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Abstract

We show that the group of piecewise linear homeomorphisms of
any compact PL manifold does not admit a Polish group topology, us-
ing both general results on topologies on groups of homeomorphisms,
and results on the algebraic structure of PL homeomorphism groups.
The proof also shows that the group of piecewise projective homeo-
morphisms of S1 has no Polish topology.

1 Introduction

Let M be a topological manifold, and let Homeo(M) denote its group of

self-homeomorphisms. There is a remarkable interplay between the algebraic

structure of Homeo(M), the possible group topologies on Homeo(M) and

the topology of M itself. For example, in [Kal86] Kallman uses this to show

that many “large” subgroups of Homeo(M) admit a unique Polish group

topology. Other instances of this algebraic–topological relationship appear

in the main results of [Fil82], [Man15], [Hur15], and [Man16], all of which

derive topological statements (eg. continuity of group homomorphisms) from

purely algebraic constraints.

In this note, we develop this relationship further, giving additional infor-

mation on possible topologies on subgroups of Homeo(M) (Proposition 2.3

and 1.2 below). Though these results are general, our primary motivation

is to understand the group PL(M) of piecewise linear homeomorphisms of

PL manifolds. Recall that an orientation preserving homeomorphism f of

the n-cube In is piecewise linear if there exists a subdivision of In into
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finitely many linear simplices so that the restriction of f to each simplex

is an affine linear homeomorphism onto its image. A manifold M has a PL

structure if it is locally modeled on (In,PL(In)), in which case PL(M) is the

automorphism group of this structure. This group is interesting for many

reasons, including its rich algebraic structure (see eg. [BS85], [CR14]) and

its relationship with the Thompson groups. There has also been significant

historical interest in how to best topologize PL(M). For instance, in [Las65,

problems 39–40], three different topologies are proposed by Milnor, Stash-

eff, and Wall, and the choice of most appropriate topology appears to be

unresolved.

We ask here if PL(M) admits a Polish group topology. This question

is inherently interesting from the perspective of descriptive set theory (see

Rosendal’s work on non-Polishable groups in [Ros05] and references therein)

but also interesting from the perspective of transformation groups. Much

like the group of diffeomorphisms of a manifold, PL(M) is not complete in

– and arguably not best described by – the compact-open topology inher-

ited from Homeo(M). However Diff(M) does have a different topology, the

standard C∞ topology, that makes it a Polish group. It is natural to ask

whether PL(M) might as well.

In [CK14], Cohen and Kallman showed that PL(I) and PL(S1) have no

Polish group structure. However, their proof uses 1-dimensionality in an

essential way. Here we follow a different strategy, giving an elementary and

independent proof of the following stronger result.

Theorem 1.1. Let M be a PL manifold. Then PL(M) does not admit a

Polish group topology.

In fact, we will show that PL(M) is very far from being a Polish group.

In the case of M = I, this distinction is easy to summarize: while PL(I) is

known to contain no free subgroups, our structure results imply that, for

many groups of homeomorphisms including PL(I), the generic pair of ele-

ments with respect to any Polish group topology generate a free subgroup.

Precisely, we prove the following.

Theorem 1.2. Let G ⊂ Homeo(M) be a group satisfying a “local perturba-

tions property” (c.f. definition 2.2 below). If τ is any Polish group topology

on G, then the generic pair (f, g) in G×G with the product topology generate

a free subgroup.

Loosely speaking, the local perturbations property is a statement that

there exist many homeomorphisms supported on small sets and close to the
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identity in G. While PL(M) contains many homeomorphisms supported on

small sets, the application of Theorem 1.2 is not completely straightforward,

as these need not a priori be close to the identity in any Polish topology on

PL(M). However, our results on structure theory of homeomorphism groups,

following observations of Kallman, show that this is indeed the case.

The situation is more complicated for higher dimensional manifolds, since

there are many examples of free subgroups in PL(M) as soon as M has

dimension at least 2. (See Section 3.) However, we are able to produce

a proof much in the same spirit as the PL(I) case: we describe a natural

subgroup of PL(M), show that this subgroup necessarily inherits any Polish

group structure from PL(M), and then show that the subgroup is both large

enough to have the local perturbations property and small enough to contain

no free subgroup.

Our strategy also applies to other transformation groups, such as the

group of piecewise projective homeomorphisms of S1 discussed in [Mon13].

In Section 4.1 we show the following.

Corollary 1.3. The group of piecewise projective homeomorphisms of S1

admits no Polish topology.

One might interpret these results as explaining why we have yet to set-

tle on a choice of “best” topology for PL(M). It is suspected that several

other transformation groups, such as the group of bi-Lipschitz homeomor-

phisms of a manifold, or diffeomorphisms of intermediate regularity on a

smooth manifold, also fail to admit a Polish group topology. Progress is

made in [CK14] for the one-dimensional case in some categories, it would

be interesting to extend these results to higher dimensional manifolds as

well.

Acknowledgements. The author thanks Michael Cohen, W. Jake Hern-

don, Alexander Kupers, and Christian Rosendal for their comments and

their interest in this project.

2 Structure theory of transformation groups

As before, let M denote a compact topological manifold. In this section we

discuss general constraints on topologies on subgroups G ⊂ Homeo(M).

Surprisingly, it is often the case that any choice of reasonable topology

on G (even without requiring that the point evaluation maps G→M given
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by g 7→ g(x) be continuous) is forced to reflect the topology of M . The most

basic result along these lines is the following lemma of Kallman.

Say that G ⊂ Homeo(M) has property (∗) if the following holds:

(∗) for each nonempty open set U ⊂ M , there exists a non-

identity map gU ∈ G that fixes M \ U pointwise.

Lemma 2.1 (Kallman [Kal86]). Let G ⊂ Homeo(M) have property (∗). If

τ is any Hausdorff group topology on G, then each set of the form

C(U, V ) := {f ∈ G | f(U) ⊆ V }

is closed in (G, τ).

A proof of Lemma 2.1 for the case of M = I is given in [CK14, Lemma

2.2], but it applies equally well in the general case. The outline is as follows:

first, one uses property (∗) to show that C(U, V ) is the intersection of all

sets of the form

F (U ′,W ′) := {f ∈ Homeo(M) | fgU ′f−1 commutes with gW ′}

where U ′ is open in U and W ′ is open in M \ V . Now each FU ′,W ′ is closed,

since it is the pre-image of the identity under the (continuous) commutator

map Homeo(M)→ Homeo(M) given by f 7→ [fgU ′f−1, gW ′ ].

We will work with the following strengthening of condition (∗). Note

that this condition is satisfied by PL(M), as well as many other familiar

transformation groups such as Diff(M), the group of volume-preserving dif-

feomorphisms of a Riemannian manifold, etc.

Definition 2.2. Say that G ⊂ Homeo(M) satisfies the local perturbations

property if, for each open set U ⊂M and y ∈ U , the set {f(y) | f |M\U = id}
is uncountable.

We think of such f as a “perturbation” of y. The word local refers to the

fact that we can find perturbations supported on (i.e. pointwise fixing the

complement of) any open neighborhood U of y. In other words, f has local

support with respect to the topology of M .

The next proposition says that these perturbations are also inherently

local in a group-theoretic sense, namely, they can be found close to the

identity in G.
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Proposition 2.3 (Local perturbations are local). Suppose G ⊂ Homeo(M)

has the local perturbations property and τ is any separable, metrizable topol-

ogy on G. Then for any open set U ⊂ M , point y ∈ U , and open neighbor-

hood of the identity N in (G, τ), there exists f ∈ N such that f(y) 6= y and

f |M\U = id.

Proof. Given an open U ⊂ M and y ∈ U , let H = {f | f |M\U = id}.
Since (G, τ) is separable and metrizable, the subset topology on H is also

separable.

We now claim that, for any neighborhood N of the identity in G, the

neighborhoodN∩H of the identity inH contains some f such that f(y) 6= y.

To see this, let {hi | i ∈ N} be a countable dense subset of H. Then

H =
∞⋃
i=1

hi(N ∩H).

If we had h(y) = y for all h ∈ N∩H, then the set of images {f(y) | f ∈ H} =

{hi(y)} would be countable, and this contradicts the local perturbations

property.

Proposition 2.3 readily generalizes to groups of homeomorphisms fixing

a submanifold or, in the case where ∂M 6= 0, those fixing the boundary

of M . For simplicity, we state only the boundary case. Let Homeo(M,∂)

denote the group of homeomorphisms of M that fix ∂M pointwise.

Proposition 2.4. Suppose that G ⊂ Homeo(M,∂) has a separable, metriz-

able topology τ , and suppose that the condition in the local perturbations

property is satisfied for every point y in the interior of M . Then for any

closed set X ⊂ M , interior point y /∈ X, and open neighborhood of the

identity N in (G, τ), there exists f ∈ N such that f(x) = x for all x ∈ X,

but f(y) 6= y.

2.1 Generic free subgroups

Using Proposition 2.3, we prove Theorem 1.2 on generic free subgroups.

Recall that this is the statement that, for any group G ⊂ Homeo(M) with

the local perturbations property, and any Polish group topology τ on G,

the τ -generic pair of elements (f, g) ∈ G×G generate a free group. In fact,

our technique here can be modified to show something even stronger: for
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any point y ∈M , the generic pair (f, g) generates a free group acting on M

such that y has trivial stabilizer 1.

Proof of Theorem 1.2. Assume that G has a Polish topology, so in particu-

lar G×G is a Baire space. For each nontrivial, reduced word w ∈ F2, define

a set Xw := {(f, g) ∈ G×G : w(f, g) = id}. This is the pre-image of the sin-

gleton {id} under the continuous map G×G→ G given by (f, g) 7→ w(f, g),

so is closed. We will show that Xw has empty interior. Given this, the generic

pair (f, g) does not lie in any Xw, and hence generates a free group.

Assume for contradiction that someXw has nonempty interior and choose

(f, g) ∈ int(Xw). Write w(f, g) = tk . . . t1 as a reduced word with each

ti ∈ {f±1, g±1}. Now choose any point y0 ∈M , and let yi = ti . . . t1(y0). Let

m be the minimum integer such that the points y0, y1, y2, . . . , ym are not all

distinct. Since w(f, g) is the identity, we have yk = y0 and so 1 ≤ m ≤ k. Let

U be a small neighborhood of ym−1 disjoint from {y0, y1, . . . , ym−2} \ {ym},
and such that tm(U) is also disjoint from {y0, y1, . . . , ym−1}\{ym}. By Propo-

sition 2.3, for any neighborhood N of the identity in G, there exists h ∈ N
such that h(ym−1) 6= ym−1 and h restricts to the identity on the comple-

ment of U . Modify tm (which is either f , g, f−1, or g−1) by replacing it with

tm ◦ h, and leaving the other free generator unchanged. This gives a new

pair (f ′, g′) that still lies in the interior of Xw, provided that N was chosen

small enough.

We claim that, after this modification, the images of y0 under the first

m initial strings of w(f ′, g′) – adapting the previous notation, these are the

points t′i . . . t
′
1(y), for 0 ≤ i ≤ m, where t′i ∈ {(f ′)±1, (g′)±1} – are now all

distinct. In fact, we will have t′i . . . t
′
1(y) = ti . . . t1(y) for each i < m − 1.

To see this, note that for each generator ti, we have ti(yi−1) = yi, except

in the (intended) case i = m, or possibly if tm−1 = t−1
m , in which case

t′m−1 = h−1tm−1 and we would have t′m−1(ym−2) = h−1(ym−1). But this case

is excluded by requiring that w be a reduced word. As t′m(ym−1) 6= ym, and

t′m(ym−1) ∈ tm(U), this shows that the points t′i . . . t
′
1(y) are all distinct.

If w(f ′, g′) 6= id, we are already done. Otherwise, we may repeat the

procedure, again perturbing a generator in the neighborhood of the first

repeated point in the sequence of images of y0 under initial subwords of

w(f ′, g′). The process terminates when we arrive at some pair (f (k), g(k)) in

the interior of Xw satisfying either w(f (k), g(k)) 6= id or the more specific

1Similar results for G = Homeo(R) and G = Homeo(S1), assuming that the home-
omorphism groups are given the compact-open topology, appear in [BK86] and [Ghy01].
Here more care is needed since we know much less about the topology of G.
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condition w(f (k), g(k))(y0) 6= y0. This contradicts the definition of Xw.

Remark 2.5 (Relative case of Theorem 1.2). Using Proposition 2.4 in place

of Theorem 2.3, the proof above shows that whenever G ⊂ Homeo(M,∂)

has a Polish group topology and satisfies the local perturbations property,

then the generic pair of elements of G generate a free group.

3 Free groups in PL(In)

Having found many free groups in subgroups of Homeo(M), our next goal is

to show that there are relatively few in PL(M). Throughout this section, we

assume M is oriented, and work with the index two subgroup PL+(M) ⊂
PL(M) of orientation-preserving PL homeomorphisms of M . We use the

following result of Brin and Squier.

Lemma 3.1 ([BS85]). PL+(I) contains no free subgroup. More specifically,

the subgroup generated by any two elements f, g ∈ PL+(I) is either abelian

or contains a copy of Z∞.

The proof is not hard, for completeness we give a sketch here. Recall the

standard notation supp(f) for the support of f, this is the closure of the set

{x ∈M | f(x) 6= x}.

Proof. Let f, g ∈ PL+(I). Suppose x ∈ I is fixed by both f and g. Then

the left- and right- derivatives (note that one-sided derivatives are always

defined for PL homeomorphisms) of the commutator [f, g] at x are both

equal to 1, and it follows that [f, g] is the identity on a neighborhood of x.

This shows that supp([f, g]) is contained in I \ (fix(f) ∩ fix(g)). Assuming

that the subgroup generated by f and g is not abelian, let W then be the

(nonempty) subgroup of PL+(I) consisting of homeomorphisms w such that

supp(w) is nonempty and contained in I \ (fix(f) ∩ fix(g)).

Choose some w ∈ W such that supp(w) meets a minimum number of

connected components of the set I \ (fix(f) ∩ fix(g)). Let A be a connected

component of I \ (fix(f) ∩ fix(g)) that meets supp(w). Let a and b denote

min{supp(w) ∩ A} and max{supp(w) ∩ A} respectively.

As sup{h(a) | h ∈ 〈f, g〉} is fixed by f and g, there exists some h ∈ 〈f, g〉
with h(a) > b. It follows that hwh−1 and w have disjoint support on A,

so [hwh−1, w] restricts to the identity on A. Since supp(w) was assumed to

meet a minimum number of connected components of I \(fix(f)∩fix(g)), we
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must have supp([hwh−1, w]) = ∅, i.e. hwh−1 and w commute. This process

can be repeated iteratively, finding hn that displaces the support of w off of⋃
i<n supp(hiwh

−1
i ) ∩ A, giving a copy of Z∞ in 〈f, g〉.

By contrast, as soon as dim(M) = n ≥ 2, the groups PL+(M), and

PL+(M,∂) contain many free subgroups. A number of examples are given

in [CR14], the easiest ones are the following.

Example 3.2. Let n ≥ 2, and consider a free subgroup of GLn(R) freely

generated by α and β. For any p ∈ M , there exist orientation-preserving

PL homeomorphisms f and g, fixing p, supported on a neighborhood of p,

and with derivatives Df(p) = α and Dg(p) = β. Taking the derivative at

p defines an injective homomorphism from the group generated by f and g

to a free subgroup of GLn(R), hence f and g satisfy no relation.

We now show how to exclude these free subgroups by restricting atten-

tion to the subgroup of PL homeomorphisms that preserve a 1-dimensional

foliation.

Definition 3.3. Let PL+(In,F) denote the subgroup of PL+(In) consisting

of homeomorphisms that preserve each leaf of the foliation of In by vertical

lines {x} × I, where x ∈ In−1.

Proposition 3.4. PL+(In,F) does not contain a free subgroup.

Proof. Let f, g ∈ PL+(In,F). The restrictions of f and g to any vertical line

L = {x}× I are orientation-preserving piecewise linear homeomorphisms of

L. Fixing L, restriction gives a homomorphism 〈f, g〉 → PL+(L) ∼= PL+(I)

whose image, by Lemma 3.1, is either abelian or contains a copy of Z∞.

In particular, the kernel of this homomorphism contains two nonconjugate

(i.e. non-commuting) elements in F2. In other words, there exist nontrivial

words u and v in the letters f and g such that u and v restrict to the identity

on L, and such that the commutator [u, v] is not the trivial word.

Notice that if u ∈ PL+(In,F) restricts to the identity on L, then after

identifying L with the nth coordinate axis, u is locally linear of the form
1 0 . . . 0 a1

0 1 . . . 0 a2
...
0 0 . . . 1 an−1

0 0 . . . 0 1


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and the collection of all such linear maps forms an abelian group. In par-

ticular, the commutator [u, v] agrees with the identity on a neighborhood of

L. Shrinking this neighborhood if needed, we may take it to be of the form

U × I, where U is a neighborhood of x in In−1.

Now consider the collection of all open sets of the form U ′× I, such that

• U ′ is open in In−1 and

• There exists a nontrivial reduced word w in f and g with w|U ′×I = id.

The argument given above shows that this collection of sets forms an open

cover of In. Let {U1 × I, . . . , Um × I} be a finite subcover of minimal

cardinality, and for each 1 ≤ i ≤ m let wi be a nontrivial word that restricts

to the identity on Ui×I. We claim that m = 1, and therefore f and g satisfy

a nontrivial relation.

To see that m = 1, assume for contradiction that we have more than one

set in the cover and choose i and j such that Ui∩Uj 6= ∅. If [wi, wj] reduces

to the trivial word, then wi and wj would both be powers of some word w′.

Since PL+(I) is torsion-free, this implies that w′ restricts to the identity on

both Ui and Uj, so we could replace our cover with a smaller one, using the

single set (Ui ∪ Uj) × I on which w′ is identity. Thus, the assumption of

minimal cardinality of the cover implies that [wi, wj] is a nontrivial word.

However, since wi pointwise fixes Ui × I and wj pointwise fixes Uj × I, the

commutator [wi, wj] restricts to the identity on (Ui∪Uj)× I, and this again

contradicts our choice of a minimal cover.

4 Completing the proof

Combining the results from the previous two sections, we now prove Theo-

rem 1.1, starting with the special case M = In. Suppose for contradiction

that PL(In) admits a Polish topology; its restriction to PL+(In) then gives a

Polish topology on PL+(In). Let PL+(In,F) be the subgroup of vertical line

preserving homeomorphisms defined in the previous section. We claim that

PL+(In,F) is a closed subgroup, and hence Polish. This is a consequence

of the following general lemma.

Lemma 4.1. Let M = A×B be a product manifold. Let G ⊂ Homeo+(M)

be a subgroup satisfying condition (∗), and τ a Hausdorff group topology on

G. Then

G(B) := {f ∈ G | f({a} ×B) = {a} ×B for all a ∈ A}
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is a closed subgroup.

Proof. We show that G(B) is an intersection of sets of the form C(U, V ),

hence is closed by Lemma 2.1. Let Λ be the collection of all open sets in M

of the form {U ′} ×B, where U ′ is open in A. Then

G(B) =
⋂
U∈Λ

C(U,U).

For one inclusion, if f ∈ Homeo+(M) satisfies f({U ′} ×B) ⊂ {U ′} ×B for

each U ′ in a neighborhood basis of a ∈ A, then f({a}×B) = {a}×B. This

shows that
⋂

U∈ΛC(U,U) ⊂ G(B). The reverse inclusion is immediate.

To continue the proof of the main theorem, note that PL+(In,F) also

satisfies the local perturbations property – for example, given y ∈ M and

any neighborhood U of y, one can define for each t ∈ (0, ε) an element of

PL+(In,F) supported on U , and agreeing with the map (x1, ..., xn−1, xn) 7→
(x1, ..., xn−1, xn + t) on a small linear simplex containing y. Thus, by The-

orem 1.2, the generic f, g ∈ PL+(In,F) generate a free subgroup. But this

contradicts Proposition 3.4. We conclude that PL(In) has no Polish topol-

ogy.

This strategy also works to show that the group PL(In, ∂) of piecewise

linear homeomorphisms of In that pointwise fix the boundary admits no

Polish group topology. In detail, the proof of Lemma 4.1 shows that the

subgroup of homeomorphisms in PL(In, ∂) = PL+(In, ∂) that preserve each

vertical line is closed, hence Polish. It also satisfies the (relative) local pertur-

bations property. Now Remark 2.5 implies that the generic pair of elements

generate a free group, which is again a contradiction.

For the general case, let M be an n-dimensional PL manifold, and assume

again for contradiction that PL(M) has a Polish group topology. Let A ⊂M

be a linearly embedded copy of In, and let G ⊂ PL(M) be the subgroup of

homeomorphisms that restrict to the identity on M \ A. We claim that

G =
⋂

U ′⊂M\Ā open

C(U ′, U ′),

and hence G is a closed subgroup. That G ⊂ C(U ′, U ′) for any U ′ ⊂M \ Ā
is immediate, to see the reverse inclusion, take any point x ∈ M \ Ā. If

f(U ′) ⊂ U ′ for all sets U ′ in a neighborhood basis of x, then f(x) = x.

Since G is closed, it is also a Polish group. As G ∼= PL(In, ∂), this

contradicts the case proved above, and completes the proof of Theorem 1.1.
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4.1 Piecewise projective homeomorphisms

A homeomorphism f of S1 is piecewise projective if there is a partition of

S1 into finitely many intervals such that the restriction of f to each interval

agrees with the standard action of PSL(2,R) by projective transformations

on RP 1 = S1. Much like PL(M), this group has a rich algebraic structure:

among its subgroups are counterexamples to the Von Neumann conjecture

(see [Mon13]), and the full group is closely related to a proposed “Lie alge-

bra” for the group Homeo(S1) given in [MP98].

We now prove Corollary 1.3, the analog of Theorem 1.1 for piecewise pro-

jective homeomorphisms. Let G denote the group of all piecewise projective

homeomorphisms of S1, let I ⊂ S1 be a small interval, and let H ⊂ G

be the subgroup of homeomorphisms pointwise fixing I. Suppose that G is

given a Polish group topology. Since we have

H =
⋂

U open, U⊂I

C(U,U)

H is a closed subgroup, hence Polish.

Note also that H has the local perturbations property (in the modified

sense for groups of homeomorphisms fixing a submanifold), so it follows from

Theorem 1.2 that the generic pair of elements of H generate a free group.

However, the same argument as in Lemma 3.1 shows that the subgroup

generated by any two elements of H is either metabelian or contains a copy

of Z∞; in particular, it is not free (this is also proved in Theorem 14 of

[Mon13]). This gives a contradiction, showing that G cannot have a Polish

group topology.
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