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Abstract

We discuss recent results and open questions on the broad theme of (Nielsen) realization
problems. Beyond realizing subgroups of mapping class groups, there are many other natural
instances where one can ask if a surjection from a group of diffeomorphisms of a manifold to
another group admits a section over particular subgroups. This survey includes many open
problems, and some short proofs of new results that are illustrative of key techniques; drawing
attention to parallels between problems arising in different areas.

1 Introduction

One way to understand the algebraic structure of a large or complicated group is to surject it to
a simpler group, then measure what is lost. In other words, given G, we take an exact sequence
1→ K → G→ H → 1 and study how much H differs from G. This difference can be measured
through the obstructions to a (group-theoretic) section φ : H → G, as well as the obstructions to
sections over subgroups of H.

In the case where G is the group of homeomorphisms or diffeomorphisms of a manifold, this question
has a long history and important interpretations, both from the topological point of view of flat
bundles, and the dynamical point of view through group actions of M . This article is intended as
an invitation to section problems for diffeomorphism groups; illustrating applicable techniques and
listing open problems. To introduce this circle of ideas, we begin with the classical case of surface
bundles and diffeomorphism groups of surfaces.

The flatness problem for surface bundles. Let Σ be a smooth, oriented closed surface and
let E → B be a fiber bundle with fiber Σ and structure group the group Diffr(Σ) of orientation-
preserving Cr diffeomorphisms of Σ, for some fixed r ≥ 0. Such a bundle is said to be flat or
foliated of class Cr if it admits a Cr foliation transverse to the fibers whose leaves project to the
base as covering spaces. Equivalently, E → B is flat if its structure group can be taken to be
Diffr(Σ) with the discrete topology. In a flat bundle, parallel transport along the leaves of the
foliation defines a holonomy representation φ : π1(B)→ Diffr(Σ).

It is a basic problem to determine when a surface bundle is flat; and even in the case where
the base is a surface, it is a open question whether every surface bundle admits a flat structure.
A foundational result of Earle–Eells [EE67] states that, when χ(Σ) < 0, a Σ-bundle E → B is
determined up to bundle isomorphism by its monodromy representation ρ : π1(B)→ Mod(Σ). Here
Mod(Σ) := π0(Diffr(Σ)) denotes the mapping class group of Σ (which is independent of r). Thus,
E → B admits a Cr flat structure if and only if its monodromy lifts to Diffr(Σ), as in the diagram
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below. In this case, the lift agrees (up to conjugacy) with the holonomy φ mentioned above.

Diffr(Σ)

π1(B) Mod(Σ)

99ρ̃

��
π

//
ρ

The flat bundle question motivates the following problem. Let Σbg,m denote a compact surface of

genus g with b boundary components and m marked points. Define Diffr(Σb
g,m) as the group of

orientation-preserving diffeomorphisms of Σ that preserve the marked points as a set, and define
Diffr∂(Σbg,m) < Diffr(Σbg,m) as the subgroup of diffeomorphisms that restrict to the identity on the

boundary ∂Σ. The mapping class group Modbg,m := π0 Diffr∂(Σbg,m) can be viewed as the group of

diffeomorphism of Σbg,m modulo isotopies that fix the boundary and the punctures1.

Problem 1.1 (Generalized Nielsen realization). Let Γ be a finitely-generated group, 0 ≤ r ≤ ∞,
and let ρ : Γ→ Modbg,m be a homomorphism. Does there exist a homomorphism ρ̃ : Γ→ Diffr∂(Σbg,m)
so that π ◦ ρ̃ = ρ?

If the answer is yes, we say ρ is realized by Cr diffeomorphisms, or by homeomorphisms in the
case r = 0. (We will use both Diff0(M) and Homeo(M) as notation for the homeomorphism group
of a manifold M .) The map ρ̃ is called a section of Diffr(Σb

g,m)→ Mod(Σb
g,m) over ρ, so we will

also often refer to this and related questions as section problems. Earle–Eells’ result generalizes to
surfaces with boundary and marked points [ES70, Hat11], and from the bundle perspective, marked
points correspond to preferred sections.

As is well known, Problem 1.1 was answered positively for finite, cyclic groups by Nielsen. Nielsen’s
original motivation was different from ours – the question he answered (positively) was: if f is a
diffeomorphism of Σ such that fn is isotopic to the identity, is f isotopic to some g ∈ Diff∞(Σ)
with gn = id? Problem 1.1 for finite groups Γ ⊂ Modg eventually became known as Nielsen’s
problem. Fenchel [Fen48] gave a positive answer for finite solvable groups, and the general result
for finite groups is due to Kerckhoff [Ker83], with alternate proofs by Tromba, Gabai and Wolpert
[Tro96, Gab91, Wol87] appearing later. Going forward in this paper we will focus on realization
problems for infinite groups.

The case Γ = Modg for ρ̃ with image in Homeo(Σg) was posed by Thurston in Kirby’s problem
list [Kir97, Prob. 2.6]. This was resolved (negatively) in case of C2 diffeomorphisms by Morita
[Mor87] for g ≥ 18, in the C1 case by Franks–Handel [FH09] for g ≥ 3 – whose proofs we sketch
later on – and then by Markovic [Mar07] and Markovic–Saric [MS08] for homeomorphisms and
g ≥ 2. Although Morita’s approach generalizes to finite-index subgroups, and Franks–Handel cover
several other special cases, for most infinite subgroups Γ < Modbg,m Problem 1.1 remains completely
open (see discussion in [Far06a, §6.3]).

One source of difficulty in Problem 1.1 is our poor understanding of finitely-generated subgroups of
diffeomorphism groups. For instance, the following problem is open.

Problem 1.2. Give an example of a finitely-generated, torsion free group Γ, and a surface S, such
that Γ is not isomorphic to a subgroup of Homeo(S).

Of course, it suffices to give an example for Homeo∂(D2) as this embeds in Homeo(S) – and in
fact in the identity component Homeo0(S) – for any other surface. Indeed, the difficulty in the
problem is understanding the algebraic structure of Homeo0(S); replacing Homeo(S) by Mod(S)

1following standard convention, we let Modg denote Mod0g,0
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renders it a reasonable exercise. Problem 1.2 is also completely open for homeomorphism groups
of manifolds of higher dimension. In general the regularity of diffeomorphisms can make a great
difference, and Problem 1.2 has been recently solved for C2 diffeomorphisms with the solution to
the Zimmer conjecture [BFH16], with examples given by higher rank lattices. However, we are far
from a complete understanding of the algebraic structure of groups that can and cannot act.

Nielsen realization problems in higher dimensions. Problem 1.1 can be posed for manifolds
M with dimM ≥ 3. Does Diffr(M)→ π0

(
Diffr(M)

)
admit a section? Which finitely-generated

subgroups can be realized? Unlike in the surface case, the group π0(Diffr(M)) is not always finitely
generated and its algebraic structure may depend on r. Spheres are a particularly interesting class
of examples:

Question 1.3 (A. Kupers). For n ≥ 5, the group π0(Diff∞(Sn)) is the group of homotopy
(n+ 1)-spheres, a finite abelian group. Can this group be realized by diffeomorphisms of Sn?

Some cases are covered by Schultz [Sch79]. Other instances of Nielsen realization problems for
finite subgroups of mapping class groups are discussed by Block–Weinberger in [BW08], who
prove several non-realizability results and give a good survey of the state of the art. Examples of
non-realizability results for infinite, finitely-generated subgroups for higher-dimensional manifolds
are given in [Tsh15]; see Theorem 2.10 below.

Beyond mapping class groups. When M is a closed manifold, the path-component of the
identity Diffr0(M) ⊂ Diffr(M) is simple, provided that r 6= dim(M) + 1. For r > 0, this is a deep
result of Mather [Mat74, Mat75], and for r = 0 it follows from [And58] and [EK71] (it is open for
r = dim(M) + 1). Thus, realization problems for subgroups of mapping class groups are essentially
the only section problems for these groups. However, when M has boundary, there is an obvious

map Diffr(M)
R→ Diffr(∂M). This may not be surjective, but is when restricted to the identity

components Diffr0(M) → Diffr0(∂M). In [Ghy91], Ghys asked in which cases this map admits a
section. In parallel with Problem 1.1, we ask:

Problem 1.4. Let Γ be a finitely-generated group, 0 ≤ r ≤ ∞, and let ρ : Γ → Diffr0(∂M) be
a homomorphism. In which cases does there exist a homomorphism ρ̃ : Γ → Diffr(M) so that
R ◦ ρ̃ = ρ?

Rephrased in terms of flat bundles, Problem 1.4 asks whether a flat (∂M)-bundle E is the boundary
of a flat M -bundle.

As a further variant on Problems 1.1 and 1.4, one can also restrict to subgroups of Diffr(M) and
pose the same family of questions. For real-analytic diffeomorphisms, Problem 1.1 for Γ = Modg
was answered negatively in [CC08]. Bowden [Bow11] discusses Problem 1.4 for the boundary
map on the group of surface symplectomorphisms Symp(Σ1

g)→ Diff0(S1), and Epstein–Markovic
discuss the boundary map from quasi-conformal homeomorphisms of the disk to quasi-symmetric
homeomorphisms of the circle. Interestingly, this latter problem is also related to Nielsen realization
for the mapping class group of a surface; see Section 3.4 below.

Germs and holonomy of foliations. Considering foliations rather than foliated bundles leads
to a class of related problems. Let Diffr(Rn, 0) denote the group of diffeomorphisms of Rn fixing
the origin, and Gr(k) the group of germs at the origin of elements of Diffr(Rn, 0). Analogous to the
holonomy of a flat bundle, when a manifold M admits a transversely-Cr codimension-k foliation F ,
each leaf L has a holonomy representation π1(L)→ Gr(k). Thus, understanding the structure of
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Gr(k) and its finitely-generated subgroups plays an important role in the study of the structure of
foliations.

However, the algebraic structure Gr(k) is not well understood. For instance, the following problem
is open.

Question 1.5. Suppose φ : Gr(n)→ Gs(m) is an isomorphism. Is it necessarily true that m = n,
r = s, and φ is an inner automorpshim?

The corresponding (positive) result for isomorphisms Diffr(M)→ Diffs(M), where M is a compact
manifold, is a theorem of Filipkiewicz [Fil82].

Finitely-generated subgroups of Gr(n) are also poorly understood. Navas [DNR14] asked whether
every finitely-generated subgroup of G0(2) is isomorphic to a subgroup of Diff0(R2). While it is
expected that the answer is negative, the question was motivated by a positive result in the case
of R1; see [DNR14, §1.1.3]. Because of the natural surjection Diffr(Rn, 0)→ Gr(n), the study of
groups of germs lends itself to section problems.

Problem 1.6. Which finitely-generated groups are subgroups of Gr(n)? What are obstructions to
lifting a representation ρ : Γ→ Gr(n) to Diffr(Rn, 0)?

Thurston’s stability theorem [Thu74] states that finitely-generated subgroups of G1(n) with trivial
derivative at 0 necessarily have the property that they admit surjective homomorphisms to Z (i.e.
G1(n) is a locally indicable group). While Thurston’s motivation for this result was a generalization
of the Reeb stability theorem for foliations, we will see numerous applications of this stability
theorem to other problems – including approaches to Problem 1.1 – described in §3. One is
optimistic that any further answer to the first part of Problem 1.6 would have a similar range of
applications.

Organization of paper. In order to draw parallels between the various problems described above,
we have organized this paper by technique (broadly categorized as dynamical or cohomological)
rather than by results. In §2 we discuss examples where cohomology of groups and classifying
spaces has been successfully used to obstruct lifting problems. §3 contains a discussion of dynamical
techniques used to provide other obstructions. In §4 we give some positive results for Problem 1.1,
i.e. interesting groups that can be realized by diffeomorphisms. Questions and problems have been
attributed to their authors when known, although we did not make an exhaustive attempt to trace
them to their original sources.

Acknowledgements. The authors would like to thank B. Farb, N. Salter and A. Kupers for
feedback on this work. Theorem 3.1 came up in discussion with F. Le Roux. K.M. was partially
supported by NSF grant DMS 1606254, and B.T. was partially supported by NSF grant DMS
1502794.

2 Cohomological techniques

In this section we take an algebro-topological approach to lifting problems. In its most basic form,
the general approach is as follows: Given a surjection π : G→ H and a homomorphism ρ : Γ→ H,
a lift ρ̃ as in the figure on the left below induces maps on group cohomology as indicated on the
right.
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G

Γ H

99
ρ̃

��
π

//
ρ

H∗(G)

H∗(Γ) H∗(H)
ww

ρ̃∗ OO
π∗

oo
ρ∗

Classes in the kernel of π∗ serve as obstructions to lifts. Specifically, if c ∈ kerπ∗, and ρ is a
representation such that ρ∗(c) 6= 0 ∈ H∗(Γ), then no map ρ̃ can make the diagram commute.

While this approach (or variations of it) can be successful, in general it can be difficult to find a
class c that works, and the absence of cohomological obstructions is not sufficient to guarantee the
existence of a lift. For an example, compare Theorems 2.16 and 3.9 below. However, one benefit
of the cohomological approach (when it works) is that often one can conclude that no realization
exists even after passing to a finite-index subgroup of Γ.

2.1 The Euler class as an obstruction

We begin with a simple example of the strategy introduced above. Fix h ≥ 2. Then π1(Σh) is a
discrete, subgroup of PSL(2,R), which acts on S1 by Möbius transformations. Let ρ : π1(Σh)→
PSL(2,R)→ Homeo+(S1) denote this homomorphism.

Proposition 2.1. Fix g ≥ 1, and let Σ1
g be a genus g surface with 1 boundary component. Then

the action ρ of π1(Σh) on ∂Σ1
g ' S1 does not extend to a representation into Homeo0(Σ1

g).

Here, as always, Homeo0 denotes the identity component of the group. As we remark after the
proof, the situation is much more subtle (and the proposition false) if Homeo0 is replaced by Homeo
in the statement above.

The proof of Proposition 2.1 is easy when framed in the language of characteristic classes and
classifying spaces. For the reader unacquainted with this theory, we summarize the main properties
we need before giving the proof. See [Mor01, Ch. 4] for more details.

Classifying space basics. Every topological group G has a classifying space BG that classifies
principal G-bundles. If G < Homeo(X), then BG also classifies X-bundles with structure group G.
If G has the discrete topology (indicated by Gδ), then BGδ ∼ K(G, 1) is an Eilenberg–Maclane
space for G (a connected CW-complex with fundamental group G and contractible universal cover).
In particular BDiff(Σg) classifies Σg-bundles and BDiff(Σg)

δ classifies flat Σg-bundles.

The classifying space construction G 7→ BG is functorial: a continuous homomorphism G → H
induces a continuous map BG→ BH. Furthermore, if G→ H is a homotopy equivalence, then
BG → BH is also a homotopy equivalence, and a short exact sequence 1 → K → G → H → 1
induces a fibration BK → BG→ BH.

In the special case where G = Homeo(S1), the inclusion SO(2) ↪→ Homeo+(S1) induces a homotopy
equivalence, so the classifying space BHomeo+(S1) is homotopy equivalent to B SO(2) ∼ CP∞.
As such H∗(BHomeo(S1);Z) is a polynomial ring Z[e] generated by a class e ∈ H2(BHomeo(S1))
which has the following property: a circle bundle E → B classified by a map fE : B → BHomeo(S1)
admits a continuous section if and only if f∗E(e) = 0.

Proof of Proposition 2.1. If ρ extends to ρ̃ : π1(Σh)→ Homeo0(Σ1
g), then there is a diagram that
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commutes up to homotopy:

BHomeo0(Σ1
g)

Σh BHomeo+(S1)
Bρ

77
Bρ̃

��
Bπ

//

Let e(ρ) := Bρ∗(e) ∈ H2(Σh) be the Euler class of ρ. On the one hand, e(ρ) is the Euler class of
the unit tangent bundle T 1Σh → Σh, which is nonzero because χ(Σh) 6= 0. On the other hand,
Homeo0(Σ1

g) is contractible, so BHomeo0(Σ1
g) is also contractible, and this implies that π∗(e) = 0.

Thus ρ̃ does not exist.

The above argument shows that no action ρ : π1(Σh) → Homeo+(S1) with e(ρ) 6= 0 extends to
Homeo0(Σ1

g) for g ≥ 1. There are many such actions, even among representations into PSL(2,R).
However, one can produce actions ρ : π1(Σh) → Homeo(S1) with e(ρ) 6= 0 that do extend to
Homeo(Σ1

g) for any g ≥ 2. This uses a “stabilization” argument [Bow11]: start with any ρ′ :

π1(Σh′)→ Homeo(S1), present π1(Σh′) = 〈a1, . . . , bh′ |
∏h′

i=1[ai, bi] = 1〉, and choose ρ̃′(ai), ρ̃
′(bi) ∈

Homeo(Σ1
g) extending ρ′(ai) and ρ′(bi) on ∂Σ1

g (technically we want extensions that are a trivial

product on a collar neighborhood of ∂Σ1
g). Then f :=

∏h
i=1[ρ̃′(ai), ρ̃

′(bi)] belongs to the group
HomeoN(∂)(Σ

1
g) of homeomoprhisms that are the identity on a neighborhood of ∂Σ1

g. This group is
perfect [Fis60] [FM12, §5.1], so we can write f−1 =

∏n
j=1[xj , yj ]. Let h = h′ + n, and extend ρ′ to

ρ : π1(Σh) = 〈ai, bi, xj , yj |
h′∏
i=1

[ai, bi]

n∏
j=1

[xj , yj ] = 1〉 → Homeo+(S1)

by mapping xj and yj to the identity. By design, e(ρ) = e(ρ′), and ρ extends to Homeo(Σ1
g). Note

that e(ρ) ∈ Z determines the class [f ] ∈ π0

[
HomeoN(∂)(Σ

1
g) ∩ Homeo0(Σ1

g)
]
' Z. In particular

xi, yi ∈ Homeo0(Σ1
g) is possible only if e(ρ) = 0. This is consistent with Proposition 2.1.

Question 2.2. Given a representation ρ : π1(Σh′)→ Homeo+(S1) as above, what is the minimal
stabilization genus h required to extend the action to Homeo+(Σ1

g)? Are there examples where this
answer is different in the C0 and C∞ cases?

The Milnor-Wood inequality (Theorem 2.6 below) gives bounds on the value of the Euler class
ρ∗(e) ∈ H∗(Σh;Z) for a flat bundle. Since none of the examples obtained by stabilization are
maximal, we ask:

Question 2.3. Does there exist a representation ρ : π1(Σh) → Homeo(S1) with maximal Euler
class that lifts to Homeo(Σ1

g)?

Since Diffr0(D2) → Diffr0(S1) is a homotopy equivalence for all r, the argument in the proof of
Proposition 2.1 gives no obstruction to extending any action on S1 to an action on the disk. (Indeed
for r = 0, any group action can be extended by “coning off” the circle to the disk. However, we will
see examples of group actions by C1 diffeomorphisms that cannot be lifted to Diff1(D2) in Section
3.) Geometric actions of surface groups provide interesting examples to study:

Problem 2.4. The action of PSL(2,R) by Möbius transformations on S1 extends to a smooth
action on D2, so the representations π1(Σh)→ PSL(2,R)→ Diff∞(S1) discussed above extend to
Diff∞(D2).

(a) Classify all extensions of these actions. (Are there any exotic ones?)
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(b) If k > 1 divides 2h− 2, then π1(Σh) embeds as a lattice in the central extension of PSL(2,R)
by a cyclic group of order k, which also acts naturally on the circle. (This action is simply
the lift of the natural Möbius action of PSL(2,R) to the k-fold cover of S1, which is also a
circle.) Does such an action of π1(Σh) on S1 extend to Diff∞(D2)?

The actions described in (b) are called geometric and share many properties with Fuchsian actions,
including strong topological rigidity [Man15b, MW17]. It would be interesting to know if they have
obstructions to extensions over the disc.

Surface braid groups and point-pushing. There is a surjection Modbg,m → Modbg that forgets
the marked points. The kernel is described by an exact sequence

π1(Diff(Σ))→ Brm(Σ)
P−→ Modbg,m → Modbg → 1, (2.1)

where Brm(Σ) is the surface braid group, defined as the fundamental group π1(Confm(Σ)) of
the space of unordered configurations of m points on Σ. The homomorphism P is called the
point-pushing homomorphism; see [FM12] for further details.

Theorem 2.5 (Bestvina–Church–Souto). The homomorphism P in (2.1) is not realized by C1

diffeomorphisms when Σ is closed, g ≥ 2 and m ≥ 1.

We sketch Bestvina–Church–Souto’s argument, which relies on the fact that the Euler class
introduced above is a bounded cohomology class [Mil58, Woo71].

Theorem 2.6 (Milnor-Wood inequality). Let Σg be a closed oriented surface of genus g ≥ 1, and
let [Σg] ∈ H2(Σg;Z) be the fundamental class. For any ρ : π1(Σg)→ Homeo(S1), the Euler class
e(ρ) ∈ H2(Σ;Z) ' Z satisfies

2− 2g ≤ e(ρ) ≤ 2g − 2.

Furthermore, if ρ factors through r : GL+
2 (R)→ Homeo(S1) acting on rays through the origin in

R2, then |e(ρ)| ≤ g − 1.

Proof of Theorem 2.5. We sketch a proof in the case m = 1. In this case Br1(Σg) ' π1(Σg). If P
is realized by diffeomorphisms we have the following diagram.

Diff1(Σg,1) GL+
2 (R)

π1(Σg) Modg,1 Homeo(S1)

//D

;;
P̃

��
//

P

��
r

//
α

(2.2)

Here D is induced by the action on the tangent space at the marked point and r is the homomorphism
from Theorem 2.6. The homomorphism α was originally defined by Nielsen; it comes from the
isomorphism Modg,1 ' Aut(π1Σg) together with the action on the Gromov boundary ∂π1(Σg) ' S1

(or equivalently the boundary of the compactification of the universal cover Σ̃ ' H2). See §3 for a
description. The left-hand triangle commutes, but the right-hand square does not. However, it
does commute up to homotopy on the level of classifying spaces [BCS13, §3]. The proof concludes
by comparing the image of the Euler class e ∈ H2(BHomeo(S1)) when pulled back to H∗(Σg) ' Z
along the outer paths in the diagram.

On the one hand, the composition α ◦ P factors as π1(Σg) → PSL(2,R) → Homeo(S1), and it
follows that e(α ◦ P ) ∈ H2(Σg) is the Euler number of the unit tangent bundle T 1Σg → Σg (as in
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the proof of Proposition 2.1). Thus e(α ◦ P ) = 2− 2g. On the other hand, by the Milnor-Wood
inequality (see Theorem 2.6), |e(r ◦D ◦ P̃ )| ≤ g − 1. This contradiction implies that P̃ does not
exist.

Topologically, P : π1(Σg) → Modg,1 is the monodromy of the trivial bundle with respect to the
diagonal section ∆ ⊂ Σ×Σ. Theorem 2.5 implies that this bundle has no flat connection such that
the diagonal is parallel, i.e. a leaf of the foliation. See also [MV08].

Question 2.7 (Realizing point-pushing by homeomorphisms). Can P : π1(Σg) → Modg,1 be
realized by homeomorphisms? What about by homeomorphisms of the blow up of Σg,1 at the
marked point (i.e. by homeomorphisms of Σ1

g that may be nontrivial on the boundary). If one tries

to run the above proof of Theorem 2.5, one must replace GL+
2 (R) with Homeo(S1) in (2.2), and

then the Milnor–Wood inequality does not provide any contradiction.

Question 2.8 (Disc pushing). If we replace the marked point by a boundary component, there
is a “disk-pushing” subgroup D : π1(T 1Σg) ↪→ Mod1

g analogous to the point-pushing subgroup
P : π1(Σg) ↪→ Modg,1. Is D realized by diffeomorphisms? The proof of Theorem 2.5 does not adapt
to this case because the Euler class on Mod1

g is trivial.

Question 2.9 (Handle pushing). Consider an inclusion Σ1
g ↪→ Σg+1 obtained by gluing on a genus-1

handle. This induces a homomorphism Mod1
g → Modg+1. Is the composition H : π1(T 1Σg)

D−→
Mod1

g → Modg+1 realized by diffeomorphisms? This homomorphism can be interpreted as “handle-
pushing”. This problem is harder than disk-pushing since a realization does not have an obvious
invariant submanifold (e.g. a point or a disk as before).

The second author proved the following generalization of Theorem 2.5 to many other locally
symmetric manifolds [Tsh15].

Theorem 2.10 (Tshishiku). Let G be a real simple noncompact Lie group. Assume G is not
isogenous to SO(n, 1) for any n ≥ 3. Then there exists a lattice Γ < G so that for the associated
locally symmetric space M = Γ\G/K, the point-pushing homomorphism P : π1(M)→ Mod(M, ∗)
is not realized by diffeomorphisms.

The outline is the same as the proof of Theorem 2.5, but it uses different obstructions, including
Pontryagin classes, Chern–Weil theory, and Margulis superrigidity.

Question 2.11. Let M be a finite volume hyperbolic 3-manifold. Is the point-pushing homomor-
phism P : π1(M)→ Mod(M, ∗) realized by diffeomorphisms?

2.2 The MMM classes and Morita’s nonlifting theorem

In this section, we discuss the question of whether or not the surjection π : Diff∂(Σbg,m)→ Modbg,m
is split, i.e. whether or not the entire mapping class group is realized by diffeomorphisms (this is
a special case of Problem 1.1). There are a few low-complexity examples when π does split; for
example when Σ = Σ1 is a closed torus or when Σ = Σ1

0,3 is a disk with 3 marked points; these
examples will be discussed more in §4. The first negative result was proved by Morita [Mor87],
originally with the assumption g ≥ 18.

Theorem 2.12 (Morita nonlifting). Let Σg be a closed surface of genus at least 2. Then the
surjection π : Diffr(Σg)→ Modg does not split for any r ≥ 0. Furthermore, if g ≥ 10 then π has
no C2 splitting over any finite-index subgroup of Modg.
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We sketch Morita’s proof using the following theorem on the cohomology of Modg. See [Wah13] for
an exposition of the proof.

Theorem 2.13 (Morita, Harer stability, Madsen–Weiss). In degrees ∗ ≤ 2(g−1)/3, the cohomology
H∗(Modg;Q) is a polynomial algebra generated by certain tautological classes ei ∈ H2i(Modg;Q).
As a characteristic class of a Σg-bundle E →M over a manifold M , the class ei is defined as

ei(E) =

∫
Σ

e(T vE)i+1 ∈ H2i(M),

where R2 → T vE → E is the vertical tangent bundle, e(T vE) is the Euler class, and
∫

Σ
: H∗(E)→

H∗−2(M) is the fiber-integration (or Gysin) map.

Morita [Mor87] defined the characteristic classes ei ∈ H∗(Modg), and showed they are often nonzero
(by constructing interesting Σg-bundles). Harer [Har85] proved that they are stably nonzero, and
Madsen–Weiss [MW07] proved that these classes account for all of the cohomology in low degree
(their techniques also give an alternate proof that ei 6= 0 for g large).

Proof of Theorem 2.12. Let Diff2(Σg)
δ denote Diff2(Σg) with the discrete topology. We may view

π as a composition of continuous maps Diff2(Σg)
δ α→ Diff2(Σg)

β→ Modg. To prove the theorem, it
suffices to show that

α∗ ◦ β∗ : H∗(BModg;Q)→ H∗(BDiff2(Σg);Q)→ H∗(BDiff2(Σg)
δ;Q)

has nontrivial kernel. The result of Earle–Eells [EE67] cited in the previous section is that
Diff2(Σg) → Modg is a homotopy equivalence, so by classifying space theory the induced map
on classifying spaces is as well, hence β∗ is an isomorphism. Thus, we need to show that α∗ is
not injective. Since BDiff2(Σ)δ classifies flat surface bundles, kerα∗ is the ideal of characteristic
classes of Σg-bundles that vanish for flat bundles. Using Bott’s vanishing theorem (a topological
obstruction to existence of certain foliations), which applies because of the C2 hypothesis, one
checks that if E →M is flat, then ei(E) = 0 for i ≥ 3. By the Theorem 2.13, e3 ∈ H∗(Modg;Q) is
nonzero if g ≥ 10. Thus e3 is a nonzero element of kerα∗.

If j : Γ ↪→ Modg is finite index, then the induced map j∗ : H∗(Modg;Q)→ H∗(Γ;Q) is injective by
transfer, so j∗(e3) 6= 0 and the same argument shows Γ is not realized by diffeomorphisms.

The proof above shows Modg is not realized by C2 diffeomorphisms when g ≥ 10 As mentioned in
the introduction, there are now many different proofs of Theorem 2.12 [BCS13, FH09, ST16, ?] that
show Modg is not realized by C1 or C0 diffeomorphisms (with varying improvements on the genus
bound); in particular, both Theorem 2.5 and Theorem 3.9 have Theorem 2.12 as a consequence.
However, none of these alternate proofs give information about finite-index subgroups of Modg. In
particular, Markovic–Saric’s proof of non-realizaiton by homeomorphisms uses torsion elements in
a crucial way, so does not answer the following.

Problem 2.14 (Robust non-lifting). Show that no finite-index subgroup of Modg is realized by
homeomorphisms for g ≥ 2.

A seemingly more difficult problem is to show non-lifting for the Torelli group.

Problem 2.15. Show that Ig, the kernel of Modg → Sp2g(Z) is not realized by diffeomorphisms.

The question of realizing mapping class groups Modbg,m when m, b ≥ 1 is also interesting. For

example, the mapping class group Mod1
0,m of a disk D2 with m marked points zm ⊂ D2 is the
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classical braid group Bm. The following theorem of Nariman [Nar17] states that there is no
cohomological obstruction to splitting Diff∂(D2 − zm) → Bm. Nevertheless, in contrast, the
mapping class group of a disk is not realized by C1 diffeomorphisms – see Theorem 3.9 below.

Theorem 2.16 (Nariman). Consider the surjection Diff∞(D2 − zm) → Bm. The induced map
on group cohomology H∗(Bm;A)→ H∗(Diff∞(D2 − zm);A) is split injective in all cohomological
degrees and for all abelian groups A.

Nariman’s work also considers another question related to subgroups of mapping class groups.
There is a natural “geometric” map ψ : Br2g+2 ↪→ Mod2

g induced by lifting mapping classes to
a double cover Σ2

g of the disk D ramified over the points of z2g+2. One description of this map
is as follows: Each f ∈ Diff(D, z2g+2) has a canonical lift to a homeomorphism of the cover
Σ2
g; this is the lift that fixes both boundary components pointwise. This gives an injective map

Ψ : Diff(D, z2g+2)→ Homeo(Σ2
g, ∂Σ2

g), and the induced map on isotopy classes is ψ. Nariman asked
if Ψ can be “smoothed”: is there a homomorphism Diff(D, z2g+2)→ Diff(Σ2

g, ∂Σ2
g) that induces ψ

on mapping class groups? Building on the techniques used in his proof of Theorem 2.16, Nariman
shows that there is no cohomological obstruction.

Theorem 2.17 (Nariman [Nar17]). Let g ≥ 1. There is a space Y , homologically equivalent to
the classifying space BDiffδ(Σ2

g, ∂Σ2
g) and a map Φ such that the following diagram is homotopy

commutative

BDiffδ(D2, z2g+2)
Φ //

��

Y

��
BMod(D2, z2g+2)

Bψ
// BMod(Σ2

g)

We give an alternative proof in §4 by constructing an explicit lift. However, the following question
remains open.

Question 2.18. Can the “geometric” braid group ψ : Br2g+2 ↪→ Mod2
g described above be realized

in Diff(Σ2
g)?

3 Dynamical obstructions to realizations

This section showcases the use of dynamical tools in realization problems. In many contexts, one can
use the algebraic structure of a group Γ to force some dynamical behavior – such as the existence
of fixed points or invariant sets – when Γ acts by diffeomorphisms on a manifold M . If the action
comes from a section of Diffr0(M)→ H for some group H, properties of H often furnish additional
dynamical information.

The proofs of non-realizability of Modg by homeomorphisms due to Markovic and Markovic–Saric
[Mar07, MS08] are the most sophisticated instance of this phenomenon. The heart of Markovic’s
idea is to show that the realization of Dehn twists about simple closed curves have support on sets
that, roughly, look like the annuli on which the Dehn twists are defined. Once this is appropriately
formalized, one uses relations in Modg to derive a contradiction. As the argument is quite involved,
we will not be able to do it justice here and instead refer the reader to Le Cavez’s work [Cal12],
which contains a nice exposition as well as some alternative techniques towards the proof.

Here we focus on simpler examples that illustrate a tension between the algebraic structure of a
group Γ and the dynamics of a realization. As a first basic illustration, we discuss non-realizability
for groups of germs.

10



3.1 Non-realizability of groups of germs

Recall that Gr(n) denotes the group of germs at 0 of orientation-preserving Cr diffeomorphisms of
Rn fixing 0 (i.e. the quotient of Diffr(Rn, 0) by the subgroup of diffeomorphisms that restrict to
the identity in a neighborhood of 0), and Γ ⊂ Gr(n) is realizable by diffeomorphisms if there is a
section of Diffr(Rn, 0)→ Gr(n) over Γ. Here, we prove the following non-realizability result, as a
first step towards Problem 1.6.

Theorem 3.1. There exists an (explicit) finitely-generated, torsion-free subgroup Γ of G0(n) that
cannot be realized in Diff0(Rn, 0).

As we remark in the proof, the subgroup Γ can in fact be taken to lie in G∞(n).

Theorem 3.1 was proved in [Man15a] for n = 1. Here, we give a simplified argument that proves
the general case. The argument uses essentially only one dynamical tool (which will make a later
appearance in Section 3.3). This is the basin of attraction.

Definition 3.2. Let f be a homeomorphism of a manifold M . A point p ∈M is attracting if there
exists a neighborhood W of p such that

⋂
n>0 f

n(W ) = p. In this case the basin of attraction of f
at p is the set {x ∈M | fn(x)→ p}.

It follows from the definition that the basin of attraction is f -invariant, and equal to
⋃
n>0 f

n(W )
for any sufficiently small neighborhood W of the attracting fixed point – so in particular is open.
Furthermore, if f and g commute, then g permutes the attracting fixed points of f and their basins
of attraction.

Proof of Theorem 3.1. We first define Γ by specifying homeomorphisms of which we take the germs,
then prove that there is no realization. The key algebraic properties of Γ are that it contains a
Baumslag-Solitar subgroup BS(1, 2) = 〈a, b | aba−1 = b2〉, as well as several commuting elements.

Parametrize Rn \ {0} = Sn−1 × R, with the sets Sn−1 × {t} approaching 0 as t→ −∞. All of the
homeomorphisms in Γ will be defined radially, so we start by working on R. A BS(1, 2) subgroup of
Diff∞(R) is given by a : x 7→ 2x and b : x 7→ x− 1. To define the other elements, let Y ⊂ X be two
a-invariant disjoint unions of intervals in (−∞, 0) and let f1 be a diffeomorphism supported on X
that agrees with b on Y in some neighborhood of −∞. Let f2 = f−1

1 ◦ b, which, in a neighborhood
of −∞, is supported on the a-invariant set R \ Y . Let gi be arbitrary diffeomorphisms of R that
commute with a in a neighborhood of −∞ and have support equal to fix(fi).

For each h ∈ {a, b, f1, f2, g1, g2} the map (s, t) 7→ (s, h(t)) of Sn−1×R extends to a homeomorphism
of R2 fixing 0. (By first conjugating a and b by a strong contraction at −∞ as in Construction
4.3, one may in fact take these to be germs of smooth diffeomorphisms, infinitely tangent to the
identity at 0; in which case fi and gi may be chosen so that these define diffeomorphisms as well.)
Abusing notation slightly, we identify h with the germ of the homeomorphism so defined. These
germs satisfy the relations aba−1 = b2, f1f2 = b, and [fi, a] = [fi, gi] = 1.

Let Γ < G0(n) be the subgroup generated by a, b, f1, f2, g1 and g2, and suppose that φ : Γ →
Homeo(Rn, 0) is a realization. Let B denote the attracting basin for b. The relation aba−1 = b2

implies that B is a-invariant. Note that, if U is a sufficiently small ball about the origin, then
B is the increasing union of the sets

⋃
n>0 a

−1(U); each a homeomorphic image of a ball. Using
this (and the annulus theorem), we can parametrize B \ 0 by Sn−1 × R, on which φ(b) acts by
(s, t) 7→ (s, t− 1). We now claim that the attracting basin for φ(a) has closure contained in B, and
will show this by finding an a-invariant set properly contained in B. Take a fundamental domain
Sn−1 × [0, 1] for φ(b); the relation aba−1 = b2 implies that the image of any fundamental domain
for b under a is a fundamental domain for b2. Now φ(a)(Sn−1 × [0, 1]) is compact so contained in
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Sn−1 × [−M,M ] for some M , hence φ(a)−1(Sn−1 × [−2M, 2M ]) is a fundamental domain for b2M

containing [0, 1], thus contained in Sn−1 × [−2M, 2M ]. This gives an a-invariant compact set with
closure contained in B, as desired.

Finally, since φ is a realization, we known the germ of φ(gi) at 0: in a neighborhood of 0 the
homeomorphism φ(gi) is supported on the disjoint union of an annulus A ∼= Sn−1 × I with its
images under φ(a)n for n ∈ N. Since gi and a commute, the boundary of the basin of attraction
of a is equal to the set of accumulation points of the iterates a−n(A), for n > 0. Since gi and fi
commute, this set of accumulation points is fi-invariant. But f1f2 = b, contradicting the fact that
there is no b-invariant set contained in B \ {0}.

Despite the elementary nature of this example, the algebraic structure of groups of germs is far
from understood. As well as the problems raised in the introduction, we ask (expecting the answer
to be positive):

Question 3.3. Can Gr(n) and Gr(m) be distinguished by their finite subgroups? What about
finitely-generated, torsion-free subgroups? Realizable subgroups?

Question 3.4. Fix n > 1. Can Gr(n) and Diffr(Rn) be distinguished by their finitely-generated,
torsion-free subgroups?

3.2 C1 techniques: linear representations and Thurston stability

In [Ghy91], Ghys proved the following non-realization result for boundary maps.

Theorem 3.5 (Ghys). There is no section of the natural restriction map Diff1
0(Dn)→ Diff1

0(Sn−1).

In the case when n is even, the proof actually gives a finitely-generated subgroup Γ ⊂ Diff∞0 (Sn−1)
which has no realization in Diff1

0(Dn), we give a sketch below.

Proof sketch – even dimensional case. Supposing n = 2k, identify Sn−1 with the unit sphere
{(z1, ...zk) ∈ Ck |

∑
|zi|2 = 1}. Let µ1, . . . , µk be distinct pth roots of unity for some prime

p > n, and define an order p diffeomorphism f : (z1, . . . , zk) 7→ (w1z1, . . . , wkzk). One can explicitly
write f as a product of commutators f = [a1, b1] . . . [aj , bj ] such that ai and bi all commute with
f . Let Γ = 〈f〉 × 〈a1, . . . , bj〉. Supposing that φ is an extension, φ(f) is a finite order element of
Diff1

0(Dn) with no fixed points on Sn−1 hence has an interior fixed point (by Brouwer). Smith theory
says that the action of φ(f) on the doubled disc (i.e. Sn) has fixed set equal to a mod-p homology
sphere; since this fixed set is disconnected, it must be a 0-sphere. One concludes that φ(f) has a
single fixed point, say x ∈ Dn, preserved by φ(ai) and φ(bi) since these commute with φ(f). Since x
is an isolated fixed point, the derivative Dφ(f)x is a linear map of order p and full rank. However,
the centralizer of such a map in GL(n,R) is abelian, so Dφ(f)x =

∏
[Dφ(ai)x, Dφ(bi)x] = 1,

contradiction.

The tension here comes from forcing a global fixed point (through Smith theory and the algebraic
structure of Γ), then using the constraints from the algebraic structure of Γ on the linear repre-
sentation given by taking derivatives at that point. It would be interesting to see if this line of
argument can be improved to even dimensional spheres – because there is no fixed-point free finite
order map of S2k, Ghys’ argument in this case is more involved and uses simplicity of the full
diffeomorphism group. Torsion elements also play an essential role in the argument, so the following
question remains open in all cases except n = 2.

Question 3.6. Does there exist a torsion-free, finitely-generated G ⊂ Diff0(Sn−1) with no section
to Diff0(Dn)?

12



The n = 2 is covered in [Man13], and parallels the strategy in Ghys’ proof above. Distorted elements
in G are used as a substitute for torsion elements, and work of Franks and Handel on distorted
surface diffeomorphisms is used as a substitute for Smith theory to force an isolated fixed point.
To complete the second half of the argument, one needs an element with nontrivial, finite-order,
derivative at the fixed point; this is accomplished using rotation numbers.

In the absence of a nontrivial linear representation, Thurston’s stability theorem gives an alternative
– and more powerful – tool whenever one has a C1 action with global fixed point.

Theorem 3.7 (Thurston stability [Thu74]). Let M be a manifold, x ∈M , and let G be finitely-
generated group of germs of C1 diffeomorphisms fixing x and with trivial derivative at x. Then
there is a surjective homomorphism G→ Z.

The proof uses a clever renormalization procedure to compare growth of higher order terms. A nice
exposition can be found in [CC00, §6.2].

Application 3.8. A typical application of Theorem 3.7 is as follows: suppose Σ is a surface and
x an accumulation point of fixed points for G ⊂ Diff1(Σ). Then the linear representation of G
by taking derivatives at x either gives a homomorphism to Z via determinant, or via conjugation
to the unipotent subgroup ( 1 ∗

0 1 ), or is trivial. In the last case, Thurston stability produces a
homomorphism to Z. Thus, to apply this reasoning to a non-realization problem in Diff1(Σ), one
aims to force the existence of accumulation points of fixed points for a finitely-generated subgroup
G with H1(G;Q) = 0.

As an illustrative example, here is a special case of a result of Salter-Tshishiku.

Theorem 3.9 (Salter-Tshishiku [ST16]). Let n ≥ 5. There is no realization of Diff1(D2, zn)→ Bn.

Proof. Suppose φ : Bn → Diff1(D2, zn) is a realization. The commutator subgroup of Bn is finitely
generated, and by a theorem of Gorin–Lin, is perfect provided that n ≥ 5. Let x be a point in
the frontier of fix(φ([Bn, Bn])), which is nonempty since φ(Bn) pointwise fixes ∂D2. Now use the
argument from Application 3.8 to derive a contradiction.

Salter–Tshishiku actually prove the stronger result that, for any surface Σbg,n (possibly with b = 0)

the surface braid subgroup of Mod(Σb
g,n) is not realized by C1 diffeomorphisms whenever n ≥ 6,

then use the same technique to re-prove Morita’s non-lifting Theorem 2.12 in class C1 for surfaces
of genus g ≥ 2. The idea is as follows: Supposing that a realization Modg → Diff1(Σ) exists, let
f ∈ Modg be the hypereliptic involution. The Lefschetz fixed point theorem implies that φ(f) has
2g + 2 fixed points; these are permuted by the centralizer of f . Using Dehn twists about explicit
curves, one produces a subgroup of the centralizer isomorphic to a quotient of B2g+2, acting with a
global fixed point, and applies a Thurston stability argument to derive a contradiction.

We will show in §4 that B3 can be realized by (smooth) diffeomorphisms of a disc with three marked
points; however, the following are open.

Question 3.10. Can B4 be realized by diffeomorphisms?

Question 3.11. For n > 3, can Bn be realized by homeomorphisms of the marked disc?

Question 3.12. The argument of [ST16] does not generalize to finite index subgroups. For n ≥ 4,
is there a finite index subgroup of Bn that can be realized by diffeomorphisms? What about by
homeomorphisms? As a particular case, what about the pure braid group Pn := ker[Bn → Sn] ?
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3.3 Franks–Handel nonlifting

Franks and Handel have a different proof of a general version of Morita’s nonlifting Theorem 2.12
for genus ≥ 3.

Theorem 3.13 (Franks–Handel [FH09]). Let f ∈ Modg preserve a genus h ≥ 1 subsurface S, and
be pseudo-Anosov on S and isotopic to the identity on Σg \ S. Let H ∼= Mod(Σg \ S) ⊂ Modg be
the subgroup of mapping classes of diffeomorphisms pointwise fixing S; this centralizes f . Provided
that Σg \ S has genus at least 2, 〈f,H〉 cannot be realized in Diff1(Σg).

The proof uses two of the dynamical tools we have discussed: Thurston stability and basins of
attraction. The additional ingredients are a) the theory of prime ends – a compactification method
compatible with group actions on open, connected, simply connected domains in the plane – and b)
the Thurston–Nielsen classification of mapping classes and the dynamics of their boundary maps,
which we describe next. Notably, the proof does not use torsion in Mod(Σ).

The Thurston–Nielsen classification. Building on work of Nielsen [Nie44], Thurston [Thu88]
gave a classification of elements of the mapping class group of a surface. Each φ ∈ Modg has
a representative homeomorphism which is either finite order, pseudo-Anosov, or reducible. A
homeomorphism f being Pseudo-Anosov means that the surface admits two f -invariant transverse
measured foliations, whose transverse measures are expanded by λ and 1/λ (respectively), for some
λ > 0. The foliations may have finitely many singularities, each a p-pronged saddle, for some p.
Reducible means that there is a finite collection A of disjoint simple closed curves invariant under f
such that, after passing to a power that fixes each curve, f preserves a small tubular neighborhood
N(A) of A, and acts on each connected component of Σ \N(A) separately either by the identity, a
pseudo-Anosov homeomorphism, or possibly a Dehn twist if the component is an annulus. The
structure of reducible elements is discussed more in §4.2.

Any homeomorphism f of Σ can be lifted to a homeomorphism of the universal cover Σ̃ ∼= H2. The
lift is a quasi-isometry of H2 so extends to a homeomorphism of the boundary S1 of the Poincaré
disc. Thinking of the mapping class group as the group of outer automorphisms of π1(Σ); a choice of
lift of f fixes a choice of representative automorphism corresponding to the mapping class of f , and
the action of the lift on S1 agrees with the action of the automorphism on the Gromov boundary
of π1(Σ). Thus, if f and g are isotopic, two isotopic lifts determine the same boundary action;
and the Thurston–Nielsen classification above gives a helpful way to understand the boundary
action of mapping classes, as will be used in the proof below. Thurston’s survey [Thu88] is a good
introduction to this theory; more details can be found in [FM12, §13] and [FLP79].

Using this machinery, we now sketch the proof of Franks and Handel’s theorem. Their exposition
is focused on the dynamics of homeomorphisms of the disc with fixed points; we focus on the
dynamics of pseudo-Anosov mapping classes applicable to this situation.

Proof sketch of Theorem 3.13. Suppose for contradiction that φ : G = 〈f,H〉 → Diff1(Σg) is a
realization. One may check directly from a presentation of H that H1(H;Z) = 0, so the goal is to
find an accumulation point of global fixed points for φ(H) and apply Thurston stability.

We first lift φ to an action on the universal cover, and study its action by homeomorphisms on
the compactification of Σ̃g ∼= H2 as D2. Let a be a pseudo-Anosov representative of f on S. After
passing to a power of a (and f) if needed, we may assume a fixes a point x ∈ S, and (after a further

power) also fixes all leaves through x. Choose a connected component S̃ of the preimage of S in H2

and take a lift ã fixing x̃ ∈ S̃. Then the boundary action of ã has a finite, even number of fixed
points, alternately attracting and repelling, corresponding to the endpoints of the leaves of the
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(lifted) foliations that pass through x̃. If x is a non-singular point, there will be two attractors
and two repellers, otherwise, for a p-pronged singularity, there are p of each. Let f̃ be the lift of
φ(f) with boundary action agreeing with ã; these lifts have the property that f̃ and ã are isotopic.

There is also a canonical choice of lift H̃ of φ(H) pointwise fixing ∂S̃ ⊂ ∂H2. This will commute
with f̃ , giving a well-defined lift of φ.

The next step is to understand the dynamics of the action of f̃ on the interior of the disc. Although
f is only isotopic to a, so a priori it can have very different dynamics, we claim that the attracting
points of f̃ on the boundary really are attractors, in the sense that there exists an open neighborhood
W ⊂ D2 of each such point p with the property that f̃n(W ) converges to p. To see this, we use the
fact that f is a quasi-isometry of D2, so there exists K such that the image of each geodesic under f
is a K-quasi-geodesic. Also, since f̃ and ã are isotopic, there exists K ′ such that d(f̃(x), ã(x)) < K ′

(in the hyperbolic distance) for all x ∈ H2. Recall also that a expands length along the singular leaf
L ending at p by some λ > 1. Let γ be a bi-infinite geodesic perpendicular to a passing through L
at distance t from x̃. Then f̃(γ) is a K quasi-geodesic passing through a point at distance K ′ from
a point distance λt from x̃ along L, and it is easy to verify that whenever t is sufficiently large, f̃(γ)
is contained inside the hemisphere cut out by γ. This suffices to show that p is an attracting point.

Let U denote the basin of attraction of f̃ at p (as defined in Section 3.1). Since f̃ and H̃ commute,
and H fixes p, the basin U is H̃-invariant. An easy improvement of this argument shows that, in
fact, for every h̃ ∈ H̃, there exists n ∈ N such that for each attractor or repeller z of f̃ in ∂H2, the
map f̃nh̃ has z as an attractor (or repeller) with the same basin at z as f .

U

p

y

q

Figure 1: Dynamics of f̃ on H2

Now we find a point y ∈ H2 fixed by any such homeomorphism f̃n ◦ h̃. As an easy case, suppose U
were an open ball with boundary topologically an embedded circle C. Let y be the closest point of
fix(f̃n ◦ h̃) ∩ C to the right of the repelling point q adjacent to p, as indicated in the figure. Using
the fact that f and H commute, one shows this “first point” for f̃n ◦ h̃ is actually independent of
h, and so fixed by each such f̃nh̃. When h = id, we may take n = 0, so this shows it is also a fixed
point of f̃ , and hence of H̃ as well. In general, U is not necessarily a homeomorphic disc with circle
boundary, but one can show that U is open, connected, and simply connected, and thus replace
∂U in the argument above with the prime end compactification of U to finish the argument in an
analogous manner.

This gives us a single fixed point for φ(H) in Σg. To produce infinitely many more, one repeats
the argument above using other powers of a. It is a standard fact (a consequence of Poincaré
recurrence) that pseudo-Anosov diffeomorphisms have infinitely many periodic points – in fact, a
dense set in the surface. See [FM12, §14]. These are partitioned into (infinitely many distinct)
Nielsen classes, where x and y are said to be equivalent if there exists a lift of an to H2 that fixes
both x and y. The argument we gave above produced a global fixed point y for φ(H) in the same
Nielsen class as the original periodic point x of a. Thus, starting with points from different Nielsen
classes for a will produce infinitely many distinct fixed points for φ(H), which must accumulate
somewhere on Σ. This is what we needed to show.
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3.4 Obstructions to realizing non-discrete groups: forcing continuity

We return to discussing realization problems for large (non finitely-generated) subgroups under
the “restrict-to-boundary” map. Groups of quasiconformal homeomorphisms are an interesting
case. Quasiconformal mappings are those with “bounded deviation” from conformal maps: as a
special case, if f is a differentiable map defined on an open domain U ⊂ C, f is quasiconformal

if supp∈U
|fz(p)|+|fz̄(p)|
|fz(p)|−|fz̄(p)| is finite. There are other formulations of the definition which apply to

homeomorphisms of arbitrary metric spaces. The pseudo-Anosov maps from the Thurston–Nielsen
classification above give examples of quasiconformal homeomorphisms between Riemann surfaces;
indeed one approach to proving the classification (due to Bers [Ber78]) is through the theory of
quasiconformal maps.

A quasiconformal homeomorphism of a surface with boundary restricts to what is called a quasi-
symmetric homeomorphism of S1. Thus, there is a natural surjection QC(D2) → QS(S1). The
section problem for this map was answered negatively by Epstein and Markovic.

Theorem 3.14 (Epstein–Markovic [EM07]). There is no section of the restriction map QC(D2)→
QS(S1).

As explained in [EM07] (and perhaps part of their original motivation) there is a nice connection
between this problem and the Nielsen realization problem for Modg. If QC(D2) → QS(S1) had
a section with the additional property that the extension over PSL(2,R) were the identity, then
the mapping class group Mod(Σg) could be realized by homeomorphisms, as follows: Let G

be the group of all boundary mappings of lifts of homeomorphisms of Σg to D2 = H2. Since
the representative diffeomorphisms from the Thurston–Nielsen classification of mapping-classes
are quasiconformal, these boundary maps are all quasi-symmetric. There is an exact sequence
π1(Σg)→ G→ Mod(Σg). Assuming a section as above, let φ be a lift of G to QC(D2); then π1(Σg)
acts by Möbius transformations. The quotient of φ(G) by φ(π1(Σg)) then gives a realization of
Mod(Σg) in the group of quasiconformal homeomorphisms of Σg.

A major step in Epstein and Markovic’s proof of Theorem 3.14 is to show that any such realization
would be forced to be continuous, and so they ask whether every section of the boundary map
Homeo(D2)→ Homeo(S1) is necessarily continuous. Note that at least one section exists, namely
from “coning off” the circle to the disc. More generally, one can ask the following.

Question 3.15. Let M be a manifold with boundary, fix r > 0, and suppose that Diffr0(M) →
Diffr0(∂M) admits a section. Is that section necessarily continuous?

Only two results are known in this direction, one in C∞ and one in C0 regularity. Both prove
something much stronger than the answer to the question above, but both use their respective
assumptions on regularity in an essential way.

Theorem 3.16 (Hurtado [Hur15]). Let M and N be closed manifolds, and φ : Diff∞0 (M) →
Diff∞0 (N) any homomorphism. Then φ is continuous.

Theorem 3.17 ([Man16]). Let M be a closed manifold and G a separable topological group. Any
homomorphism φ : Homeo0(M)→ G is continuous.

We conclude this section with three additional open questions.

Question 3.18 (Epstein–Markovic). Fix n > 2. Does the map QC(Dn)→ Homeo(Sn−1) have a
section over its image?

Question 3.19. Let M be a manifold with boundary. If Diffr0(M)→ Diffr0(∂M) admits a section,
what can one say about the topology of M? Are there examples where the action of Diffr0(∂M)
does not preserve a foliation?
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For Diff∞0 this question was asked by Ghys [Ghy91], who also asks specifically whether the map
admits a section when M is a handlebody.

4 Positive results

4.1 Automorphisms, blow-ups and smoothings

The mapping class group of the torus Mod1,1
∼= Mod1

∼= SL(2,Z) is realized by linear diffeomor-
phisms of T2 := R2/Z2 (with 0 as a marked point). Automorphism groups of translation surfaces
are a natural generalization of this example.

A translation surface is a surface with the additional structure of a holomorphic 1-form; equivalently,
it is a surface obtained by taking a finite collection of polygons in R2 and identifying parallel sides
in pairs by translations. Such a surface inherits a singular Euclidean structure with finitely many
cone singularities, each with angle a positive multiple of 2π. An (orientation preserving) affine
automorphism of a translation surface X is a homeomorphism of X that permutes its singularities
and is locally in Aff+(R2) at all other points. These form a group, denoted Aut+(X).

While the automorphism group of the square torus includes both SL(2,Z) and all translations in
R2/Z2, when a translation surface X has at least one singularity, the map Aut+(X)→ Mod(X)
is always injective. By definition Aut+(X) < Mod(X) is realized by homeomorphisms, but not
obviously by diffeomorphisms. In this section, we discuss techniques that allow one to promote an
action by homeomorphisms to a smooth action, and use this to realize affine automorphisms and
other groups.

Realizing Aut+(X) by diffeomorphisms. Let X be a translation surface with holomorphic
1-form ω. Assume X is not a flat torus, so has at least one singularity. Taking the linear parts of the
defining affine maps gives a homomorphism Aut+(X)→ SL(2,R) whose image, denoted SL(X,ω),
is a discrete subgroup. This subgroup may be finite covolume or not, but is never cocompact. (For
a gentle introduction, see [Sch11].) We show how to realize Aut+(X) by diffeomorphisms, under
the simplifying assumption that SL(X,ω) is finitely generated.

In this case, SL(X,ω) has a presentation of the form

〈a1, b1, . . . , ag, bg, c1, . . . , cm, d1, . . . , dn | [a1, b1] · · · [ag, bg]c1 · · · cmd1 · · · dn, (ci)qi〉

where qi ∈ N, n ≥ 1 and g,m ≥ 0. Let p1, . . . , pk denote the singularities of X. The stabilizer of
pi is a finite index subgroup of SL(X,ω), so finitely generated and of the form above. The open
surface X \ {p1, . . . , pk} can be compactified by adding a circle of “straight line directions” at each
end, giving a surface X with k boundary components, to which the action of Aut+(X) extends.

If p1 has cone angle 2πM , its stabilizer in SL(X,ω) acts on the circle of directions by lifts of the
linear action of SL(2,R) on the circle of rays from the origin in R (topologically a circle) to the
M -fold cover of this circle. Other elements of the stabilizer in Aut+(X), if any, act by rotations of
order k/M , commuting with the lifted linear action.

This action can be smoothly isotoped to one where, using the presentation above, all the ai, bi, and
d1, . . . , dn−1 act trivially, and the ci and dn lie in SO(2) (we do not change the action of elements
not in SL(X,ω)). To do this, work within the cyclic extension of SL(2,R) by Z/MZ in which
these elements lie, and isotope ai, bi, and di, smoothly towards the identity, while isotoping each ci
(through the space of order qi elements) to rotations. The product [a1, b1]...[ag, bg]c1...cmd1...dn−1

varies smoothly through the isotopy, so can be taken to define an isotopy of d−1
n . This isotopy
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of the action allows one to “cone off” the circle to a disc, extending the action of the stabilizer
smoothly over the disc. A variation of this argument is given in detail in the next example.

If Aut+(X) acts transitively on the singularities, this is enough to determine a smooth action of
Aut+(X) on a closed surface obtained by gluing discs to each boundary component of X (which is
topologically the surface X). If not, repeat the procedure for each orbit of the action.

A realization of B3 by diffeomorphisms. Thurston observed that the braid group B3 could
be realized by homeomorphisms. Building on our work above, we describe his construction and
prove the following.

Theorem 4.1. There is a section of Diff∞∂ (D, z3)→ Mod(Σ1
0,3) = B3.

Proof of Theorem 4.1. Consider the linear action of SL(2,Z) on T2 = R2/Z2. The center {±1} of
SL(2,Z) acts on T2 as the hyperelliptic involution; it has four fixed points {0} ∪ {p1, p2, p3}, which
SL(2,Z) permutes (later we will use that these points are p1 = (0, 1

2 ), p2 = ( 1
2 ,

1
2 ), p3 = ( 1

2 , 0), when
viewed in R2). The point 0 is a global fixed point and SL(2,Z) acts on p = {p1, p2, p3} transitively.
The quotient PSL(2,Z) = SL(2,Z)/{±1} acts on the quotient T2/{±1}, which is a sphere with
four cone points, each of angle π. (In the language of the previous section, this sphere is a half
translation surface, or Riemann surface equipped with a quadratic differential.)

Since 0 is a global fixed point, we can compactify T2/{±1} \ {0} by adding a circle of directions at
0, obtaining an action of PSL(2,Z) on a disk with 3 marked points Σ1

0,3 = (D2,p).

To relate B3 to PSL(2,Z), note that there is an exact sequence 1→ Z→ B3 → PSL2(Z)→ 1. On
the level of mapping class groups, the projection B3 → PSL(2,Z) is equal to the map

B3 ' Mod1
0,3 → Mod0

0,4 ' (Z/2Z× Z/2Z) o PSL(2,Z)→ PSL(2,Z)

induced by the map Σ1
0,3 → Σ0

0,4 that collapses the boundary component of to a point (see [FM12,
Prop. 2.7]). On the group level PSL(2,Z) ' Z/2Z ∗ Z/3Z = 〈x, y : x2 = 1 = y3〉, and B3 has a
presentation 〈a, b : a2 = b3〉, with B3 → PSL(2,Z) the obvious homomorphism. Thus, we can view
the PSL(2,Z) action on (D2,p) as a non-faithful action of B3. To obtain a smooth realization of
B3, we will (1) isotope the action of x, y ∈ PSL2(Z) on the ∂D2 to the identity, preserving the
relation x2 = y3 to get an action by homeomorphisms, and (2) glue discs in at singularities, as we
did for translation surfaces above, to smooth the action.

For (1), attach an annulus A ' S1 × [0, 1] to ∂D2 along S1 × {0}, enlarging the disc. Under
suitable parameterization, a ∈ B3 acts on ∂D2 by a standard order two rotation, and b by an
order 3 projectively linear map. Let bt, 0 ≤ t ≤ 1/2 be a smooth path of conjugates of b through
PSL(2,R) such that b0 = b, and b1/2 ∈ SO(2). Now extend this to a smooth path through SO(2)
for 1/2 ≤ t ≤ 1, with b1−ε = id for all small ε. Let at be a smooth path in SO(2) from a0 = a
to a1 = id such that a2

t = b3t for all t. Defining a, b on S1 × {t} ⊂ A to agree with at, bt gives an
extension of the action to a smooth action on the annulus that is identity in a neighborhood of
S1 × {1}.

For (2), as in the argument for translation surfaces, compactify D2 \ p by a circle Ci of straight
line directions at each pi. Observe that the action of PSL(2,Z) on C1 ∪ C2 ∪ C3 is the action of
PSL(2,Z) on the projectivized unit tangent circles at p1, p2, p3 (which we may identify using the
natural trivialization of TD2). Under our identification we have

a : C2 → C2 is the identity, a : C1 → C3 agrees with
(

0 −1
1 0

)
∈ PSL(2,R),

b : Ci → Ci+1 agrees with
(

0 −1
1 1

)
∈ PSL(2,R).

(4.1)
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Glue a disc Di to each Ci and fix smooth collar neighborhoods of Ci ⊂ Di parametrized by Ci×[0, 1].
To extend to this collar, we can choose smooth isotopies of a and b from the maps in (4.1) to the
identity, and extend the action to ∪iCi × {t} by at, bt, so that a0, b0 agree with rigid translations
on ∪iCi × {0}. Then we can extend the action to the rest of Di by rigid translations. The result is
an action by diffeomorphisms of a and b on a disc, fixing the boundary pointwise, and permuting
the centers of D1, D2 and D3, which we take as three marked points. The reader may easily check
that the mapping classes of a and b agree with the standard generators of B3, as required.

Building on this line of argument, we also give a positive answer to Nariman’s question mentioned
at the end of Section 2.

Theorem 4.2. Let z = z2g+2 for some g ≥ 1. There is a continuous homomorphism ψ :
Diff(D, z)→ Diff(Σ2

g, ∂Σ2
g) that induces the geometric homomorphism B2g+2 → Mod2

g on mapping
class groups.

While Nariman showed there is no cohmological obstruction to this lift, the existence of the realization
is somewhat surprising, given a few of the results we have already mentioned. Specifically, Theorem
3.9 implies that ψ cannot be obtained by a map that factors through B2g+2, and Theorem 3.16
(which has a variation for manifolds that are not closed) also implies that such a map ψ should
essentially be continuous, with further work of Hurtado implying that its restriction to the subgroup
Diffc(D, z) of diffeomorphisms fixing a neighborhood of z (which we know to be nontrivial by
[ST16]) must be obtained by embedding copies of covers of the open, punctured disc into Σ2

g. This
suggests, at least vaguely, that ψ would have to be obtained by branching the punctured disc over
z, an inherently non-smooth construction.

The proof uses two constructions, one a trick for smooth gluing, and the other a classical “blow up”
procedure similar to the technique above to deal with singularities of translation surfaces.

Construction 4.3 (Smoothing actions glued on a codimension 1 submanifold). Let G be a group
acting by smooth diffeomorphisms on manifolds S1 and S2. Let X1 and X2 be diffeomorphic
connected components of ∂S1 and ∂S2 respectively, and let S be the manifold obtained by gluing
S1 and S2 by a diffeomorphism X1 → X2. If, for each g ∈ G, the action of g on X1 agrees with
that on X2 under the identification used in the gluing, then there is an obvious induced action of
G on S by homeomorphisms. However, this is conjugate to an action by smooth diffeomorphisms
on S. The conjugacy can be obtained by a map f : S → S which is the identity outside a tubular
neighborhood of the glued boundary components, and in the tubular neighborhood (identified with
X × [−1, 1], with the glued boundary components at X × {0}) is locally a very strong contraction
at 0; taken strong enough so that fgf−1 becomes infinitely tangent to the identity in the direction
transverse to the boundary at X×{0} . Details are worked out in [Par15] using the local contraction

(x, y) 7→ (x, e
−1

e−1/|y| ).

Construction 4.4 (Blow-up). Let p = {p1, p2, ..., pk} be a finite set of points in a manifold
Mn. The (oriented) blowup of M at p is a smooth manifold M̂ obtained from M by replacing
each x ∈ p with the space of directions T 1

xM ' Sn−1 in its tangent space. There is a natural
projection Φ : M̂ → M that is a diffeomorphism away from p, and a natural injection Φ∗ :
Diffr(M,p)→ Diffr−1(M̂) for r ≥ 1. In particular, any C1 action on (M,p) induces an action on
M̂ by homeomorphisms.

Proof of Theorem 4.2. Our strategy is to first build a map φ : Diff(D, z)→ Diff(D, z), which has
image in a subgroup that acts on a given neighborhood of z by translations, and also induces the
identity map Bn → Bn. Building this map is the bulk of the construction. Given such a map φ,
the diffeomorphisms in its image can then be lifted to diffeomorphisms of a cover branched over z
as described above.
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Figure 2: Gluing copies of D blown up at one point of z into a copy of D blown up at z

To start, apply Construction 4.4 to blow up D at the set z. The new surface obtained (call it D0)
has n+ 1 boundary components, one corresponding to the original boundary ∂ of the disc, and the
others corresponding to the blown up points.

Enumerate z = {z1, z2, ..., zn} and for i = 1, 2, ..., n, let Di be a blow-up of D at {zi}. Glue each Di

to D0 along the blow-up of zi, using the identity map on the space of tangent directions at zi. The
result is an (n+ 1)-holed sphere. Now embed this (n+ 1)-holed sphere into D with the boundary
component ∂ mapping to ∂D. The result is pictured in Figure 2; boundary components of the Di

are labeled by their images under the map from the blow-up construction.

Let C1, C2, ...Cn be the connected components of the complement of the image of the embedding
(shown in white on the figure). We may arrange the embedding so that each Ci is a round disc
of radius ε, centered around the marked point zi on the original disc D (shown as midpoints of
the white regions of the figure). Construction 4.4 gives a natural homomorphism from Diff(D, z)
to Diff(Di). These actions of Diff(D, z) on the various Di for i = 0, 1, ..., n agree on their glued
boundary components, so Construction 4.3 produces a homomorphism from Diff(D, z) to the
diffeomorphisms of the n+ 1 holed sphere that was obtained by gluing the Di together. We identify
this surface with the image of its embedding in D. Since elements of Diff(D, z) fix a neighborhood
of ∂D pointwise, we may also arrange the embedding so that this action permutes the boundaries of
the complementary discs Ci by rigid translations. Thus, the action naturally extends to an action
on D by diffeomorphisms, permuting the discs Ci by translations. In particular, the set of midpoints
of the Ci is preserved, so this action is by elements of Diff(D, z). Let φ : Diff(D, z) → Diff(D, z)
denote this action.

Finally we check that φ induces the identity map on the quotient Bn = Diff(D, z)/Diff0(D, z). By
design of our blow-up, gluing, and embedding, if f(zi) = zj , then φ(f) maps Di to Dj , hence maps
Ci to Cj , and its center point zi to zj .

We may now quickly finish the proof. As explained in §2, there is an injective map Ψ : Diff(D, z)→
Homeo∂(Σ2

g). Consider the map Ψ◦φ : Diff(D, z)→ Homeo∂(Σ2
g), which agrees with Ψ on mapping

class groups. Each diffeomorphism in the image of φ has trivial (i.e. constant ≡ id) derivative in a
neighborhood of each z ∈ z, so its image under Ψ is smooth everywhere. Thus, Ψ ◦ φ gives the
desired map Diff(D, z)→ Diff∂(Σ2

g).

4.2 Realizing free abelian and right-angled Artin groups

Recall from §3.3 the Nielsen–Thurston classification of elements of Mod(Σ) (finite order, reducible,
pseudo-Anosov). We now discuss reducible elements in more detail. By definition, a reducible
φ ∈ Mod(Σ) admits a reduction system, a finite collection A of disjoint isotopy classes of simple
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closed curves that is invariant under φ. The intersection of all maximal reduction systems is called
the canonical reduction system Aφ.

Birman–Lubotzky–McCarthy [BLM83] use reduction systems to show that all solvable subgroups
of Mod(Σb

g,n) are virtually abelian, and give a (sharp) bound on the torsion-free rank of abelian
subgroups. Farb [Far06b, Ch. 2, §6.3] remarks (without proof) that their perspective can be used
to show that all free abelian subgroups Zn < Modbg,m can be realized by homeomorphisms. In
essence, since the image of a reduction system A for φ under some element ψ is a reduction system
for ψφψ−1, whenever Γ < Mod(Σbg,n) is abelian, then the union

⋃
φ∈ΓAφ is a reduction system for

each element of Γ, and restrictions of commuting elements to subsurfaces are necessarily either
powers of the same pseudo-Anosov, or of the same Dehn twist, or possibly the identity. From
there (proceeding with some care on annular neighborhoods of the reducing system) one can choose
commuting representative homeomorphisms for elements of Γ.

A natural next step is to generalize this strategy to right-angled Artin subgroups of Mod(Σ). A
right-angled Artin group A(G) is defined by a finite undirected graph G = (V,E) via

A(G) = 〈x ∈ V | [x, y] = 1 if {x, y} ∈ E〉.

Hence, free groups (which are always realizable) correspond to totally disconnected graphs, and
free abelian groups to complete graphs. There are many other interesting RAAG subgroups of
mapping class groups, see [Kob17, §8] and references therein.

Question 4.5. Is every right-angled Artin subgroup A(G) < Mod(Σ) realized by homeomorphisms?

We remark that the reduction-system strategy above seems to go through in some special cases; for
instance, if A(G) < Mod(Σ) is such that each x ∈ V fixes each curve in Ax. However, there are
many RAAG subgroups that do not have this property.
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