomorphic to the homeomorphism group
of a closed interval — one simply forgets the endpoints
of the closed interval and restricts the homeomor-
phisms to the interior — but of course the line and
the interval are not homeomorphic.

Nearly twenty years later, Filipkiewicz extended
this to diffeomorphism groups, showing that in this
case the algebraic structure of the group also remem-
bers the regularity of the diffeomorphisms. This gives
us the “infinite family of desserts” advertised above.

Theorem 0.5 (Filipkiewicz [Fil82]). Let M and N
be compact manifolds and suppose there is an iso-
morphism @ : Diffj(M) — Diff§(N). Then r = s,
the manifolds M and N are C" diffeomorphic, and ®
is induced by a C"-diffeomorphism.

In both this and Whittaker’s theorem, the basic
strategy is to promote an isomorphism between trans-
formation groups to a bijection between manifolds by
associating subgroups of Diff" (M) or Homeog(M) to
subsets of M, eventually showing that the isotropy
(point stabilizer) subgroup G, of a point x € M is
mapped under an isomophism ® to the isotropy sub-
group of some point of N. A key tool is commuta-
tion relations. To give a toy example, note that G,



is characterized by the following property: A diffeo-
morphism g lies in G, if and only if, for any open
set B containing x, the subgroup of diffeomorphisms
supported on B does not commute with its conjugate
by g. Though this is far from a proof that point sta-
bilizers are mapped to point stabilizers, it is a hint
that one might be able to pick out such subgroups by
algebraic relations (in this case, commutation).

The relationship between point stabilizers in M
and those in N gives a point-to-point map 7 : M —
N. Furthermore, this map is compatible with the
group action in the sense that, for any f € Diff{;(M),
we have G,y = f(Gz)f~" from which it follows that
7(f(x)) = ®(f)7(2)®(f)~. This compatibility al-
lows one to show fairly easily that 7 is a homeomor-
phism; Filipkiewicz then appeals to deep results of
Montgomery and Zippin to conclude that it is a C”
diffeomorphism.

Analogous theorems for groups of symplecto-
morphisms, contact diffeomorphisms, and volume
preserving diffeomorphisms were later obtained by
Banyaga. An expository account of this and Fil-
ipkiewicz’s theorem can be found in [Ban97]. M.
Rubin generalized Whittaker’s results in a different
direction, extending it to more general classes of
topological spaces and subgroups of their automor-
phism groups using a more model-theoretic frame-
work. Both show that the algebraic structure of the
automorphism group is sufficient to recover the un-
derlying manifold or space.

Such reconstruction results can be interpreted as
instances of the broad principle that any sufficiently
rich object can be recovered, within its class, from
its automorphism group. To give a sense of the
breadth of this principle, let me mention two other
recent examples (with a geometric topological fla-
vor, apologies for my bias). The first is the folk-
lore theorem that the homeomorphism class of a
compact surface S can, with a few low-complexity
exceptions, be completely recovered from the map-
ping class group Homeo(S)/ Homeog(S) of homeo-
morphisms up to isotopy. This was recently extended
by Bavard—Dowdall-Rafi to infinite-type noncompact
surfaces as well. The second example that comes
to mind is a recent result of Cantat that Cremona
groups of projective spaces determine the dimension

Figure 3: Dynamics of a C' “Denjoy counterexam-
ple” diffeomorphism of the circle

of the space. Surely the reader can draw a few exam-
ples from their own field of study!

Optimal regularity

Filipkiewicz’s theorem says that Diff(M) and
Diffj(M) are non-isomorphic when r # s. But it
leaves no practical way to distinguish them alge-
braically. As a concrete step in this direction, one
could ask:

For a given manifold M, can the groups Diff{(M) and
Dift§(M) be distinguished by their finitely generated
subgroups?

Navas posed this question explicitly for one-
dimensional manifolds in a 2017 problems list
[Nav18]. As he notes, questions of distinguishing reg-
ularity have a long history among dynamicists that
can be traced back to work of Denjoy on the rela-
tionship between regularity and topological dynam-
ics. Denjoy showed that, while there are many C*
counterexamples, if f is any C? diffeomorphism of the
circle without periodic or fixed points, then for every
point x, the orbit {f™(x) : n € Z} is a dense subset
of the circle. A typical C! counterexample is illus-
trated in Figure 3: there is an invariant Cantor set
(red in the figure) on which the diffeomorphism be-
haves like a rotation. To visualize the dynamics, the
figure shows the mapping torus of such a homeomor-
phism, with points on the leftmost circle connected
to their images on a copy of the circle to the right.
Dense orbits and existence or non-existence of peri-
odic points are both properties invariant under con-
jugation by homeomorphisms, so Denjoy’s theorem
implies that there exist C' diffeomorphisms which
cannot be topologically conjugate to any C? diffeo-
morphism, an observation later generalized by Harri-



son to higher dimensional manifolds and higher reg-
ularity.

Denjoy’s theorem takes as input a weak dynamical
assumption (no periodic points) and a regularity hy-
pothesis (twice continuously differentiable), and gives
as output the strong dynamical conclusion that all or-
bits are dense. Thus, it reveals something about the
interplay between topological dynamics and regular-
ity. When one has a group action rather than a single
diffeomorphism, the algebraic structure of the group
can also enter the picture. A well known and early in-
stance of a result along these lines is Thurston’s gen-
eralization of the Reeb stability theorem. Thurston’s
theorem says that a group of C! diffeomorphisms of a
manifold with a common fixed point at which the dif-
feomorphisms are all first order equal to the identity
map (that’s a regularity + dynamical assumption)
necessarily has the (algebraic) local indicability prop-
erty that every finitely generated subgroup surjects
to Z. The search for similar theorems of the form

[dynamical assumption] + [regularity]
= [algebraic conclusion]

(or any permutation thereof) remains an active and
exciting area. This is the context for Navas’ question
above.

Several results along these lines are known to hold
when M is one-dimensional, and a positive answer
to Navas’ question was given by Kim and Koberda
not long after the appearance of his problems list.
Their proof uses a highly refined version of the dif-
feomorphisms with disjoint supports commute line of
tricks to encode the regularity of a diffeomorphism by
the rate at which it moves, and therefore contracts,
small sub-intervals (forced to be supports of group
elements) towards a fixed point. Obtaining enough
control on supports to pull off this argument from
purely algebraic hypotheses is quite a technical feat,
and even so, in low regularity they use some addi-
tional dynamical input from earlier work of Bonatti,
Monteverde, Navas and Rivas. A different approach
to this question, inspired by work of Ghys, was pur-
sued by the author and Wolff, with the aim of even-
tually addressing the question for higher dimensional
manifolds. While we found a short proof somewhat
complimentary in technique to that of Kim-Koberda,

the higher dimensional case is still out of reach!

Structure theorems for group actions

The reconstruction results of the previous sections
came out of a classification of isomorphisms between
large transformation groups. Classifying homomor-
phisms between them is a significantly harder prob-
lem. A homomorphism Homeog(M) — Homeo(N) is
simply a group action of the group Homeog(M) on
the space NV, so going forward I will use the language
of group actions to describe such maps. (Again, we
are restricting to the identity component Homeog (M)
to avoid actions that factor through an action of the
mapping class group.)

There are many natural examples of such actions.
The groups Homeog (M) and Diffo(M) obviously act
on the product manifold M x W for any manifold
W. They also have a natural action on Conf(M) =
(M x...xM)—A)/Sym,, the “configuration space”
of k distinct, unlabeled points in M. In some in-
stances, such as when M is a Riemannian mani-
fold of negative curvature, or more generally when
m1(M) has trivial center, the action of Homeog(M)
or Diffo(M) on M can also be shown to lift to an ac-
tion on covers of M. Finally, to give some examples
special to the differentiable case, Diffo(M) also acts
naturally on the tangent bundle of M, the projec-
tivized tangent bundle of M, and various jet bundles
over M. With the exception of the product action
on M x W and the tangent bundle action, all of the
examples above have a single orbit, indicating that
even a classification of transitive actions is a nontriv-
ial and potentially difficult problem.

This classification problem has been posed, in vari-
ous forms, at least since the time of Whittaker’s work.
Part of the challenge in the problem is simply stating
a clear conjectural picture. Rubin, in the 1989 article
briefly mentioned above, asks “Are there any reason-
able assumptions on the type of the embeddings so
that the embeddability of Homeo(X) in Homeo(Y)
will imply that X is some kind of continuous image of
Y?” (emphasis mine). Embeddability here is meant
in the algebraic sense of the existence of an injective
homomorphism Homeo(X ) — Homeo(Y"), and Rubin
is speaking not just of manifolds, but of quite general
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Figure 4: The configuration space of two labeled points on S! is an open annulus, that of two unlabeld
points is topologically a mobius band. Both inherit an action of Homeog(S*).

topological spaces. Two years after that, Ghys asked
whether embeddability of Diff (M) into Diffo(N) im-
plies that the dimension of N must be at least as
large as that of M. This was answered positively
by Hurtado in 2014 using his automatic continuity
result, improving on a very low dimensional case I
had proved earlier (but that case did not have auto-
matic continuity!). Hurtado also gives a more precise
picture of what a classification might look like. Al-
though he does not give an explicit conjecture, he
notes that Diffo(M) acts naturally on the tangent
bundle of M (as well as various Grassmanians, etc.)
and remarks that all known examples of actions of
Diffq(M) on other manifolds are built from pieces
that have the form of natural bundles over M or con-
figuration spaces of points on M. If one believes this
is an exhaustive list, then one could refine Rubin’s
question to ask for a stratification of the target man-
ifold into understandable pieces that map continu-
ously either to M or to tuples of points on M.

Pursuing the analogy between large transformation
groups and Lie groups, one could frame the problem
of classifying morphisms between such groups as the
analog of representation theory for these groups — a
perspective which I myself have advertised. But a
more useful framing is to draw parallels with the clas-
sical theory of compact (or locally compact) transfor-
mation groups pursued by Bredon, Conner, Floyd,
, Montgomery, Zippin and others in the 1950s-70s.

Montgomery and Zippin [MZ55] frame one aspect of
this program as a search for the similarities between
actions of a compact group on a manifold and stan-
dard linear or other model geometric actions. Years
later, Bredon [Bre72], in broad terms, says that he
views theory of compact transformation groups as
“a generalization of the theory of fiber bundles” !.
Indeed, the general starting point for this theory is
typically to first show that only finitely many orbit
types may occur, then to understand and classify or-
bits, and then to say that the neighborhood of any
orbit looks something like a direct product, giving a
local bundle-like structure. However, complete solu-
tions to the classification problem for compact group
actions are generally only attainable with some re-
striction on the types of orbits that appear, whether
by explicit assumption, or by restricting the dimen-
sion of the space and the group. A comprehensive
introduction to such problems can be found in Bre-
don’s book [Bre72].

That one might similarly be able to classify ac-
tions of homeomorphism or diffeomorphism groups
is a comparatively recent idea, perhaps first advo-
cated for by Ghys, although I personally learned this
question from Benson Farb. However, it was auto-
matic continuity theorems that provided the catalyst

1While [MZ55, Bre72] are old references, I do not know of a
more modern comprehensive introduction, likely just because
the study of transformation groups has fractured into many
different directions.



needed to make major progress in this direction. Us-
ing automatic continuity for actions of Homeo(S?!),
in 2012 E. Militon gave a complete classification of
actions of Homeog(S!) on the closed annulus and 2-
torus [Mil16]. His classification gives a decomposition
of the torus or annulus into orbits, each homeomor-
phic to either the circle with the standard action,
or to an open annulus with the action coming from
identifying the annulus with the configuration space
of two (labeled) points in S'. See Figure 6. These
two types of orbits may be glued together in a mul-
titude of different ways, leading to an uncountable
family of nonconjugate examples which Militon de-
scribes completely.

Recent work of Lei Chen and the author gives a
general classification of orbit types in all dimensions.

Theorem 0.6 (Chen-Mann [CM]). Suppose that
Homeog (M) acts on a manifold N. Then each or-
bit is the continuous, injective, image of a cover of a
configuration space Conf,, (M).

While locally embedded, such orbits are not nec-
essarily globally embedded. The simplest example
where this fails is the following bundle construction.

Example 0.7. Suppose X is a surface of genus at
least two. Then Homeoq(X) lifts to act continuously,
by homeomorphisms on the universal cover i, which
is topologically an open disc, and this action com-
mutes with the action of the deck group. Extend
this to an action on X x S! by homeomorphisms that
are constant on the second factor. Orbits of this ac-
tion are embedded open discs, but we can change this
by passing to a quotient of the product space by an
action of 71(X) that is nontrivial on the second fac-
tor. To be precise, the fundamental group m; (X) ad-
mits many actions by homeomorphisms on the circle
— for instance, any hyperbolic structure on the sur-
face gives a discrete, faithful representations of 7 (X)
into PSL(2,R) which acts naturally on RP! = S! by
fractional linear transformations. Fix such an action,
and take the quotient of ¥ x S* by the diagonal action
of 71(X) by deck transformations on the first factor,
and homeomorphisms of S! on the second. The re-
sult is a S' bundle over ¥ with a continuous action
of Homeog () by homeomorphisms. Provided the ac-

3 x St

—|lc=

Figure 5: A quotient of ¥ x S1 by a diagonal action
of m(X) is a circle bundle over ¥ which inherits an
action of Homeog(X). The trivial action on S* gives
a product bundle with closed orbits as shown, while
typical actions have dense orbits.

tion of m1(X) on St doesn’t factor through that of a
finite group, the orbits of the Homeog(X) action on
this quotient space will accumulate on themselves.

Interestingly, if one takes the representation of
m1(2) into PSL(2,R) described above, then the re-
sulting circle bundle over X is, topologically, the unit
tangent bundle of the surface. That the group of
homeomorphisms of the surface might act naturally
on this space is a fact I find quite surprising!

Because of automatic continuity, Theorem 0.6 re-
duces to the problem of classifying certain closed
subgroups of Homeog(M). (In the case where M
is noncompact, automatic continuity does not quite
apply and a little more work is needed, so for sim-
plicity I'll assume here that M is compact.) If
p : Homeog(M) — Homeo(N) is any action, then
the stabilizer G, := {g € Homeoy(M) : p(9)(y) = y}
of some point y € N is a closed subgroup, and the
orbit map gives a continuous, injective map of the
coset space Homeog(M)/G, into N. Thus, The-
orem 0.6 becomes equivalent to determining which
closed subgroups of Homeoy(M) are “large enough”
so that their coset space can be locally embedded in
a finite-dimensional manifold. Classical invariance
of domain says that R™ is not locally embeddable
in a manifold of dimension less than n, so no R”
subgroup of Homeog(M), that is to say no n-many
commuting flows, can survive the quotient map to
Homeoy (M) /G, if dim(N) < n. Applying this ob-
servation to subgroups of Homeog (M) with disjoint
supports, and quoting local simplicity, with enough



work we eventually conclude that G, contains the
identity component of the stabilizer of a finite set of
points in M, hence Homeoy (M) /G, is (up to taking a
cover) can be identified with the configuration space
of those points.

The example of Diffo(M) acting on the projec-
tivized tangent bundle of M shows that a similar
classification for actions of diffeomorphism groups,
even for actions on compact manifolds, must account
for more kinds of orbit types. Remarkably, this kind
of construction — taking quotients of jets of diffeo-
morphisms up to rth-order — is the only kind of new
phenomenon that occurs: we show in [CM] that if
Diffo(M) acts on a manifold by smooth diffeomor-
phisms, then every orbit is the continuous, injective
image of a fiberwise quotient of the r-jet bundle over
a cover of a configuration space of points on M.

Theorem 0.6 confirms the picture suggested by
Hurtado that N should be “built from pieces” that
look like bundles — the pieces are simply the orbits
of the action. Classifying all actions now amounts
to understanding how such pieces can be glued to-
gether. We obtain some preliminary results under re-
strictions on dimension that simplify the types of or-
bits that may occur. (Such hypotheses are common-
place in the classical literature on compact transfor-
mation groups). A sample theorem, paralleling classi-
cal “slice” or local product theorems for the compact
group case, is as follows.

Theorem 0.8 (Chen — Mann [CM]). If M and N are
connected manifolds with dim(N) < 2dim(M) and
Homeo.(M) acts on N without global fixed points,
then N has the structure of a generalized flat bundle
over M, i.e. there is a homology manifold /" such that
N = (M x F)/m (M), where 71 (M) acts diagonally
by deck transformations on M and on F by some
representation to Homeo(F').

In fact, we can also describe the possible actions
on N up to conjugacy: they are all obtained by a
construction as in Example 0.7. A related result for
diffeomorphism groups of compact manifolds can be
obtained without the hypothesis that the action has
no global fixed points; one shows directly that in
this setting no orbits can be singletons. This line
of work also allows one to complete the classification
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of Homeog(S') actions on surfaces that was initiated
by Militon, filling in the case of the 2-sphere and open
annulus. However, it appears we have only yet seen
the tip of the iceberg, and I hope to see much exciting
work in this direction in the near future.

Local and global rigidity of lattices

Having advocated for the analogy between Lie groups
and diffeomorphism or homeomorphism groups, this
survey would be incomplete without a discussion of
the role of lattices in these groups.

A lattice T in a Lie group G is a discrete subgroup
such that G/T has finite volume with respect to the
natural left-invariant volume form on G giving Haar
measure. A lattice is called co-compact or uniform if
G/T is additionally compact. In one sense, lattices
are small subgroups, being discrete and, under appro-
priate hypotheses on G, they are also always finitely
generated groups. At the same time, that G/T is
finite volume means that lattices are also large and
this gives them some remarkable rigidity properties,
constraining the ways they may be embedded into G
and into other Lie groups. The paradigm example
of such a result is Margulis’ superrigidity theorem,
which essentially says that the representation theory
of a lattice I in a semisimple Lie group G is the same
as the representation theory of G itself: with a few
technical caveats, any representation of I' to a finite
dimensional linear group extends to a continuous rep-
resentation of G.

Infinite-dimensional linear representations of lat-
tices have no such rigidity property. Remarkably,
nonlinear representations — that is, representations of
lattices to groups of diffeomorphisms — do. That this
might be true was an idea first suggested by R. Zim-
mer in the late 1970s. Zimmer generalized other work
of Margulis (specifically, on cocycle rigidity for group
actions) to actions of lattices by measure-preserving
diffeomorphisms of manifolds. He followed this with a
series of broad conjectures about how lattices should
act — or fail to act! — on manifolds, giving rise to what
is now known as the Zimmer program. This program
is often summarized by the catchphrase “big groups
don’t act on small manifolds” meaning that lattices
in semisimple Lie groups that are large (specifically,



of high rank) should not act faithfully on manifolds
of low-dimension.

More broadly, the Zimmer program aims to clas-
sify all actions of higher rank semisimple Lie groups
and their lattices on compact manifolds, the idea
being that they should be constrained to a collec-
tion of natural or obvious examples (such as, but not
exclusively, those coming from actions of the ambi-
ent Lie group as is the case in Margulis’s theorem).
While a complete classification is a lofty and prob-
ably unattainable goal, there have been a number
of remarkable recent advances, for which I refer the
reader to [Fis20] and Fisher’s other survey articles
referenced there. Here I will only very briefly high-
light one feature of this program, namely rigidity of
geometric examples. This is distinct from the “big
groups don’t act on small manifolds” tagline, looking
instead for examples of groups that do act on spaces,
but whose possible actions are highly constrained. Of
course, one expects techniques that answer this prob-
lem to apply to the “groups that don’t act” program
as well, and vice versa.

As one such example, consider the special linear
group SL(n,Z), a non-uniform lattice in SL(n,R).
Since the action of SL(n,Z) on R™ preserves the
points with integer coordinates, it descends to an
action on the torus R™/Z"™ which preserves both
Lebesgue measure and the natural affine structure
on the torus — instances of what I mean by a “ge-
ometric example”. These linear actions also have a
strong dynamical property called Anosov dynamics:
for any element with all eigenvalues off the unit cir-
cle, the tangent space of the manifold splits globally
into invariant directions (here, eigendirections) that
are contracted or expanded by iterates of the map.?

Local rigidity of Anosov actions has a long history
dating back to work of Anosov himself in the 1960s.
Early results were obtained for individual diffeomor-
phisms; a more recent discovery is that Anosov dy-
namics of a single group element can in many cases
imply global rigidity for a large group action. One
important and influential instance of this is in the
work of Katok, Lewis, Zimmer, and others, starting

2] am sweeping a few things under the rug here; the precise
definition of Anosov is a formalization of this idea of invariant
splitting.
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Figure 6: The action of (3 1) € SL(2,Z) on R?/Z2.
The figure shows a fundamental domain and its im-
age, translated back onto the fundamental domain.

in the 1990s. To give a sample result, Katok, Lewis
and Zimmer showed that any measure-preserving ac-
tion of SL(n,Z) on R™/Z™ such that a single diffeo-
morphism has Anosov dynamics is (up to passing to
a finite index subgroup) smoothly conjugate to a lin-
ear action. Some mild hypothesis is required on the
measure, although in other work this hypothesis has
been replaced with other hypotheses such as the exis-
tence of a finite orbit or a fixed point. See Spatzier’s
survey [Spa04] for a nice introduction to the history
of such results.

Rigidity of lattices remains an active and exciting
area. Recently, Brown, Rodriguez-Hertz and Wang
proved a much broader theorem along the lines of
that of Katok—Lewis—Zimmer described above, but
applicable to a much wider class of lattices and with
weaker hypotheses. As well obtaining global rigidity
for actions of SL(n,Z) on tori R™/Z™ (note that m
is not required to equal n here!) under suitable hy-
potheses, they obtain rigidity of cocompact lattices
on nilmanifolds, a class which includes tori:

Theorem 0.9 (Brown — Rodriguez-Hertz — Wang
[BRHW17]). Suppose I' is a irreducible cocompact
lattice in a semisimple Lie group acting on a nilman-
ifold M by smooth diffeomorphisms. If some element
has Anosov dynamics, then (up to possibly passing
to a finite index subgroup), this action is smoothly
conjugate to a group of linear automorphisms of M.

Without passing to a finite index subgroup, one ob-
tains conjugacy to an affine action — still a geometric



example. Their work also covers non-irreducible and
many nonuniform lattices, but in the interest of sim-
plicity of the statement I have restricted to this case.
However, differentiability is an essential component
of this result. While Brown, Rodriguez-Hertz and
Wang can reduce the hypotheses from smooth to C!
or even Lipschitz actions at the cost of a weaker con-
clusion, the machinery going into the regularity of
the conjugacy is essentially a smooth phenomenon.

That said, there are also a few known instances of
“rigidity of geometric examples” for groups acting by
homeomorphisms. While the definition of Anosov is
in terms of the induced action of a diffeomorphism on
the tangent bundle, and hence requires an action to
be C!, there are topological analogs of Anosov flows
which have many of the same dynamical properties,
and C° perturbations of Anosov diffeomorphisms also
exhibit similar stability properties. However, Zim-
mer’s conjecture that there should be “no actions of
large groups on small manifolds”, is wide open in the
CO case, except when the manifold is very small: di-
mension one. These one-dimensional results rely on
the total ordering of points on the line, or cyclic or-
dering of points on the circle, a property that can
actually be promoted to a left-invariant total order-
ing on any group of homeomorphisms of the line or
circle. As you might expect, such a total order on
a group imposes strong algebraic constraints, and
this has been successfully leveraged to show certain
groups, including lattices, do not act. Morris’ paper
[Mor11] is a nice introduction.

There are also a few instance of C° rigidity of
geometric examples in low dimension, even without
Anosov dynamics. It is less clear what “geometric”
should mean for a group acting by homeomorphisms,
but one possible definition, in the style of a model ge-
ometry in the sense of Felix Klein, is that the action
should be conjugate to that of a cocompact lattice in
a Lie group which acts transitively on the manifold.
With this definition, classifying geometric subgroups
of Homeog(S!) is an easy exercise: any group acting
geometrically is (up to taking a finite, cyclic exten-
sion) the fundamental group 71 (X,) of a higher genus
surface, acting on the circle via a discrete, faithful
representation into PSL(2,R) or a finite, cyclic ex-
tension of PSL(2,R). Wolff and I showed these are

12

precisely the rigid examples:

Theorem 0.10 (Mann, Mann — Wolff [MW]
[Man15]). All geometric actions of m(X,) are rigid,
in the sense that every continuous deformation of
such an action is semi-conjugate to the original ac-
tion. Conversely, any action of 7 (X,) on the circle
that is rigid under all continuous deformations is nec-
essarily semi-conjugate to a geometric example.

Semi-conjguate here means that there is a contin-
uous, surjective, degree one map h : S' — S! inter-
twining the geometric action with its deformation.
Deformation is meant in the large or global sense, in
fact the whole connected component of a geometric
action in the space of all homomorphisms of 7 (%)
into Homeog(S?) consists precisely of the represen-
tations semi-conjugate to it. See [MW] for further
context.

One phenomenon at play in the rigidity of geo-
metric actions on the circle is a weak topological re-
placement of the rigidity of Anosov diffeomorphisms
mentioned above. In the Anosov case, a single diffeo-
morphism has a global expansion/contraction prop-
erty coming from a splitting of the tangent space
at every point. Geometric actions of surface groups
on the circle exhibit a contrasting notion of “expan-
sion/contraction everywhere” that can be phrased in
purely topological terms: each homeomorphism f in
the action has a finite set of attractors (points z with
a neighborhood U such that the intersection of iter-
ates f"(U), n > 0is equal to x), and the union of at-
tractors, taken over all group elements, forms a dense
subset of the circle. That local dynamics of many
group elements can stand in place of global dynam-
ics of a single group element is far from a new idea,
but is still a fruitful one. J. Bowden and I recently
extended some of the ideas to prove a weaker, local
C° rigidity for other geometrically motivated group
actions on higher dimensional spheres, but how far
this idea can be pushed is completely up in the air. I
suspect, as many others do, that our guiding analogy
with Lie groups holds true and Zimmer’s philosophy
applies quite broadly to actions of lattices by home-
omorphisms on manifolds, but we are very far from
understanding how this might play out.
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