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Abstract. We give general classification and structure theorems for ac-
tions of groups of homeomorphisms and diffeomorphisms on manifolds,
reminiscent of classical results for actions of (locally) compact groups.
This gives a negative answer to Ghys’ “extension problem” for diffeo-
morphisms of manifolds with boundary, as well as a classification of all
homomorphisms Homeo0(M) → Homeo0(N) when dim(M) = dim(N)
(and related results for diffeomorphisms), and a complete classification
of actions of Homeo0(S1) on surfaces. This resolves many problems in a
program initiated by Ghys, and gives definitive answers to conjectures
of Militon and Hurtado and a question of Rubin.

1. Introduction

Let M be an oriented, closed manifold. It is a basic problem to under-
stand the actions of Homeo0(M) and Diffr0(M) (the identity components of
the group of homeomorphisms or Cr diffeomorphisms of M , respectively) on
manifolds and other spaces. This is the analog of representation theory for
these large transformation groups; and our work gives structure theorems
and rigidity results towards a classification of all possible actions.

Natural examples of continuous actions of Homeo0(M) and Diffr0(M) on
other spaces are induced by modifications of M : taking products with other
manifolds, considering configuration spaces of points on M , taking lifts to
covers, and also passing to some fiber bundles. For example, Diff1

0(M) acts
naturally on the tangent bundle of M . Understanding to what extent these
examples form an exhaustive list is a long-standing, basic question. This
article gives a complete (and positive) answer to several precise formulations
of this question, including those appearing in [10, 14, 22, 28]. For example,
among other results, we prove the following:

Theorem 1.1. If M is a connected manifold and Homeo0(M) acts transi-
tively on a finite-dimensional connected manifold or CW complex N , then
N is homeomorphic to a cover of the configuration space Confn(M) of n
points in M , and the action on N is induced from the natural action of
Homeo0(M) on Confn(M).

Theorem 1.2. Suppose M is a connected, closed, smooth manifold and N is
a connected manifold with dim(N) < 2 dim(M). If there exists a nontrivial
continuous homomorphism ρ : Diffr0(M) → Diffs0(N), then the action ρ on
N is fixed point free and N is a topological fiber bundle over M .
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Before stating our general results, we motivate this work by listing specific
instances of the “basic question” advertised above, all of which we eventually
answer.

1.1. History and motivating questions. Understanding actions of home-
omorphism groups and diffeomorphism groups on manifolds has a long his-
tory. Rubin [28], asked generally for topological spaces X and Y if there were
“any reasonable assumptions” under which “the embeddability of Homeo(X)
in Homeo(Y ) will imply that X is some kind of continuous image of Y .”
Implicit in work of Whittaker [32] and Filipkiewicz [9] in the 60s and 80s
on automorphisms of Homeo0(M) and Diffr0(M), and isomorphisms among
such groups, is the problem to classify the endomorphisms of these groups.

More recent and more specific instances of this question include Ghys’
work [10], where he asks whether the existence of an injective homomor-
phism Diff∞0 (M) → Diff∞0 (N) implies that dim(M) ≤ dim(N). (This was
answered positively by Hurtado in [14], but those techniques do not apply
to the corresponding problem for groups of homeomorphisms, or of diffeo-
morphisms of class Cr, r < ∞.) Ghys also asked in which cases groups of
diffeomorphisms of a manifold with boundary admit extensions to the in-
terior: homomorphisms Diff∞0 (∂M) → Diff∞0 (M) giving a group-theoretic
section to the natural “restrict to boundary” map Diff∞0 (M)→ Diff∞0 (∂M).
The main result of [10] is the non-existence of such when M is a ball.

Hurtado [14, § 6.1] asked whether all homomorphisms Diff∞0 (M) →
Diff∞0 (N) (for general M , N) might be “built from pieces” coming from
natural bundles over configuration spaces of unordered points on M . Both
his and Ghys’ questions are equally interesting for homeomorphism groups
as well. Specific to the homeomorphism case, Militon [22] classified the ac-
tions of Homeo0(S1) on the torus and closed annulus, and asked whether
an analogous result would hold when the target is the open annulus, disc,
or 2-sphere. In the same work, he stated the conjecture that, for a compact
manifold M , every nontrivial group morphism Homeo0(M) → Homeo0(M)
is given by conjugating by a homeomorphism.

1.2. Results. We answer all of the questions stated in the subsection above,
including a precise formulation of Rubin’s question (where “reasonable as-
sumptions” in our case are that X and Y are manifolds, and either involve
bounds on the dimension Y in terms of that of X, or that the action on Y
is transitive). We answer Hurtado’s and Ghys’ questions in both the Homeo
and Diffeo case, and show that Militon’s conjecture is false in general (in
particular, it fails for all manifolds of negative curvature), but it fails for only
one reason, and we can describe all manifolds M for which it does hold. We
also complete Militon’s classification of actions of Homeo0(S1) on surfaces,
and separately classify all actions of Homeo0(Sn) on the (n+ 1)-ball, which
is surprisingly different in the case n = 1 and n > 1. We also discuss actions
where M is noncompact, in which case the relevant groups to study are
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Homeoc(M) and Diffrc(M), those homeomorphisms that are compactly sup-
ported and isotopic to identity through a compactly supported isotopy. Note
these groups agree with Homeo0(M) and Diffr0(M), respectively, when M is
compact. All manifolds are assumed boundaryless, unless stated otherwise.

The first step in each of these answers is the following general structure
theorem for orbits.

Theorem 1.3 (Orbit Classification Theorem). Let M be a connected topo-
logical manifold. For any action of Homeoc(M) on a finite-dimensional CW
complex, every orbit is either a point or the continuous injective image of
a cover of a configuration space Confn(M) for some n. If M has a Cr

structure, then for any weakly continuous action of Diffrc(M) on a finite-
dimensional CW complex by homeomorphisms, every orbit is either a point,
or a continuous injective image of a cover of the r-jet bundle over Confn(M)
under a fiberwise quotient by a subgroup of the extended jet group.

See Section 2 for the definition of extended jet groups. Using the conti-
nuity result in [14, Theorem 1.2], this theorem gives an immediate positive
answer to a precise formulation of Hurtado’s question [14, §6.1], namely,
all actions of Diff∞c (M) on another manifold are always built from pieces
(orbits) that are natural bundles over covers of configuration spaces.

As mentioned above, Confn(M) denotes the configuration space of n
distinct, unlabeled points in M , but if M = S1 or M = R, we mean the
configuration space of unlabeled points together with a cyclic or linear order,
since Homeoc(M) does not act transitively on the space of unordered points.
Since Confn(M), and the k-jet bundles (for k ≤ r) are manifolds on which
Homeoc(M) and Diffrc(M) act transitively, all these types examples of orbits
do indeed occur naturally. The next challenge is to

a) determine which covers of configuration spaces can appear (this is
discussed in Section 2 along with its relationship with “point push-
ing” problems) and

b) determine how orbits of various types can be glued together, i.e. how
they partition a fixed manifold or CW complex N on which Diffrc(M)
acts.

While a general classification is difficult, we solve these problems in suffi-
ciently many cases to answer all the open questions mentioned above.

The remainder of the work is organized into three main applications of
the Orbit Classification Theorem, stated below. Although we have stated
these as “applications”, in many cases the Orbit Classification Theorem is
merely the starting point for the result, with the bulk of the proof requiring
many additional techniques.

Automatic continuity. Recent work of Hurtado and the second author
[14, 18] shows that any abstract homomorphism between groups of C∞

diffeomorphisms, or from Homeoc(M) to any separable topological group
(of which all homeomorphism and diffeomorphism groups of manifolds are
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examples), are necessarily continuous when M is compact, and “weakly
continuous” when M is noncompact. See Section 3 for the definition of weak
continuity and further discussion. For actions of Cr diffeomorphism groups,
or actions of smooth diffeomorphism groups of by diffeomorphisms of lower
regularity, such automatic continuity remains open, so we add continuity as
an assumption.

Application I: Structure theorem in restricted dimension. As hap-
pens in the classical study of compact transformation groups, the lower the
dimension of a space on which a group G acts, the easier it is to classify
all actions of G on that space. This is evident, for instance, in the work of
Hsiang and Hsiang [5] classifying actions of compact groups on manifolds,
where a key assumption is that the manifold have dimension bounded by
half the dimension of the group.

The easiest consequence of Theorem 1.3 comes under very strong as-
sumptions on dimension; it gives a counterexample to (but near proof of)
[22, Conj. 1.1] as follows:

Theorem 1.4. Let M be a connected manifold and N a manifold with
dim(N) ≤ dim(M). If there is a nontrivial homomorphism ρ : Homeoc(M)→
Homeo(N), then dim(N) = dim(M), there is a countable collection of cov-
ers Mi of M , and disjoint embeddings φi : Mi → N such that ρ(f) agrees
with φifφ

−1
i on the image of Mi and is identity outside

⋃
i φi(Mi).

Examples of such lifts to covers abound. For example, let Sg be a surface
of genus g ≥ 2, then Homeo0(Sg) lifts to act on every cover of Sg. One
way to see this is as follows: fix a hyperbolic metric on Sg, so the universal
cover can be identified with the Poincaré disc. Then each f ∈ Homeo0(Sg)

admits a unique lift to S̃g that extends to a continuous homeomorphism
of the closed disc, pointwise fixing the boundary. This gives a continuous
action of Homeo0(Sg) on S̃g. Embedding the compactification of the disc in
another 2-manifoldN (or into Sg itself) and extending the action to be trivial
outside the image of the embedded disc gives a nontrivial homomorphism
Homeo0(Sg)→ Homeo0(N).

We also prove a similar result (see Theorem 1.7 below) for continuous
actions of diffeomorphism groups; in this case if M is compact then N is
necessarily a cover of M , and the action on N is transitive. This gives a
new proof of Hurtado’s classification of actions, given his prior results on
continuity.

Weaker restrictions on dimension. With a weaker restriction on the
dimension, we have the following version of a “slice theorem” for actions of
homeomorphism groups.

Theorem 1.5 (Structure theorem for group actions by homeomorphisms).
Let M and N be connected manifolds such that dim(N) < 2 dim(M). If there
is an action of Homeoc(M) on N without global fixed points, then N has the



STRUCTURE THEOREMS FOR ACTIONS OF HOMEOMORPHISM GROUPS 5

structure of a generalized flat bundle over M . When dim(N)−dim(M) < 3,
the fiber F is a manifold as well.

A generalized flat bundle is a foliated space of the form (M̃×F )/π1(M) where

π1(M) acts diagonally by deck transformations on M̃ and on F by some
representation to Homeo(F ). See Section 5. There are many examples of
such actions on generalized flat bundles. For instance, we have the following:

Example. Let Sg be a surface of genus g ≥ 2. There are infinitely many
non-conjugate actions of Homeo0(Sg) on Sg × S1. One such family may be
constructed as follows: lift the action of Homeo0(Sg) to an action on the

universal cover S̃g as described above, and extend this to an action on the

product S̃g×S1 that is trivial on the S1 factor. Now take a homomorphism
ρ : π1(Sg) → Homeo0(S1) with a global fixed point (or any action of this

group on the circle with Euler number zero), and quotient S̃g × S1 by the
diagonal action of π1(Sg) acting by deck transformations on the first factor
and via ρ on the second. The quotient space is topologically Sg×S1 (this is
ensured by the section provided by the global fixed point, or more generally
by an action with 0 Euler number), and the action of Homeo0(Sg) naturally
descends to this quotient. Non-conjugate actions on S1 will produce non-
conjugate examples.

With more regularity, we obtain a stronger result and may remove the
assumption on fixed points.

Proposition 1.6 (No fixed points). Suppose M is a connected, closed
smooth manifold of dimension at least 3, and suppose that Diffr(M) (0 ≤ r ≤
∞) acts continuously on a connected manifold N by C1 diffeomorphisms. If
the action has a global fixed point, then it is trivial.

Theorem 1.7 (Structure theorem for group actions by diffeomorphisms).
Suppose M is a connected, closed, smooth manifold and N is a connected
manifold with dim(N) < 2 dim(M). Let 0 ≤ r ≤ ∞ and 1 ≤ s ≤ ∞. If
there exists a nontrivial continuous action Diffr0(M) → Diffs0(N), then the
action is fixed point free, and N is a topological fiber bundle over M where
the fibers are Cs-submanifolds of N .

In the case where dim(M) = dim(N) and r = s = ∞, this recovers [14,
Theorem 1.3], with an independent proof.

Application II: Extension problems. Let W be a manifold with bound-
ary M . If W has a Cr structure, then there is a natural “restrict to the
boundary” map

Resr(W,M) : Diffr0(W )→ Diffr0(M)

which is surjective. The extension problem, introduced by Ghys in [10], asks
whether Resr(W,M) has a group theoretic section, i.e. a homomorphism ρ
such that Resr(W,M) ◦ ρ is the identity map. In general, one expects that
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the answer may depend both on r and on the topology of W . For simplicity,
we will consider only the case where W and ∂W = M are both connected,
although these techniques can be adapted with some work to cover the case
where ∂W is not connected.

One case where the extension problem has a positive answer is for home-
omorphism groups of balls and spheres. Let Dn+1 be the n+ 1 dimensional
ball and Sn the n-sphere. Then

Dn+1 = {(x, r)|x ∈ Sn, r ∈ [0, 1]}/(x, 0) ∼ (y, 0)

and there is a standard “coning off” action C : Homeo0(Sn)→ Homeo(Dn+1)
defined by C(f)(x, r) = (f(x), r). (Going forward, we refer to this as con-
ing.) We answer [19, Question 3.18] in the following theorem.

Theorem 1.8. Let M be a connected manifold with dim(M) > 1, and sup-
pose π1(M) has no nontrivial action on the interval (e.g. a group generated
by torsion). Then Res0(W,M) has a section if and only if M = Sn and
W = Dn+1.

Theorem 1.9. For n > 1, any section of Res0(Dn+1, Sn) is conjugate to
the standard coning. In fact, any nontrivial action of Homeo0(Sn) on Dn+1

is conjugate to the standard coning.

We actually prove a more general result than Theorem 1.8, see Section 6.
Ghys [10] posed the extension problem for the genus g handlebody in

the smooth category (see also [19, Question 3.15, Question 3.19]). As a
consequence of Theorem 1.7, we not only answer Ghys’ question, but also
answer the section problem for manifolds with boundary, and any regularity
of at least C1.

Corollary 1.10 (No differentiable extensions). Let W be a compact, smooth
manifold with boundary M , and let r ≥ 1. Then Resr(W,M) : Diffr0(W )→
Diffr0(M) does not have a continuous section. If r = ∞, any section is
automatically continuous by [14], and this hypothesis may be removed.

Application III: Homeo0(S1) actions on surfaces. In contrast with
Theorem 1.8, there are infinitely many non-conjugate extension actions of
Homeo0(S1) on D2. For example, in addition to the standard coning, one
may take the action on the open annulus (the configuration space of two
marked points, or PConf2(S1)), with one end naturally compactified to a
circle and the other to a point. Section 8 is devoted to the general classifi-
cation problem posed by Militon in [22]. We prove the following.

Theorem 1.11. For each closed, proper set K ⊂ [0, 1] containing 0, and
a continuous function λ : [0, 1] − K → {0, 1} there is an action ρK,λ :
Homeo0(S1)→ Homeo0(D2); this collection of actions has the property that
any nontrivial homomorphism ρ : Homeo0(S1) → Homeo0(D2) is conjugate
to ρK,λ for some K,λ.
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The construction of these actions is given in Section 8, following Militon.
Militon’s work also tells us exactly which of the actions ρK,λ are conju-
gate (see Section 8), so this gives a complete classification of actions of
Homeo0(S1) on the disc. A similar classification may be obtained by the
same methods for actions of Homeo0(S1) on other orientable surfaces. This
proves [22, Conjecture 2.2].

Structure of the paper.

• In Section 2, we establish a “small quotient subgroup theorem” that
is the main ingredient in our Orbit Classification Theorem.
• In Section 3, we briefly discuss automatic continuity, then prove the

Orbit Classification Theorem, give Theorem 1.1 as an easy conse-
quence, and classify homomorphisms between homeomorphism groups
when dim(M) = dim(N).
• In Section 4, we discuss admissible covers.
• In Section 5, we discuss how orbits fit together and prove a structure

theorem in the C0 category.
• In Section 6, we study the extension problem in the homeomoprhism

case.
• In Section 7, we prove the structure theorem for actions in the Cr cat-

egory, r ≥ 1 and study the extension problem for diffeomorphisms.
• In Section 8, we classify actions of Homeo0(S1) on D2 and other

surfaces.
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2. Small quotient subgroups

2.1. Topological preliminaries. We begin by recalling some basic facts
about the topology of homeomorphism and diffeomorphism groups and con-
figuration spaces. For simplicity, we assume all manifolds are connected, al-
though analogous results hold in the disconnected case, provided one takes
into account the surjections from Homeoc(M) or Diffrc(M) to the home-
omorphism or diffeomorphism groups of any union of connected compo-
nents of M obtained by restriction to those components. When we speak of
Diffrc(M), we tacitly assume that M has a smooth structure. We equip the
groups Homeoc(M) and Diffrc(M) with the standard C0 and Cr compact-
open topologies, respectively.
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It follows from deep work of Edwards–Kirby [6] and Cernavskii [31] that
Homeoc(M) is locally connected (the main result of [6] is that the homeo-
morphism groups of a compact manifold is locally contractible, and the proof
easily gives local connectedness for Homeoc(M) for general M). The follow-
ing is a rephrasing of a simplified version of their major technical theorem
[6, Theorem 5.1] and a key consequence.

Proposition 2.1 ([6]). Let K ⊂M be compact, U any neighborhood of K,
and D ⊂ K a closed (possibly empty) set. Then any embedding of K into U
that is sufficiently close to the identity (i.e. the inclusion) and restricts to
the identity on D can be deformed to the identity through embeddings that
are identity on D, and these embeddings can be taken to have image in U .

Corollary 2.2 ([6], Corollary 7.3). The pointwise stabilizer Stab(X) of a
finite set of points X in M is also a locally connected subset of Homeoc(M).
In particular the quotient of Stab(X) by its identity component is a discrete
subgroup.

Local contractibility and hence local connectedness of Diffrc(M) (and the
relative version fixing a finite set) is classical, a discussion and references
can be found in [2, Chapter 1].

Another important and well-known consequence of the work of Edwards
and Kirby is that Homeoc(M) has the fragmentation property.

Definition 2.3. A subgroup G ⊂ Homeo(M) has the fragmentation prop-
erty if, for any open cover of M , the group G can be generated by homeo-
morphisms supported on elements of the cover.

Note that such a group necessarily lies in Homeoc(M). For Diffrc(M),
fragmentation is less difficult, and may be proved by splitting up a time-
dependent vector field whose time-one flow is the diffeomorphism in ques-
tion, using a partition of unity. See [2, Chapter 2].

Since configuration spaces will play an important role in this work, we
record the following basic tools. Recall that PConfn(M) is defined to be
the complement of the fat diagonal in Mn, and Confn(M) is its quotient by
permutations of the factors.

Proposition 2.4. Let M be a connected manifold and X ⊂M be a finite set.
Then Homeoc(M)/ Stab(X) is homeomorphic to Conf |X|(M). The same
holds with Homeo replaced by Diffr.

Proof. The map Homeoc(M)/ Stab(X)→ Conf |X|(M) given by [f ] 7→ f(X)
is bijective and continuous. We need to show that the inverse of this is
continuous. Suppose we are given a configuration X1 ∈ Conf |X|(M), and
given ε > 0 for some ε less than 1/4 the minimum distance between points
in X1, we wish to show that any configuration ε-close (pointwise) to X1 can
be taken to X1 via a homeomorphism close to the identity. For each such
point x, we may find a homeomorphism supported on the 2ε-neighborhood
of x and taking x to its nearby point y ∈ X2 without moving any of the
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other points in the configuration. The composition of all such is supported
on a compact set and moves each point distance at most 2ε, which suffices to
prove the claim. To prove this for diffeomorphisms instead, one may perform
a similar proof using the flow of a smooth vector field instead, working in
local chart to ensure the flow is close to the identity. �

Proposition 2.5. Let M be a connected manifold and let X ⊂ M be a
finite set. Then Homeoc(M) is a topological fiber bundle over Conf |X|(M) =
Homeoc(M)/ Stab(X), and the same holds with Homeo replaced by Diffr.

Proof. Since Stab(X) is a closed subgroup, it suffices to produce a locally
defined continuous sections s : Conf |X|(M) → Homeoc(M), then the local
product structure over an open set U where s is defined is given by assigning
to c ∈ U the coset s(c) Stab(X). Without loss of generality, we may do
this at the identity, i.e. over the configuration X. Since we are working
locally, we may label points as in PConf |X|(M). Choose a disk Di about
each xi ∈ X, small enough so that the Di are pairwise disjoint. Let λi,j
for 1 ≤ j ≤ n = dim(M) be smooth vector fields supported on Di that
agree with the coordinate vector fields in a small local chart about xi, and
φ(t)i,j the time t map of the flow of λi,j . For each i = 1, 2, . . . |X|, there is
a continuous, injective map si from a neighborhood of 0 in Rn to Diff∞c (M)
given by si(t1, . . . tn) 7→ φ(t1)i,1◦. . .◦φ(tn)i,n. This map is a homeomorphism
onto its image in Diff∞c (M). Thus, any configuration sufficiently close to X
can be written uniquely as s1(~v1) ◦ . . . ◦ s|X|(~v|X|)(X), (for ~vi close to 0 in
Rn) which gives the desired local section. �

2.2. Small quotient subgroups.

Definition 2.6. Let G be a topological group, and A ⊂ G a subgroup.
We say that A has small quotient in G or A is a small quotient subgroup if
there exists n ∈ N such that, for any continuous, injective map of an n-disc
Dn → G, the projection Dn → G → G/A is non-injective. If A has small
quotient, the codimension of A is the maximum n such that there exists a
continuous injective map Dn → G that descends to an injective map to G/A.

Before stating our main theorem, we give two basic properties.

Observation 2.7. (Properties of small quotient subgroups)

(1) If A ⊂ E ⊂ G are subgroups and A has small quotient, then E also
has small quotient, with codimension bounded above by codim(A).

(2) If H ⊂ G is a subgroup and A has small quotient in G, then A ∩H
has small quotient in H, and the codimension of A in G is bounded
below by the codimension of A ∩H in H.

Proof. The first item is just the observation that the projection map G →
G/E factors through G → G/A → G/E. The second follows from the fact
that H/(A ∩H) embeds in G/A. �
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Convention. Going forward, in this section M always denotes a connected
manifold.

Definition 2.8. A subgroup G ⊂ Homeo(M) has local simplicity if, for
any relatively compact open ball B ⊂ M , the subgroup of G consisting of
elements with compact support contained in B is nontrivial, path connected
and (algebraically) simple.

Local simplicity of Homeoc(M) is a result of Anderson [1] who shows
Homeoc(B) is algebraically simple. The combined work of Epstein [7],
Mather [20, 21] and Thurston [30] establishes local simplicity for Diffrc(M)

when 1 ≤ r ≤ ∞ and r 6= dim(M) + 1. Whether Diff
dim(B)+1
c (B) is al-

gebraically simple is a famous open question in the field. The first step
towards our orbit classification theorem is the following result on closed,
small quotient subgroups of locally simple groups.

Lemma 2.9. Let G ⊂ Homeo(M) be a locally simple group, and A ⊂ G a
closed subgroup with small quotient in G. Then there exists a ball B ⊂ M
such that A contains all homeomorphisms in G supported on B.

Proof. Let n = codim(A) + 1 and fix n disjoint closed balls in M . Let
Gi ⊂ G denote the subgroup of homeomorphisms with support in the ith
ball. Since Gi and Gj commute whenever i 6= j, we may identify the product
G′ := G1 × . . . × Gn with a subgroup of G. Let A′ = A ∩ G′, this is also
a closed subgroup. Let pi : A′ → Gi be the natural projection, and let
Ai = pi(A

′). Our goal is to show that some Gi is contained in A.
Observation 2.7 (1) implies that A1× . . .×An ⊃ A′ has codimension less

than n in G′. Let Ai denote the closure of Ai in Gi. Then A1× . . .×An has
codimension less than n also, and

G′/(A1 × . . .×An) = G1/A1 × . . .×Gn/An.
Suppose that Ai 6= Gi for some i. Then Gi/Ai contains at least two points,
and is Hausdorff (since Ai is closed) and path connected; since it is Hausdorff
there is an injective path [0, 1]→ Gi/Ai. Thus, if Gi 6= Ai for all i, we would
have an embedded Dn in G1/A1× . . .×Gn/An, contradicting the bound on
codimension. We conclude that Gi = Ai for some i. Reindexing if needed,
we assume i = 1.

Let p : A′ → G2 × . . . × Gn denote the product map p2 × . . . × pn, and
let K = Ker(p). Note that K = A ∩G1, which is a closed subgroup of G1.
Since A has small quotient in G, this means that K = A ∩ G1 has small
quotient in G1, so is nontrivial. (Recall that G1 is nontrivial by definition
of local simplicity.) We have that p1(K) = K and p1(A′) = A1. Since
the image of a normal subgroup under a surjective group homomorphism
is normal, K = p1(K) is a nontrivial normal subgroup of p1(A′) = A1. In
other words, A1 is contained in the normalizer NG1(K) of K in G1. It is a
basic fact that the normalizer of a closed subgroup of a topological group
is closed (if H ⊂ G is closed, then NG(H) =

⋂
h∈H{g ∈ G | ghg−1 ∈ H} is
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an intersection of closed sets because g 7→ ghg−1 is continuous), so NG1(K)
is a closed subgroup containing A1, i.e. equal to G1. By local simplicity,
G1 = K = A ∩G1, which is what we needed to show. �

Borrowing terminology from [11], we make the following definition.

Definition 2.10. A subgroup G ⊂ Homeo(M) is locally continuously tran-
sitive if for all x, y ∈ M and ball B containing x and y, there exists a
1-parameter subgroup ft of G supported on B such that f1(y) = x.

Lemma 2.11. Suppose G ⊂ Homeo(M) is a locally continuously transitive
group and A ⊂ G a closed subgroup with small quotient in G. Then there
exists a finite set X such that A setwise preserves X and acts transitively
on M − X; or in the case dim(M) = 1, acts transitively on connected
components of M −X.

Proof. If the action of A is transitive, the statement is immediate with X =
∅. Thus we may assume the action of A is nontransitive, so there are points
x, y ∈M such that y /∈ A ·x. Let {ft}t∈R ⊂ G be a 1-parameter subgroup of
G consisting of homeomorphisms supported on a precomact neighborhood
of x such that f1(y) = x. In particular, this flow ft is not a subgroup of A.
Since A is closed, {t : ft ∈ A} is a closed, proper subgroup of R, so either
trivial or isomorphic to Z. In the first case {ft}/({ft} ∩A) is R, and in the
second case it is S1; either contains an embedded 1-dimensional disc.

More generally, suppose we can find distinct points xi and yi, 1 ≤ i ≤ m,
where yi /∈ A · xi. In the case where M is 1-dimensional, we further require
that y1 < x1 < ... < ym < xm with respect to the ordering induced by R in
some local coordinate chart. Then we can take a continuous homomorphism
Rn → G, where the ith factor is a flow whose time 1 map takes yi to xi, with
support disjoint from the other factors. This can be constructed iteratively,
as follows. Take a simple path from y1 to x1 disjoint from each of the
remaining points xi, yi and define a vector field tangent to the path and
supported in a small neighborhood U1 of the path, again disjoint from the
other points. An appropriate time scaling of the flow of this vector field
will suffice. If U1 is chosen small enough, M − U1 will be connected (or,
in the 1-dimensional case, have each remaining pair xi and yi in the same
connected component), and the process may be repeated.

Then Rn∩A is a closed subgroup of Rn, and each element of Ri−1×{1}×
Rn−i takes yi to xi, so is not an element of A. We know that every linear
subspace of Rn has to intersect one of Ri−1 × {1} × Rn−i because at least
one coordinate should be nonzero. Therefore Rn ∩A ⊂ Rn does not contain
any linear subspaces, which means that Rn∩A ⊂ Rn is a discrete subgroup.
Thus, Rn/(Rn ∩ A) is n-dimensional; and if D is a small topologically em-
bedded n-disc in Rn, then the projection of D to the quotient G/A will be
injective.

Thus, if A has codimension at most n, then the maximal value of m for
which we may find such a set of points is m = n. Fix such a maximal
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collection of points x1, . . . , xm, y1, ..., ym. In the case where dim(M) ≥ 2,
maximality implies that M − {x1, . . . , ym} is contained in a single orbit O.
Set X = M−O, which is a subset of {x1, . . . , ym}, hence finite. By definition
of orbit, A preserves O and the complement X, which is what we needed to
show.

In the case dim(M) = 1, maximality implies that each connected compo-
nent of M −{x1, . . . , ym} is contained in a single orbit, and we may replace
O with the union of these finitely many orbits and conclude as above. �

Definition 2.12. For a finite set X, let Stab(X) denote the setwise stabi-
lizer of X, and Stab(X)0 the connected component of Stab(X) containing
the identity.

Proposition 2.13. The group Stab(X)0 is path-connected, and Homeoc(M −X) ⊂
Stab(X)0.

Proof. Path-connectedness of Stab(X)0 is Corollary 2.2. The containment

Homeoc(M −X) ⊂ Stab(X)0 is clear, since Homeoc(M − X) by defini-
tion contains homeomorphisms isotopic to the identity relative to X, and
Stab(X)0 is closed. For the reverse containment, suppose one is given a path
ft with f0 = id in Stab(X)0. We need to approximate f1 arbitrarily well by

a homeomorphism f̂1 where f̂t is a path based at id of compactly supported
homeomorphisms of M −X. We can do this using techniques of [6], via the
following argument.

Given some ε > 0, choose δ small enough so that the image of a 2δ-
neighborhood of X under ft remains inside the ε neighborhood Nε of X.
Thus, ft(M − Nε) ∩ N2δ = ∅. Break the path ft into time intervals 0 =
t0, t1, . . . tk = 1 small enough so that ft ◦ f−1

t−1 is close enough to the identity
(considered as an embedding of M − Nε into M) so that Proposition 2.1
applies, taking U to be the complement of Nδ in M . Using the proposition,
ft ◦ f−1

t−1 can be isotoped to the identity via an isotopy supported outside of
Nδ, which can be extended to a homeomorphism of M that pointwise fixes
Nδ. Composing these isotopies, one produces a path of homeomorphisms
whose time one map agrees with f1 on M−Nε and pointwise fixes Nδ, hence
is compactly supported in M −X. �

Using the results above, we obtain the following.

Theorem 2.14. Let M be a manifold, and A ⊂ Homeoc(M) a closed
subgroup with small quotient. Then there is a finite set X ⊂ M such
that Stab(X)0 ⊂ A ⊂ Stab(X), and Homeoc(M)/A is homeomorphic to
an intermediate cover of CX = Homeoc(M)/ Stab(X)0 → Conf |X|(M) =
Homeoc(M)/ Stab(X).

Proof. Since Homeoc(M) satisfies the hypothesis of Lemma 2.11, we know
that A is contained in Stab(X) for some finite set X, and acts transitively on
the complement of X. Let A′ denote the intersection of A with Homeoc(M−
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X) ⊂ Homeoc(M). Then A′ is small quotient in Homeoc(M − X) by Ob-
servation 2.7. By Lemma 2.9, there exists a ball B ⊂ M −X such that A′

contains all homeomorphisms supported on B, hence A contains all homeo-
morphisms supported on B. Since Homeoc(M −X) has the fragmentation
property and the action of A on M − X is transitive, we conclude that
A′ = Homeoc(M − X). Since A was assumed closed in Homeoc(M), it
therefore contains the closure of Homeoc(M −X), therefore by Proposition
2.13, we know that A contains Stab(X)0.

The map Homeoc(M)/A→ Homeoc(M)/ Stab(X) has a local section, ob-
tained by composing a local section for Homeoc(M)→ Homeoc(M)/Stab(X)
with the projection to Homeoc(M)/A. Since Stab(X)/ Stab(X)0 is discrete,
A/ Stab(X)0 is discrete, so Homeoc(M)/A is a cover of Homeoc(M)/ Stab(X),
as claimed. �

Diffeomorphism case. Our next goal is to prove the counterpart to The-
orem 2.14 in the diffeomorphism case. Here there are more small quotient
subgroups – for example the group of diffeomorphisms fixing a point with
trivial first derivatives at that point also has finite codimension. In general,
we will see that one needs to consider r-jets at finite sets of points.

We start by recalling the notion of jet spaces. For a smooth manifold M ,
an r-jet of a map M →M is an equivalence class of triples (x, f, U), where
f : U → M a Cr map, U is an open neighborhood of x, and (x, f, U) is
equivalent to (x, g, U ′) if all derivatives at x up to order r of f and g agree.
The space of r-jets of Cr maps of M , denoted Jr(M,M), is a fiber bundle
over M ×M , via the natural projection map assigning (x, f, U) to (x, f(x)),
with linear structure group.

We will be interested in a related bundle where M is a configuration
space.

Definition 2.15. For a smooth manifold M , and finite set X ⊂ M , let
Jr(Confn(M)) denote the pullback of the bundle Jr(Confn(M),Confn(M))
under the diagonal map Confn(M)→ Confn(M)×Confn(M). We call this
the configuration r-jet bundle.

Since Diffr(M) is naturally a subgroup of Diffr(Confn(M)), there is a
natural action of Diffr(M) on Jr(Confn(M)) by bundle automorphisms.
We set notation for a point stabilizer of this action.

Definition 2.16. Let Stabr(X) ⊂ Stab(X) ⊂ Diffr(M) denote the point
stabilizer of the equivalence class of the identity map atX in Jr(Conf |X|(M))
under the natural action of Diffr(M) on Jr(Conf |X|(M)). We let Stabr(X)0

denote the identity component of Stabr(X).

One should think of Stab(X)/Stabr(X) as the “r-jets of diffeomorphisms
at X”, we call the larger group Stab(X)/ Stabr(X)0 an extended jet group
at X. By definition, we have Jr(Confn(M)) = Diffr(M)/ Stabr(X).
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Note also that, if f ∈ Stabr(X)0, then f pointwise fixes X, has all deriva-
tives up to order r agreeing with the identity map at each point of X, and is
isotopic to the identity through a path of such maps. Conversely, if a map
has identity r-jet at each point of X and is isotopic to the identity through
a path of such maps, then it clearly lies in Stabr(X)0. Using this, we prove
the following.

Lemma 2.17. Let r ≥ 1. Then the closure of Diffrc(M −X) in Diffrc(M) is
Stabr(X)0.

Proof. By definition, we have Diffrc(M − X) ⊂ Stab(X)r0. Since the latter

group is closed, this gives Diffrc(M −X) ⊂ Stabr(X)0. For the other di-
rection, as we did for homeomorphisms, here one needs to approximate the
endpoint a path of diffeomorphisms agreeing up to order r with the identity
at X using one consisting of diffeomorphisms supported away from X. This
can be done by the standard “blow up” construction, in which one replaces
each point of X with its sphere of tangent directions, giving a manifold with
sphere boundary components, then gluing in balls to recover a manifold dif-
feomorphic to M (via a diffeomorphism close to the identity and identifying
the center of each ball with a point of X). There is a natural, continuous ex-
tension of Cr diffeomorphisms of M preserving X to Cr−1 diffeomorphisms
of the blow-up (see [29, Theorem 6.1.] for the statement before compactify-
ing by spheres, one simply extends the linear diffeomorphisms on the sphere
boundaries over the glued-in balls), the action being trivial on the tangent
space to X results in a diffeomorphism compactly supported away from X.
One may compensate for the loss of regularity using the fact that Cr−1

diffeomorphisms can be approximated by Cr diffeomorphism. �

Theorem 2.18. If A ⊂ Diffrc(M) is a closed subgroup with small quotient
(for some 1 ≤ r ≤ ∞) then Stabr(X)0 ⊂ A ⊂ Stab(X) for a finite set
X ⊂M , and Diffrc(M)/A has the structure of a cover of Confr|X|(M) under

a quotient by a subgroup of extended jet group.

Proof. To avoid the problem where Diffrc(M) is not known to be simple
when r = dim(M) + 1, we pass immediately to working with subgroups
of smooth diffeomorphisms. Let A′ be the closure in the C∞ topology of
A∩Diff∞c (M) in Diff∞c (M). Note that A′ ⊂ A since the C∞ topology is finer
than the Cr topology. By Lemmas 2.9, Lemma 2.11 and the fragmentation
property for Diff∞c (M −X), there is a finite set X such that A′ ⊂ Stab(X)
and A′ contains Diff∞c (M −X). The Cr closure of Diff∞c (M −X) contains
Diffrc(M −X), so using Lemma 2.17 we conclude that

Stabr(X)0 ⊂ A ⊂ Stab(X)

Thus, Stabr(X)0 = Stabr(X)0 ∩A and

Diffrc(M)/(Stabr(X)0 ∩A) = Diffrc(M)/ Stabr(X)0.

Since Stabr(X)/Stabr(X)0 is discrete, Diffrc(M)/ Stabr(X)0 is a cover of the
configuration jet bundle Diffrc(M)/ Stabr(X). The map Diffrc(M)/(Stabr(X)0∩
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A)→ Diff /A is a quotient by the action ofA/Stabr(X)0 ⊂ Stab(X)/ Stabr(X)0

(noting that Stabr(X)0 is normal in A). �

3. Orbit classification theorem

Building on the work in the previous section, we now prove Theorems 1.3
and 1.4. We need the following version of the classical invariance of domain
theorem.

Lemma 3.1 (Invariance of domain for a finite-dimensional CW complex).
Let P be an n-dimensional CW complex. Then there is no injective contin-
uous map Rn+1 → P .

Proof. Assume for contradiction that there is such an embedding f : Rn+1 →
P . Let D be a closed disk in Rn+1 and B be the interior of D. The image
f(D) ⊂ P is compact so it only intersects finitely many cells. Find x ∈ f(B)
such that x lands on the maximal dimensional cell C(x) among the cells that
intersect f(D). By assumption on the maximal dimension, we know that
f−1(C(x)) is open in Rn+1. This shows that there is an injective, continuous
image of Rn+1 inside C(x), which contradicts the well known invariance of
domain theorem for Euclidean spaces. �

The other ingredients we will need are a collection of automatic con-
tinuity results. Following [14], call a homomorphism φ from Diffrc(M) or
Homeoc(M) to a topolgoical group G weakly continuous if, for every com-
pact set K ⊂ M , the restriction of φ to the subgroup of homeomorphisms
supported on K is continuous.

Theorem 3.2 (Hurtado [14]). Let M and N be smooth manifolds. Any
homomorphism φ : Diff∞c (M)→ Diff∞c (N) is weakly continuous.

Theorem 3.3 (Mann [18], Rosendal [26], Rosendal–Solecki [27]). Let M be
a topological manifold and G a separable topological group. Any homomor-
phism φ : Homeoc(M)→ G is weakly continuous.

If M itself is compact, weak continuity is of course equivalent to con-
tinuity, but this is false in general. For instance (as remarked in [14]) if
h : Rn → Rn is an embedding with image the open unit ball B, then con-
jugation by h produces a homomorphism from Diff∞c (Rn) to Diffc(B), and
extending diffeomorphisms in the image to act by the identity outside of B
gives a discontinuous homomorphism Diff∞c (Rn) → Diff∞c (Rn). Neverthe-
less, weak continuity combined with our orbit theorem will suffice for our
intended applications.

Proof of Theorem 1.3. We begin with the homeomorphism group case, the
diffeomorphism case being analogous.

Homeo case. Recall as usual that M denotes a manifold without bound-
ary. Suppose that Homeoc(M) acts nontrivially on a finite-dimensional CW
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complex N . If M is compact, then Theorem 3.3 implies the action is con-
tinuous, so for any x ∈ N , the stabilizer Gx of x under the action is a closed
subgroup of Homeoc(M), and the orbit of x gives a continuous, injective
map from Homeoc(M)/Gx into N . By Lemma 3.1, the stabilizer Gx is a
small quotient subgroup (of codimension at most dim(N)) so by Theorem
2.14, Homeoc(M)/Gx is homeomorphic to a cover of Confn(M) for some n.

If M is not compact, we need to employ an additional argument. To
simplify notation, let A = Gx be the point stabilizer of the action on N .
The goal is again to show that there is a finite set X ⊂M such that

Stab(X)0 ⊂ A ⊂ Stab(X),

which implies that A is a closed subgroup (since it is a union of components
of Stab(X)) and that the orbit space is a cover of Conf |X|(M).

Let K ⊂ M be a connected, compact set that is the closure of a con-
nected, open subset K̊ of M . Let HomeoK(M) ∼= Homeoc(K) be the

subset of Homeo0(M) consisting of elements with support in K̊ and iso-

topic to identity by an isotopy compactly supported in K̊. By weak con-
tinuity, the restriction of the action to HomeoK(M) is continuous. The
group AK := A ∩ HomeoK(M), is a closed, small quotient subgroup of
HomeoK(M). For a finite set X ⊂ K, let StabK(X) denote the stabilizer
of X in HomeoK(M), and StabK(X)0 its identity component. By Theorem
2.14, there exists a finite set X(K) ⊂ K such that

StabK(X(K))0 ⊂ AK ⊂ StabK(X(K)).

Also, the cardinality of X(K) multiplied by the dimension of M is the
dimension of the orbit of x in N under this subgroup, and this is bounded
above by the dimension of N . In particular, |X(K)| ≤ dim(N).

We claim that whenever K ⊂ H are both the compact closures of con-
nected sets as above, we have X(K) ⊂ X(H). To show this, observe that
AH ∩HomeoK(M) = AK , and we know that

StabH(X(H))0∩HomeoK(M) ⊂ AH∩HomeoK(M) = AK ⊂ StabK(X(K)).

However StabK(X(H)∩K)0 ⊂ StabH(X(H))0∩HomeoK(M) ⊂ StabK(X(K)),
which implies that X(K) ⊂ X(H)∩K ⊂ X(H) because StabK(X(H)∩K)0

acts on Int(K)−X(H) ∩K transitively.
Let Kn be an exhaustion of M by connected compact sets with Kn ⊂

Kn+1, each one the closure of a connected open set. Then X(Kn) ⊂
X(Kn+1), and the fact that the cardinality of X(Kn) is bounded by dim(N)
implies that this sequence is eventually constant, equal to some finite set X.
Without loss of generality, we may modify our compact exhaustion so that
X(Kn) = X for all of the compact sets Kn. The above discussion shows
that for all Kn,

StabKn(X)0 ⊂ A ∩HomeoKn(M) ⊂ StabKn(X)

This implies that A ⊂ Stab(X) since A ⊂ Homeoc(M) =
⋃
n HomeoKn(M).

On the other hand, we also have that Stab(X)0 =
⋃

StabKn(X)0 because
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the union of supports of elements in a path in Stab(X)0 is also compact, so
we have Stab(X)0 ⊂ A, which is what we needed to show. �

Diffeo case. The same argument above applies for any continuous action of
Diffrc(M) on N by homeomorphisms, and we conclude that the orbit is the
continuous, injective image of a cover of one of the spaces given in Theorem
2.18. If M is compact, r = ∞, and the action is by smooth diffeomor-
phisms, then continuity follows immediately from Hurtado’s theorem. In
the noncompact case for a weakly continuous action, one simply repeats the
argument above using an exhaustion by compact sets. �

We can now give Theorem 1.1 as an elementary consequence.

Proof of Theorem 1.1. Suppose Homeoc(M) acts transitively on a manifold
or finite dimensional CW complex N , thus there is only a single orbit, and
hence by the Orbit Classification Theorem, a continuous, bijective map from
some cover C of some configuration space Confn(M) to N . Thus dim(N) ≥
dim(M), and if equality holds the orbit map is a homeomorphism. To show
equality holds (ruling out pathological behavior like a space filling curve),
consider the restriction of the orbit map to some compact subset K of C.
This restriction is a homeomorphism onto its image, a compact subset of
N ; since C can be exhausted by a countable collection of compact sets, by
Baire category the image of K must be somewhere dense, hence contain a
ball and thus dim(N) = dim(M). �

As another easy consequence, we can prove Theorem 1.4.

Proof. Suppose M and N are manifolds with dim(M) ≥ dim(N), and we
have a nontrivial action of Homeoc(M) on N . Take any point x ∈ N not
globally fixed by the action, and let Gx denote its stabilizer. Then the
orbit of x gives a continuous, injective map of Homeoc(M)/Gx into N . By
Theorem 2.14 and our assumption on dimension, the space Homeoc(M)/Gx
is a covering Mx of Conf1(M) ∼= M . In particular, we must have dim(M) ≤
dim(N), hence equality holds. Since N is second countable, and orbits are
disjoint, there can be at most countably many such disjoint embedded copies
of covers of M , which proves the theorem. �

The same proof applies to any weakly continuous action of Diffrc(M) on
N by homeomorphisms. In Section 7 we will improve this result for the case
of actions Diffrc(M)→ Diffs(N) where s ≥ 1, showing that in this case s ≤ r
and N must itself necessarily be a cover of M .

4. Admissible covers: classifying orbit types

We now describe which spaces occur as orbits for actions of Homeoc(M);
equivalently, we classify the covers of Confn(M) that admit transitive actions
of Homeoc(M). We keep the notation from the previous sections. If X ⊂M
is a finite set, there is a fiber bundle Stab(X)→ Homeoc(M)→ Conf |X|(M).



18 LEI CHEN, KATHRYN MANN

From the long exact sequence of homotopy groups, we have the following
exact sequence

(1) π1(Homeoc(M))
ev−→ π1(Conf |X|(M))

p−→ π0(Stab(X))→ 1

where the evaluation map ev takes a loop ft in Homeo0(M) based at the
identity to the path of configurations ft(X). The map p is analogous to the
familiar “point push” map from the Birman exact sequence in the study of
mapping class groups of surfaces, in this special case, X is a singleton, and
a loop based at X is sent to the isotopy class of a homeomorphism obtained
by pushing the point around the loop.

Let E|X| denote the image of ev. From the long exact sequence of homo-
topy groups, we know that

π1(Conf |X|(M))/E|X| ∼= Stab(X)/ Stab(X)0

and hence Homeoc(M)/ Stab(X)0 → Homeoc(M)/Stab(X) = Conf |X|(M)
is a covering map with deck group π1(Conf |X|(M))/E|X| ∼= Stab(X)/ Stab(X)0.

Definition 4.1. Let CX = Homeoc(M)/ Stab(X)0. We call the covering
space πX : CX → Conf |X|(M) the maximal admissible cover, and call a
cover Z admissible if it is an intermediate cover, i.e. it satisfies CX → Z →
Conf |X|(M).

Proposition 4.2. Every admissible cover admits a transitive, continuous
action of Homeoc(M). Conversely, every orbit of a continuous action of
Homeoc(M) on another manifold is the image of an admissible cover under
a continuous, injective map.

Proof. An admissible cover CX → Z → Confn(M) corresponds to a sub-
group A satisfying Stab(X)0 ⊂ A ⊂ Stab(X). Therefore Homeoc(M) natu-
rally acts transitively (by left-multiplication) on Z = Homeoc(M)/A.

To show the second half of the statement, if Y is some orbit of an ac-
tion of Homeoc(M) and Gy is the point stabilizer for some y ∈ Y , then
Homeoc(M)/Gy injects continuously onto Y , and by Theorem 2.14 we have
Stab(X)0 ⊂ Gy ⊂ Stab(X), so Homeoc(M)/Gy is an admissible cover. �

Classification of admissible covers. By Proposition 4.2, classifying ad-
missible covers reduces to the problem of understanding the image of ev,
which of course depends on the topology of M . In general, the image EX of
ev is contained in π1(PConf |X|(M)) ⊂ π1(Conf |X|(M)). It is also a central
subgroup of π1(Conf |X|(M)), since if γ is a loop in π1(Confn(M)) based
at X = {x1, . . . xn}, and ft a loop in Homeo0(M), then ft(γ) gives an iso-
topy between γ and ev(ft)γev(ft)

−1, so these two elements of π1(Confn(M))
agree. (See also [14, Lemma 3.10].)

While it is not clear whether any general classification results hold beyond
this observation on the center, in low dimensions it is possible to give a
complete description of which admissible covers may occur:
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• Dimension 1. It is an easy exercise to see that π1(Homeo0(S1)) = Z
and also π1(PConfn(S1)) = Z. (Recall that by convention PConfn(S1)
denotes the configuration space of n cyclically ordered points on S1.).
Thus, all admissible covers are intermediate covers of the covering
PConfn(S1)→ Confn(S1).
• Higher genus surfaces. For a surface Sg of genus g > 1, Hamstrom

[13] showed that Homeo0(Sg) is contractible. Therefore EX = 1 for
any X and all covers of Confn(Sg) are admissible.
• 2-sphere. By Kneser [15] we have π1(Homeo0(S2)) ∼= π1(SO(3)) =
Z/2. For n ≥ 3, the center of π1(Confn(S2)) is Z/2 (see [8, §9.1]),
which is exactly the image of ev.
• 2-torus. We have π1(Homeo0(T 2)) ∼= π1(T 2) = Z2 (see [12]). As

remarked above, the induced map π1(T 2) → π1(Homeo0(T 2))
ev→

π1(PConfn(T 2)) has image in the center of π1(Confn(T 2)). It is
injective, since composition with the forgetful map (forgetting all but
one point of x) gives a map π1(PConfn(T 2)) → π1(PConf1(T 2)) =
π1(T 2) on which this is clearly an isomorphism. Moreover, since
kernel of this map π1(PConfn(T 2))→ π1(T 2) = Z2 is center-free, we
can conclude that the image of ev is the center of π1(Confn(T 2)).

The observation that the image of ev is the center of π1(Confn(T 2))
discussed above gives a different proof of the following theorem of Birman.

Corollary 4.3 (Birman, see [25] Proposition 4.2 and [3]). The center of
π1(Confn(T 2)) is Z2.

Higher dimensions. When dim(M) ≥ 3, we know that π1(PConfn(M)) ∼=
π1(M,x1)× ...× π1(M,xn) where X = {x1, . . . xn}. Fixing a path between
x1 and xi gives an identification of π1(M,x1) with π1(M,xi), and under
this identification, the definition of ev as the evaluation map implies that
its image in π1(PConfn(M)) ⊂ π1(Confn(M)) lies in the diagonal subgroup

{(g, g, . . . , g) ∈ π1(M)× ...× π1(M) : g ∈ E1}.

In special cases, the geometry of M can give some additional insight into
the image of E1. For instance, if M is a compact manifold admitting a
metric of negative curvature, then π1(M) is center-free, so every cover is
admissible. By contrast, if M is a compact Lie group, the left multiplication
action gives M < Homeo0(M), so the image E1 is everything. Thus, if
dim(M) ≥ 3 and M is a compact Lie group, then En is the whole diagonal.

Remark (Quotients of Diffrc(M)). While the work in this section focused
on homeomorphism groups, it is an equally interesting question to classify
the finite dimensional spaces which occur as quotients of Diffrc(M) by small
quotient closed subgroups. Theorem 2.18 and our work in the Homeo case
reduces this to a problem (though a rather nontrivial one) about under-
standing quotients of jet groups. We hope to pursue this in future work.
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5. Generalized flat bundle structure for actions by
homeomorphisms

This section gives the proof of Theorem 1.5. Recall that this is the state-
ment that for connected manifolds M and N with dim(N) < 2 dim(M), if
there is an action of Homeoc(M) on N without global fixed points, then N
has the structure of a generalized flat bundle over M , and when dim(N)−
dim(M) < 3, the fiber F is a manifold as well. Since Confn(M) has dimen-
sion n dim(M), the assumption that dim(N) < 2 dim(M) eliminates the
possibility that any orbit is a cover of a configuration space of two or more
points. This is what makes the orbit gluing problem tractable and leads to
the relatively simple statement of the theorem.

Definition 5.1. Let B,F be topological spaces. A space E is a called a
(generalized) flat bundle with base space B and fiber F if there exists a
homomorphism φ : π1(B)→ Homeo(F ) such that

E = (B̃ × F )/π1(B)

where the quotient is by the diagonal action of π1(B) via deck transforma-

tions on the universal cover B̃ and by φ on F .

Each generalized flat bundle is, in particular, a topological F -bundle over
B via the map p : E → B induced by projection to the first factor in B̃×F .
If B and F are topological manifolds, then this is just the usual definition of
a topological flat or foliated bundle. If B and F are smooth manifolds and φ
is an action by diffeomorphisms, this agrees with the differential geometric
notion of E admitting a flat connection. We now prove the structure theorem
stated in the introduction.

Proof of Theorem 1.5. Let ρ : Homeoc(M)→ Homeo(N) be an action with-
out global fixed points. Since an orbit is a subset of N which has dimension
strictly less than 2 dim(M) (by the assumption in the Theorem statement),
no orbit can be a cover of Confn(M) for n > 1. Therefore every orbit is the
image of a cover of Conf1(M) = M .

We first define the projection map p : N → M and fiber F . Let y ∈ N
be any point, and let Gy ⊂ Homeoc(M) denote the stabilizer of y under
the action of ρ. Then Gy is a closed subgroup of Homeo0(M) with small
quotient, so there exists a unique point x ∈M such that Stab(x)0 ⊂ Gy by
Theorem 2.14. We set p(y) = x.

If f ∈ Homeoc(M), then Stab(f(x))0 = f Stab(x)0f
−1 ⊂ Gρ(f)(y), so the

map p satisfies the ρ-equivariance property

pρ(f)(y) = f(p(y))

for all y ∈ N and f ∈ Homeo0(M). We now show that p is continuous. To
see this, let B be a small open ball in M , and let H(B) denote the group of
homeomorphisms supported on B and isotopic to the identity through an
isotopy supported on B. Let Fix(ρ(H(B))) ⊂ N denote the set of points
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fixed by every element of ρ(H(B)); this is an intersection of closed sets so
is closed. We claim that

p−1(B) = N − Fix(ρ(H(B)))

which is an open set, so showing this claim proves continuity. To prove the
claim, let y ∈ p−1(B), and take any f ∈ H(B) such that fp(y) 6= p(y).
Then y /∈ Fix(ρ(f)). Conversely, if y /∈ p−1(B) and f ∈ H(B), then f ∈
Stab(p(y))0 so ρ(f) fixes y. This gives the desired equality of sets, and we
conclude p is continuous.

Now fix a base point b ∈ M and let F := p−1(b). Since ρ(Stab(b))
preserves F , the action ρ defines a representation Stab(b) → Homeo(F ).
Also, for any y ∈ F , by definition of F , we have ρ(Stab(b)0) ⊂ Gy (recall,
this is the stabilizer of y under ρ), so this representation factors through
Stab(b)/ Stab(b)0, giving a homomorphism

φ : Stab(b)/ Stab(b)0 → Homeo(F ).

Let Eb ⊂ π1(M) be the image of the evaluation map for X = {b} as defined
in Section 4. We are abusing notation here slightly, writing Eb in place of
the more cumbersome E{b}. Let Γ := Stab(b)/Stab(b)0

∼= π1(M)/Eb. Let
Cb be the associated maximal admissible cover of M , and let π : Cb → M
be the natural projection. Γ acts on Cb by deck transformations, and on F
by φ.

We claim that N is naturally homeomorphic to (Cb × F )/Γ, with orbits
of the action of Homeoc(M) corresponding to the images of the “horizontal”

sets Cb × {y} in the quotient. To see this, fix a basepoint b̃ in π−1(b). Let
L : Homeoc(M) → Homeo(Cb) denote the lifted action of Homeoc(M) on
Cb as in Proposition 4.2. For y ∈ F and m ∈ Cb let fm ∈ Homeoc(M)

denote any homeomorphism satisfying L(fm)(m) = b̃, and define a map
(Cb × F )→ N by

(m, y) 7→ ρ(fm)−1(y).

This is independent of the choice of homeomorphism fm since if gm is another
such choice, then gm = hfm for some h ∈ Stab(b)0. We claim that this
descends to a well-defined map

I : (Cb × F )/Γ→ N

and that this map is a homeomorphism giving a flat bundle structure to N .
To show I is well defined, we need to show that if a ∈ Γ, then I(a(m), φ(a)(y)) =

I(m, y). Let â ∈ Stab(b) be a coset representative of a ∈ Γ = Stab(b)/ Stab(b)0.
Set fa(m) = â ◦ fm (recall that L(fm) commutes with the deck group of Cb),
then we have

I(a(m), φ(a)(y)) = ρ(fm)−1ρ(â)−1(φ(â)(y)) = I(m, y)

since by definition, φ|Stab(b) agrees with ρ|Stab(b) on F .
To show injectivity of I, note that by construction, orbits of ρ are the im-

ages of level sets Cb×{y} in the quotient, and if ρ(fm)−1(y) = ρ(fm′)
−1(y′),
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for some m,m′ ∈ Cb and y, y′ ∈ F , then f−1
m′ fm ∈ Stab(b). To simplify

notation, let g = f−1
m′ fm. Then φ(g)(y) = y′ and L(g)(m) = m′. This means

that (m, y) is equivalent to (m′, y′) in the quotient (Cb × F )/Γ, so I is in-
jective. Surjectivity follows from the fact that each orbit intersects F in at
least one point, and the lifted action on Cb is transitive. Continuity of I and
its inverse follows from the fact that, locally, the homeomorphisms fm can
be chosen continuously with respect to m.

Now (Cb × F )/Γ is easily seen to be a flat bundle over M with fiber

F , as we may write it as (M̃ × F )/π1(M) where the action of π1(M) is
by deck transformations on the first factor, and by the composite action
π1(M) → π1(M)/Eb → Homeo(F ) of π1(M) on F . This gives the desired
flat bundle structure on N .

To conclude the proof, we need to assert that F is a manifold in the
low codimension case. Note that in general, the fiber F = p−1(x) may not
be a manifold. For a concrete example, Bing’s “dog bone space” is a non-
manifold space F such that F×R is homeomorphic to R4. Then we may take
M = Rn, for n ≥ 3 and a product action of Homeoc(M) on F ×M ∼= Rn+3,
for which the fiber will be F .

However, since the product of the fiber F with a ball is a manifold,
we can conclude that F is a generalized manifold or homology manifold in
the sense of [33, Chapter 8]. In the case where M has codimension 1 or
2, all homology manifolds are manifolds (see [4, Theorem 16.32]) so F is
necessarily a manifold. See [33, Chapter 8]. �

Theorem 1.5 has an analog for diffeomorphism groups, and we will see
that such pathological fibers do not occur in the differentiable setting. How-
ever, before proving this, we use the homeomorphism group version to solve
the extension problem and derive some additional consequences. We return
to work with diffeomorphism groups in Section 7.

6. Application: extension problems for homeomorphism groups

In this section we discuss the extension problem, as introduced in [10]
and further discussed in [19], in the case of homeomorphism groups. Recall
from the introduction that, if W is a compact, connected manifold with
∂W = M , there is a natural “restrict to the boundary” map

Res(W,M) : Homeo0(W )→ Homeo0(M),

which is surjective, and the extension problem asks whether Res(W,M) has
a group theoretic section. Here, and in the proof, we drop the superscript 0
from Res0(W,M) since the context of homeomorphism groups is understood.
We always assume that M is connected. We will prove the following stronger
version of Theorem 1.8. As before, we let Ex denote the fundamental group
associated to a maximal admissible cover for a singleton {x}.

Theorem 6.1. Let M be a connected, closed manifold of dimension at least
2 and assume that π1(M)/Ex admits no nontrivial action on [0, 1). Then
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for any compact W with ∂W = M , the map Res(W,M) has a section if
and only if M = Sn,W = Dn+1. Furthermore, in the case M = Sn any
extension, and in fact any action of Homeo0(M) on W , is conjugate to the
standard coning.

In fact, the proof applies also when W is noncompact, showing that W
is either equal to Dn+1, or to M × [0, 1) with an action conjugate to the
obvious action preserving each leaf M×{x}. As an immediate consequence,
we have the following examples.

Corollary 6.2. The following manifolds have no section of Res(W,M), for
any manifold W with boundary M :

(1) Any manifold M 6= Sn such that the maximal admissible cover of M
is a finite cover, such as when M is a compact Lie group (see the
discussion at the end of Section 4) .

(2) Any manifold M such that π1(M) itself has no nontrivial action on
[0, 1), for example when π1(M) is
(a) an arithmetic lattice of higher Q-rank (Witte-Morris [34]), or
(b) a group generated by torsion elements, such as the mapping

class groups of a surface, a reflection group, etc.

Remark. In contrast with Theorem 6.1, when M = S1 and W = D2 there
are infinitely many different, non-conjugate extensions. These are discussed
and classified in Section 8 below.

Proof of Theorem 6.1. Assume that ρ is a section for Res(W,M). Define

W ′ = the connected component of W−Fix(ρ(Homeo0(M))) containing ∂W.

By Theorem 1.5, there is a canonical flat bundle structure F → W ′ →
M , where W ′ is foliated by orbits of the action of ρ(Homeo0(M)). Since
dim(W )−dim(M) = 1, we know that the fiber F is a 1-dimensional manifold.
Since W ′ is connected and the bundle has a section (given by ∂W ), it follows
that F is connected, with connected boundary, and therefore equal to (0, 1].
Thus, W ′ is homeomorphic to (0, 1]×M . By hypothesis, the action of π1(M)
on F is trivial, so we have natural coordinates in which ρ is the product of
the trivial action on (0, 1] and the standard action of Homeo0(M) on M .
Let em : (0, 1]×M →W denote the embedding with image W ′ used to give
this coordinate identification.

Fix x ∈ M , and let rn → 0 be a sequence in (0, 1]. Since W is compact,
after passing to a subsequence if needed we may assume that em(rn, x)
converges to some point α ∈ W . Note that α is necessarily a fixed point of
ρ, since it lies on the boundary of a connected component of the open set
W − Fix(ρ).

Claim 6.3 (Shrinking property). For any closed ball U around α in W ,
there exists n0 such that em({rn} ×M) ⊂ U for all n > n0.

Proof of claim. The proof uses the continuity of the action and that M is
compact. Let U be a closed ball about α. Suppose for contradiction that
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U does not contain em(rn ×M) for all large n, so there exists a sequence
xnk
∈M with em(rnk

, xnk
) ∈W ′−U . Since M is compact, after passing to

a subsequence we may assume that xnk
converges to a point y ∈ M . Take

some f ∈ Homeo0(M) such that f(x) = y. Since xnk
→ y, we may find

a convergent sequence of homeomorphisms fk → id with the property that
fk(xnk

) = y, and so f−1fk(xnk
) = x.

Then ρ(fk)em(rnk
, xnk

) = em(rnk
, y), and ρ(fk)em(rnk

, xnk
) = ρ(f)em(rnk

, x),
which converges to ρ(f)α = α. Since fk converges to identity as k →∞, and
the action is continuous, we have em(rnk

, xnk
) also converges to ρ(f)α = α,

a contradiction. �

Let B be any open ball around α and let S be the boundary of B. We call
a connected, codimension one closed submanifold X ⊂W separating if W −
X has two components. If X is separating, we call the component of W −X
containing ∂W the exterior component Ext(X), and the other component
the interior, Int(X). In particular, B = Int(S) and W − B̄ = Ext(B). We
also know that em(rn×M) is separating and Ext(em(rn×M)) = em((rn, 1]×
M), since these lie in a tubular neighborhood of the boundary given by the
image of em([rn, 1] ×M) while Int(em(rn ×M)) = W − em([rn, 1] ×M).
The following easy claim implies that whenever em(rn ×M) ⊂ B, we have
that Int(em(rn ×M)) ⊂ B.

Claim 6.4. If X,Y are disjoint, separating manifolds in a manifold W with
boundary, and Y ⊂ Int(X), then Int(Y ) ⊂ Int(X).

Proof. First, (W−Y )∩Ext(X) = Ext(X) which is connected. Then Int(Y )∩
Ext(X) and Ext(Y )∩Ext(X) partition (W−Y )∩Ext(X) = Ext(X) into two
connected components, so one of these sets must be empty. But Ext(X) ∩
Ext(Y ) contains ∂W . Thus, Int(Y ) ∩ Ext(X) = ∅, so Int(Y ) ⊂ Int(X). �

Summarizing, from Claim 6.3, we obtain that for any ball B around α,
there exists n0 such that em(rn ×M) ⊂ B for n > n0. By Claim 6.4, we
know that Int(em(rn ×M)) ⊂ B for n > N . Using this, we deduce the
following:

Claim 6.5. W = W ′ ∪ {α} and W is the one point compactification of
(0, 1]×M .

Proof. Each space em(rn × M) separates W into two components where
em(s×M) ⊂ Int(em(rn×M)) for s < rn and em((t, 1]×M) = Ext(em(t×
M)). Therefore Fix(ρ(Homeo0(M)) ∩ Ext(em(t×M)) = ∅. For any ball B
around α, there exists n such that Int(em(rn ×M)) ⊂ B by the shrinking
property. Therefore, Fix(ρ(Homeo0(M))∩B = {α}, which shows that W =
W ′∪{α}, and the topology of W ′ agrees with the one-point compactification
topology or Alexandroff extension of W ′ by the shrinking property. �

The first statement of Theorem 6.1 now follows from the following propo-
sition.
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Proposition 6.6. The one point compactification of M×(0, 1] is a manifold
if and only if M is the sphere.

The proof of this Proposition is a standard consequence of the Poincaré
conjecture. We recall the outline of the argument for completeness. Suppose
that N is the one-point compactifiction M × (0, 1]t {∞} and is assumed to
be a manifold. Then the local homology groups Hk(N,N −∞;Z) are Z for
k = 0 and k = dim(M)+1 and equal to 0 otherwise. This implies that M is
a homology sphere. Since N is homeomorphic to the cone on M , it is simply
connected; since M is homotopic to N − {∞} it is also simply connected
provided that dim(M) > 1 (in the one dimensional case, the Proposition is
trivial by the classification of 1-manifolds). The Poincaré conjecture then
implies that M is a sphere, giving the result of the proposition.

To conclude the proof of the theorem, we need to show that ρ is conjugate
to the standard coning when M = Sn. However, this conjugacy is already
given by em on M × [0, 1) = W − {α}, and extends over to the one-point
compactifications of these spaces, which is a global fixed point for ρ and for
the coning action. �

Since the 2-dimensional torus has no nontrivial admissible cover, we ob-
tain the following corollary.

Corollary 6.7. Res(Hg, Sg) does not have a section when g = 1.

When g > 1, the group π1(Sg)/Ex = π1(Sg) has many nontrivial actions
on [0, 1], which makes it hard to analyze. While we do not know whether
Res(Hg, Sg) has a section for g > 1, in the next section we will prove that no
surface has a section in the differentiable category, answering Ghys’ original
question.

Theorem 6.1 has a generalization, as follows.

Theorem 6.8. Let M,W be closed, connected manifolds with dim(W ) =
dim(M) + 1 ≥ 3, and suppose that the deck group π1(M)/Ex of a maximal
admissible cover for a singleton {x} has no nontrivial action on S1. There
exists a nontrivial action of Homeo0(M) on W if and only if either

(1) W = M × S1 and the action is trivial on the S1 factor, or
(2) M = Sn,W = Sn+1, and the action is by doubling the standard

coning.

Proof of Theorem 6.8. Assume there exists a nontrivial homomorphism ρ :
Homeo0(M) → Homeo(W ). Let W ′ be a connected component of W −
Fix(ρ(Homeo0(M))). By Theorem 1.5, W ′ = (Cx × F )/(π1(M)/Ex), where
F is a one-manifold. Since the action of π1(M)/Ex on F is trivial, this
bundle has a section, since W ′ is connected the fiber F is connected as well.
If ρ has no fixed points, then W = W ′, F = S1 and W = M × S1.

Otherwise, as in the previous proof, W ′ ∼= (0, 1) × M and we let em
denote its embedding. Consider a point α ∈ Fix(ρ(Homeo0(M))) that can
be approached by a sequence of points em(rn, xn) with rn → 1 and xn
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converging in M . The proof of Claim 6.3 shows for any ball B around α,
there exists n0 such that em(rn ×M) ⊂ B for all n sufficiently large.

We modify the argument from the previous proof, as follows. Delete the
subset em([1/3, 2/3) ×M) from W , leaving a single boundary component
homeomorphic to M . If this manifold is disconnected, we consider only
the connected component containing α. Call this connected manifold with
boundary W ′′. For p > 2/3, each slice em({p}×M) separates α from ∂W ′′.
Modifying the previous definition, we say that for a connected, separating,
codimension 1 submanifold X of W ′′ such that α /∈ X, the component of
W ′′−X containing α is the interior and the other component is the exterior.
In parallel to Claim 6.4 we have

Claim 6.9. If X,Y are disjoint, separating manifolds in W ′′ and Y ⊂
Int(X), then Int(Y ) ⊂ Int(X).

Proof. Y ⊂ Int(X) implies that X ⊂ Ext(Y ), so (W ′′ − X) ∩ Int(Y ) =
Int(Y ) which is connected. Then Int(Y ) ∩ Int(X) and Int(Y ) ∩ Ext(X)
partition (W − X) ∩ Int(Y ) = Int(Y ) into two connected components, so
one of these sets must be empty. But Int(X) ∩ Int(Y ) contains α. Thus,
Int(Y ) ∩ Ext(X) = ∅, so Int(Y ) ⊂ Int(X). �

We conclude as before that W ′′ is the one point compactification of
em([2/3, 1) × M , that M is a sphere, and that W ′′ was one of two con-
nected components of W − em([1/3, 2/3)×M). The same argument applies
to the other connected component, and we conclude that the action on W
is the double of the standard coning.

�

7. Application: bundle structure and the extension problem in
the differentiable case

In this section, we prove the structure theorem and then discuss the
extension problem for diffeomorphism groups. We recall the statement here.

Theorem 1.7. Suppose M is a connected, closed, smooth manifold and N is
a connected manifold with dim(N) < 2 dim(M). If there exists a nontrivial
continuous action Diffr0(M) → Diffs0(N), 0 ≤ r ≤ ∞, 1 ≤ s ≤ ∞, then the
action is fixed point free, and N is a topological fiber bundle over M where
the fibers are Cs-submanifolds of N .

The proof in the case where dim(M) = 1 is short: in this case, we
have M = S1 and our assumption on dimension means that dim(N) = 1.
Simplicity of Diff∞0 (S1) and the fact that Diff∞0 (S1) is Cr-dense in Diffr0(S1)
means that finite-order rigid rotations act nontrivially on N , hence as finite
order diffeomorphisms, and so N = S1 and the orbit classification theorem
means there is a single orbit for the action, which is conjugate to the standard
action. This can also be derived from the main theorem of [17], which also
gives a description of actions when M is a noncompact 1-manifold, and does
not assume continuity.
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The proof of Theorem 1.7 in the general case is somewhat involved, how-
ever it easily gives the negative solution to the extension problem, so we
give this consequence first.

Proof of Corollary 1.10. Suppose W is a compact smooth manifold with
∂W = M . If Resr has a continuous section, then from Theorem 1.7, we
know that there is a fiber bundle map p : W →M such that p|M = id. This
contradicts the fact that a boundary ∂W is never a retract of W , which
can be shown by the fact that the fundamental class µM ∈ Hdim(M)(M ;Z)
has trivial image under the induced map of the embedding M → W into
Hdim(M)(W ;Z).

For Res∞, we do not have any section, since [14, Theorem 1.2] implies
that any extension Diff∞0 (M)→ Diff∞0 (W ) is automatically continuous. �

Now we establish the non-existence of fixed points. For this, we do not
need any restriction on the dimension of N , however we do use a hypothesis
on the dimension of M .

Proposition 7.1. Let M be a closed manifold with dim(M) ≥ 3. If Diffr0(M)
acts continuously on a manifold N by C1 diffeomorphisms with a global fixed
point, then the action is trivial.

The proof uses the following easy observation about periodic points.

Observation 7.2. Let f be a local C1 diffeomorphism of Rn fixing 0 with
Df0 = I. For any k ∈ N, there exists a neighborhood Uk of 0 where Fix(fk)∩
Uk ⊂ Fix(f).

Proof of Observation 7.2. Let k be given. If fk has no fixed points in a
neighborhood of 0, then we are done. Otherwise, using continuity of Df
and the fact that it is identity at 0, let U be a neighborhood of 0 small
enough so that, for any unit vector v tangent to any point y ∈ U , and any

j < k, we have that ||Df jy (v)|| and |Df jy (v) · v| both have value in [1/2, 3/2].
This choice is somewhat arbitrary, what is important here is that it is a
small interval containing 1.

Take a neighborhood Uk ⊂ U small enough so that the convex hull of
Uk ∪ f(Uk) lies in U . Let x ∈ Fix(fk) ∩ Uk, and suppose for contradiction
that f(x) 6= x. Let L be a straight line segment from x to f(x) parametrized
by unit speed, by construction this is contained in U . Furthermore, for
any j = 1, 2, ...k − 1 the image f j(L) is a C1 embedded curve from f j(x)
to f j+1(x), with tangent vector at every point satisfying having norm in
[1/2, 3/2], and dot product with the vector in the tangent direction to L
also in [1/2, 3/2]. It follows that the projection of this path to the line
containing L has positive derivative everywhere, so the union of the segments
f j(L) cannot form a closed loop, contradicting the fact that fk(x) = x. �

Proof of Proposition 7.1. Suppose ρ : Diffr0(M) → Diff1(N) is a nontrivial,
continuous action as given in the statement. By the orbit classification
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theorem, we know that every orbit of ρ is a cover of a bundle over Confk(M)
for some k (depending on the orbit, but bounded in terms of the dimension
of N). We say such an orbit has type k.

Suppose for contradiction that ρ has at least one global fixed point and
let F denote the fixed set. For each y ∈ F , taking the derivative at y gives
a homomorphism Diffr0(M) → GL(n,R) where n = dim(N). Consider the
restriction of this map to Diff∞0 (M); this is a simple group with no nontrivial
finite dimensional linear representations, so the derivative homomorphism
at any fixed point is trivial. Take some y ∈ N that lies on the boundary
of F and let yi be a sequence of points in N − F converging to y. After
passing to a subsequence, we can assume that each yi lies in a type of orbit
of the same type, say type k. Thus, to each point yi we can associate a set
π(yi) = Xi ⊂M of cardinality k, such that ρ(Stabr(Xi)0) ⊂ Stab(yi).

After passing to a further subsequence, we may assume that the sets Xi

Hausdorff converge to a closed set X; this will be a set of k or fewer points on
M . By modifying the sequence yi, we may also assume thatXi 6= X holds for
all i, as follows. For each i such that Xi = X, choose some fi ∈ Diff∞0 (M)
that is Cr close to the identity, but with fi(X) 6= X, and replace yi by
ρ(fi)(yi). Then πρ(fi)(yi) = fi(X) 6= X, and since the action is continuous,
we may choose fi close enough to identity so that ρ(fi)(yi) still converges
to y. Thus, we now assume no point in our sequence yi projects under the
map π to X.

We now proceed to construct an element g ∈ Diffr(M) such that g4 ∈
Stabr(Xi)0 but g(Xi) 6= Xi. This will produce a contradiction with Ob-
servation 7.2 because yi is a periodic, but not fixed, point for g for every i
and the limit y is a global fixed point. Take disjoint neighborhoods Ux of
each point x ∈ X. Define a diffeomorphism g ∈ Diff∞0 (M) supported on
the union of the sets Ux as follows. Fix an order two element R ∈ SO(m),
where m = dim(M), and fix a path γ of rotations from R to the identity
parametrized by t ∈ [0, 1], that is constant on a neighborhood of 0 and of
1. Take local charts identifying each x ∈ X with the origin 0 ∈ Rd, and
identifying a small neighborhood of x contained in Ux with the unit ball in
Rm. Define g to agree with the rotation γ(t) on the sphere of radius t, and
extend to the identity outside the ball, and use the chart to identify this
with a diffeomorphism of M supported on the union of the sets Ux. For an
appropriate choice of charts we can ensure that g(Xi) 6= Xi for all large i.

By construction, g2 is the identity on a neighborhood of X, so for all
large i, it acts trivially on the jet space over Xi. Since g2 is described by a
loop of rotations defined on concentric spheres (and based at identity) and
π1(SO(m)) = Z/2, we can contract the loop of rotations corresponding to
the element g4 in SO(m), and this gives an isotopy of g4 to the identity
supported on a compact set. This shows that g4 actually lies in Stabr(Xi)0

for all r, so acts trivially on the fibers over Xi coming from the fiber-bundle
structure of each orbit. In particular, ρ(g)4(yi) = yi. However, since g(Xi) 6=
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Xi, we know that ρ(g)(yi) 6= yi for all large i. Since yi → y, and Dρ(g)y = I,
this gives the desired contradiction with Observation 7.2. �

We suspect that a similar result holds for dim(M) = 2, but the situation is
more complicated because π1(SO(2)) = Z. To avoid this, we instead simply
treat the dimension 2 case separately for the purposes of Theorem 1.7.

Proof of Theorem 1.7. We have already treated the easy case where dim(M) =
1. We first give the proof in the higher dimensional setting, then show how
to adapt the arguments to the surface case.

Case: dim(M) = m > 2. By Proposition 7.1, the action is fixed point free.
As in the proof of Theorem 1.5, we first define a projection map p : N →M
by setting p(y) = x if x is the unique point in N such that Gy ⊂ Stab(x),
where Gy ⊂ Diffr0(M) denotes the stabilizer of y under the action of ρ. This
is well defined, since our restriction on dimension means that no orbits can
be built from jet bundles over Confj(M) for any j > 1. By Theorem 2.18,
we also know that Stabr(x)0 ⊂ Gy. Also, the same argument as in the proof
of Theorem 1.5 shows that for any open ball B ⊂M we have

p−1(B) = N − Fix(ρ(H(B)))

where H(B) denotes the diffeomorphisms supported on B and isotopic to
the identity through diffeomorphisms supported on B, so p is a continuous
map.

Fix a basepoint b ∈M and let F = p−1(b). First, we define a local prod-
uct structure as we did in the proof of the generalized flat bundle theorem
for actions by homeomorphisms. Let T be an embedding of a neighborhood
of the identity in Rm into Diff∞0 (M) with T (0) = id, such that b has a free
orbit under T , we again do this using a collection of m smooth vector fields
on M which are linearly independent inside of a small coordinate box con-
taining b, as we did in the proof of Proposition 2.5. The orbit map of b under
T gives a smooth local chart for M around b. Let U be a small neighborhood
of the identity in T ⊂ Diff∞0 (M). Then the map ψ : U × F → p−1(U · b)
defined by ψ(t, y) = ρ(t)(y) is a continuous, injective map onto the open
subset p−1(U · b) of N .

The inverse of this map sends a point x = ρ(tx)(y) to (tx, y) = (tx, ρ(tx)−1(x)).
The map x 7→ tx is continuous, since tx is the unique point in U such that
txb = p(x). Thus, this map is a homeomorphism onto its image, an open
subset of N . From this it follows that F is a homology manifold of dimension
dim(N)− dim(M).

Note that F may be disconnected, and may possibly even have infinitely
many connected components, for instance in the case of lifting actions to a
cover of a negatively curved manifold, or to the projectivized tangent bundle
of such a cover.

Claim 7.3. All connected components of F are homeomorphic.
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Proof. To do this, fix a connected component C of F . Let

D(C) =
⋃

f∈Diffr
0(M)

ρ(f)(C)

this is a ρ-invariant open subset of N since C is an open set in F . Now if
ρ(f)(C) ∩ F 6= ∅ for some f ∈ Diff∞0 (M), then f ∈ Stab(b), which acts by
homeomorphisms of F , permuting its connected components. Thus, ρ(f)(C)
is either equal to C or disjoint from it. It follows that the invariant sets
D(C ′), as C ′ ranges over the connected components of F in distinct orbits of
the permutation action, form a partition of N into countably many disjoint
open sets. Since N is connected, this partition must be trivial, and we
conclude that all connected components are homeomorphic. �

Our next goal is to show that F is a Cs submanifold. For this we use a
different subgroup of Diffr0(M) supported in a neighborhood of b.

Fix a local coordinate chart around b ∈M , identifying b with the origin
in Rm. Construct a subgroup S ⊂ Stab(b) ⊂ Diff∞(M) ⊂ Diffr(M) of
“local rotations” as follows: choose a small neighborhood U of the identity
in SO(m), and let φt be a smooth retraction of U to {id}. Let Bt denote the
ball of radius t about the origin in Rm. For u ∈ U, take a diffeomorphism
gu supported on B2 agreeing with u on B1 and rotating the sphere of radius
1 + t by φt(u). Identify this with a diffeomorphism of M by extending to
the identity outside the image of B2 in our coordinate chart. Let S be the
group generated by {gu : u ∈ U}. Since S fixes b and preserves the image of
B1 in our chart, ρ(S) acts on p−1(B1) and preserves the fiber F .

Claim 7.4. The action of S on p−1(B1) factors through the universal cover

S̃O(m) = Spin(m) of SO(m).

Proof. Let g ∈ S. For each t ∈ [1, 2], the restriction of g to Bt is a rotation,
thus we can view g as a path in SO(m) based at id (the restriction to B2) and
ending at the restriction of g to B1. Any g1, g2 ∈ S satisfying g1|B1 = g2|B1

are two paths to the same endpoint, so (g1g
−1
2 ) defines a loop of rotations.

As in the proof of Proposition 7.1, since π1(SO(m)) = Z/2, we know that
(g1g

−1
2 )2 ∈ Stabr(x)0 for any x ∈ B1, so acts trivially on p−1(x). Thus the

action of S on p−1(B1) factors through S̃O(m) by Theorem 2.18 . �

Consider now the restriction of the action ρ(S) to F = p−1(b). Suppose
that O ⊂ F is an orbit of the action of ρ(S) on F . Then O is the continuous,

injective image of a quotient of S̃O(m) by some closed subgroup H. Since
S is connected, O is connected, and our restriction on dimension implies
that O has dimension at most m− 1. This dimension restriction means the

closed subgroup is either S̃O(m) itself (hence O is a point), or has identity

component isomorphic to SO(m− 1) or ˜SO(m− 1). See [23, sec.11] for the
classification of small codimension closed subgroups of O(m). In the second
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case, S̃O(m)/H is a manifold of dimension m − 1 and if equipped with a
metric induced from a bi-invariant metric on SO(m) has an isometry group
of dimension m(m− 1)/2 (the codimension of h) and thus by [16, Theorem
II.3.1] is a symmetric space, either Sm−1 or RPm−1.

If some orbit is Sm−1 (respectively, RPm−1), then our restriction on di-
mension implies that this orbit is necessarily a connected component of F .
Since all connected components are homeomorphic by Claim 7.3, we con-
clude that N is a Sm−1 (respectively, RPm−1) bundle over a cover of M ;
since the action is Cs and the fiber an orbit of a compact group action, it is
a Cs submanifold.

Otherwise, F is pointwise fixed by S, and equal to Fix(S)∩p−1(B1). The
local linearization theorem for actions of compact groups (see Theorem 1,
§5.2 in [24]) then says that this fixed set is a Cs submanifold. In all cases, we
now know that F is a Cs submanifold and ψ gives a local product structure.

Case: dim(M) = 2. Since Proposition 7.1 does not apply, we work first
with the action of ρ on N − Fix(ρ) and then show that Fix(ρ) = ∅.

Let N ′ be a connected component of N − Fix(ρ). We apply the first
part of the previous proof verbatim, taking a point b ∈ N ′ and a smooth
embedding T of a neighborhood U of the identity in R2 into Diff∞0 (M) such
that b has a free orbit under T . As before, the map U×F → p−1(U ·b) defined
by (u, y) 7→ ρ(u)(y) is continuous, injective, and a homeomorphism onto its
image p−1(U · b), an open subset of N ′. Thus, F is a homology manifold,
and our restriction on dimension implies that it is either a discrete set (in
which case N ′ is a cover of M with the lifted action) or a one dimensional
topological submanifold. Claim 7.3 still applies and shows that all connected
components of F are homeomorphic.

Also, since T is a smooth embedding and ρ is an action by Cs diffeomor-
phisms, for any y0 ∈ F , the orbit map U → N ′ given by u 7→ ρ(u)(y0) is Cs,
see [24, Section 5.1].

Following the proof from the previous case, we may define a group of local

rotations S such that the action of S on p−1(B1) factors through S̃O(2). Here
it will be convenient to also require some compatibility between S and T .
Working in the coordinates we used to define T , if S is taken to agree with
rigid rotations on the ball B1 of radius 1 about 0 in R2, then for any u
sufficiently close to 0 in U , and any s ∈ S, the conjugate sus−1 will also
agree with a small rigid translation in some neighborhood of 0. In other
words, the germ of sus−1 at 0 agrees with the germ of some element t ∈ T .
Moreover, it follows from the construction of S and T that t−1 ◦ sus−1 is
isotopic to the identity relative to a fixed neighborhood of 0 in R2, and
hence the diffeomorphism of M which it defines is supported away from b
and isotopic to the identity relative to some neighborhood B ⊂ B1 of b. The
orbit classification theorem then says that it acts trivially on p−1(B).

This choice of S means that, if y0 ∈ F is fixed by some s ∈ S, then the
germ of t and sus−1 agree at y0. Thus, restricting to some U ′ ⊂ U centered
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at 0 on which ρ is an embedding, the tangent space to the embedded disc
ρ(U ′)(y0) at y0 is invariant under the action of Dρ(s)y0 , for each s ∈ S, and
the action of S on the tangent space is by rotations. This observation will
be useful to us as we study the structure of F .

Consider now the orbits of the action of S on F . These may be single-
tons, embedded circles on which S acts by rotation, or copies of R on which
S acts by translation. The difficulty in this case is that, unlike in the higher
dimensional case, S is not compact, and orbits may not be compact. It is
also not immediately evident that connected components of F are either
pointwise fixed or equal to orbits of S; one could in theory have a connected
component of F homeomorphic to S1, but containing an orbit of S homeo-
morphic to R together with a fixed point for S. To deal with this, we enlarge
S to contain local elements of SL(2,R).

Take a neighborhood A of the identity in the diagonal subgroup of SL(2,R)
and let N be a neighborhood of the identity in the nilpotent upper triangular
subgroup, chosen small enough so that v(B1) ⊂ B3/2 for all v ∈ A∪N (recall

Br denotes the ball of radius r in R2). Identifying Br with its image in M
via our chart, each v ∈ A gives a partially defined diffeomorphism of M that
can be extended to a diffeomorphism of M that is identity outside of B2, in a
way that continuously embeds A into Diff∞c (M), similarly for N. The group
these diffeomorphisms generate consists of diffeomorphisms supported in B2

and isotopic to the identity relative to b. Let V ⊂ Diffc(M) be the group
generated by all such elements. The KAN decomposition implies that every
germ of a linear map at b is represented by some sv where s ∈ S, and v ∈ V .
The group generated by S and V fixes b in M so acts on F = p−1(b) in N .

This action factors through an action of the group ˜SL(2,R), since ˜SL(2,R)

is topologically S̃O(2)×N .

The classification of closed subgroups of ˜SL(2,R) implies that if O is a
one-dimensional orbit for the action of S on F , then it is also an orbit for

the action of ˜SL(2,R) and the action of ˜SL(2,R) on O is either the standard
action of a finite cyclic cover of PSL(2,R) on S1 or of its universal covering

group ˜SL(2,R) on R. In particular, the standard action means that, for any

point x, there is a conjugate of a lift of the matrix
(

2 0
0 1/2

)
in SL(2,R) which

fixes x and all of its translates under the deck group for the cover R→ S1,
with derivative equal to 2 at these points, and also has a bi-infinite set of
fixed points with derivative equal to 1/2 at each.

Claim 7.5. The closure N ′ of N ′ in N contains no global fixed point, hence
Fix(ρ) = ∅.

Proof. Suppose for contradiction that {x′n ∈ N ′} is a sequence with x′n →
y ∈ Fix(ρ). Since x′n corresponds to a point p(x′n) ∈ M , we can assume
that p(x′n) → b for some b by passing to a subsequence. Then we can
find elements fn ∈ Diff∞0 (M), such that fn → id and fn(p(x′n)) = b. By
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continuity of the action, ρ(fn)(x′n)→ y. This shows that we can take a new
sequence xn = ρ(fn)(x′n) such that xn ∈ p−1(b) and xn → y ∈ Fix(ρ).

Each xn lies in an orbit of S that is either an injective copy of R, of S1,
or an isolated point. After passing to a subsequence, we can assume all are
the same type. We treat these three cases separately, each will give us a
contradiction.

First suppose each xn is contained in an R-orbit. By compactness of
R/Z, we may pass to a subsequence such that xn converges to some x mod
Z. Then there exists sn ∈ S converging to identity such that sn(xn) = x
mod Z, and ρ(sn)(xn) converges to y. Take g ∈ V such that x is a fixed
point of g with derivative 2. Then ρ(g) also has derivative equal to 2 in
the direction of the tangent space of the R-orbit at the point ρ(sn)(xn),
contradicting the fact that these converge to a global fixed point, and at
global fixed points all derivatives are trivial, as we remarked in the proof of
Proposition 7.1.

The same argument shows that no sequence of S1 orbits for S can accu-
mulate to a global fixed point.

Finally we deal with singleton orbits. Our observation that for any fixed
point y0 in F , the tangent space to the embedded disc ρ(U)(y0) at y0 is
invariant and rotated by S, means that S acts with derivatives uniformly
bounded away from identity at fixed points in F , so cannot accumulate to
a global fixed point either. Thus, no sequence of points in F can converge
to a point in Fix(ρ). We conclude that Fix(ρ) = ∅ and N = N ′. �

To finish the proof of the theorem, we want to show that R-orbits for
S are connected components of F , i.e. no R-orbit for S accumulates at a
fixed point for S. The strategy of the argument is similar to that above.
Suppose for contradiction that xn ∈ F belong to a single R-orbit O and
xn → y where y is fixed by S. Choose sn ∈ [0, 1] ⊂ S ∼= R so that the points
yn := sn(xn) ∈ F all lie in the same orbit of the deck transformation τ of
the cover R 7→ R/Z. Since y is fixed by S, we have yn → y. Recall that
the tangent space to y decomposes as a direct sum with a S-invariant plane,
tangent to the image of U(y), on which S acts by rotations. Let v denote
the axis of rotation in Ty(N). Since O is an S-invariant set, the tangent line
to O at yn approaches v as n → ∞. Recall the description of the standard
action of V on R that we gave above. Since yn all differ by a multiple of τ ,
we may take an element g ∈ V (the lift of a hyperbolic element of SL(2,R),
as before) such that ρ(g) fixes each point yn, and has derivative equal to
1/2 in the direction tangent to O there, and also fixes the points s(yn) with
derivative equal to 2 there, where s ∈ S is some nontrivial element not equal
to a multiple of τ . Since y is fixed by s, the sequence s(yn) also accumulates
at y and has tangent direction in F tending to v. This contradicts continuity
of the derivative of ρ(g) at y.

Thus, each R-orbit contained in F is a connected component of F . The
same is true for the S1-orbits. It follows that the union the singleton orbits
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also forms a clopen set consisting of a union of connected components. In
the case of S1 or R orbits, these are Cs embedded submanifolds, and we
have a local product structure using the group T and chart ψ as before. In
the neighborhood of a singleton orbit, the action of S on p−1(B1) factors
through an action of a compact group, since the deck transformation τ of
S → SO(2) has support disjoint from B1, so acts trivially on the fibers over
all points of B1. We may now apply local linearization to conclude these
components of F are Cs embedded submanifolds as well. �

8. Application: actions of Homeo0(S1) on compact surfaces

In this section, we will classify actions of Homeo0(S1) on compact sur-
faces. We will give the proof for the disc D2 which proves [22, Conjecture
2.2]. A complete classification of actions on other surfaces can be obtained
by essentially the same argument, giving in particular a new proof of the
main theorem of [22].

8.1. The statement. We first give a general procedure to construct actions
of Homeo0(S1) on D2. (Similar to [22, §2].) Let L = [0, 1] be the orbit space
of the standard SO(2) action on D2, where r ∈ [0, 1] represents the circle of
radius r. Let K ⊂ L be a closed subset including 0. We use the convention
S1 = R/Z in the following. Let a0 : Homeo0(S1)→ Homeo(R/Z× [0, 1]) be
defined by

a0(f)(θ, r) = (f(θ), f̃(r + θ̃)− f̃(θ̃))

where f̃ ∈ Homeo0(R) is any lift of f ∈ Homeo0(S1) to Homeo0(R) and

θ̃ ∈ R represents a lift of θ ∈ R/Z. Note that this is well defined and
independent of the choice of lifts.

Let T k(θ, r) = (θ+ kr, r), this is the kth power of a standard Dehn twist
in the closed annulus R/Z×[0, 1]. Let ak(f) = T ka0(f)(T k)−1. For example,

a1(f)(θ, r) = T 1a0(f)(θ−r, r) = T 1(f(θ−r), f̃(θ̃)−f̃(θ̃−r)) = (f(θ), f̃(θ̃)−f̃(θ̃−r)).

The fact that both a0(f) and a1(f) have the same first coordinate is a pure
coincidence. This is not true for ak when k 6= 0, 1, and so a0 and a1 will
play a special role.

Let λ : L−K → {0, 1} be a function which is constant on each component.
For a < b ∈ [0, 1], let na,b be the affine normalization na,b : S1 × [0, 1] →
S1 × [a, b] given by na,b(θ, r) = (θ, a + r(b − a)). We denote by ρK,λ the
action such that, for each component (a, b) of L−K, the restriction of ρK,λ
to its closure is given by

ρK,λ|S1×[a,b](f) = na,b ◦ aλ((a,b))(f) ◦ n−1
a,b.

It is easy to check that ρK,λ is indeed a continuous group action, since the
first coordinate of a0 and a1 is just the standard action on S1, and the
second coordinate is also continuous.

We prove the following.
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Theorem 8.1 (Classification of Homeo0(S1) actions on the disc). Any non-
trivial homomorphism ρ : Homeo0(S1) → Homeo0(D2) is conjugate to ρK,λ
for some K,λ as above. Two homomorphisms ρK,λ and ρK′,λ′ are conjugate
to each other if and only if there is a homeomorphism h : [0, 1]→ [0, 1] with
h(K) = K ′, and such that λ and h−1 ◦ λ′h agree on all but finitely many
components of [0, 1]−K on each closed interval in the interior of [0, 1].

The reader may wonder why λ only takes values in {0, 1}. This is because
that {ak} are all conjugate to one another, which means we can perform
a conjugation supported on finitely many annuli to convert them all to a0.
However, as we will show later, we cannot simultaneously conjugate infinitely
many such maps over a compact set S1× [r, 1] ⊂ S1×(0, 1], and only finitely
many of them can take values outside of {0, 1}.

The proof will also show that actions on the half-open annulus (up to
conjugacy) are the same as those on the disc under the identification of
[0, 1)×S1 with D2−0. Actions on the open and closed annulus, the sphere,
and the torus have an analogous classification which can be obtained by the
same proof.

We will use the following classical result on SO(2) actions.

Lemma 8.2 ([24] Ch 6.5). Any faithful, continuous action of SO(2) on D2

is conjugate to the standard action by rotations.

This is also true for the sphere and the (open, closed, or half-open) annulus,
while all actions of SO(2) on the torus S1 × S1 are conjugate to rotation of
one S1 factor.

Now suppose that ρ : Homeo0(S1) → Homeo0(D2) is a representation.
Using the automatic continuity result of Rosendal and Solecki [27], we know
that ρ is continuous, and by simplicity of Homeo0(S1) we may assume ρ
is faithful. By Lemma 8.2, we can also assume that the restriction of ρ to
SO(2) agrees with the standard action by rotations. We will apply several
successive conjugations to put ρ in the form stated in Theorem 8.1.

8.2. First conjugation: coning on a closed, invariant set. Fix s ∈ S1

and let Gs denote the stabilizer of s ∈ Homeo0(S1). Later, we will use
an identification of S1 with R/Z and take s to be 0 in this identification.
Thinking of D2 as the unit disc in R2, the first conjugacy will put Fix(ρ(Gs))
on the x-axis, so that the restriction of ρ to the set SO(2)(Fix(ρ(Gp))) agrees
with coning.

Lemma 8.3. The fixed point O of ρ(SO(2)) is a global fixed point for
ρ(Homeo0(S1)).

Proof. This lemma has a direct proof which is given in [22, Proposition
6.1]. An alternative quick argument can be obtained by quoting the general
classification [11, Theorem 1.1], since the stabilizer Stab(O) of O under
ρ contains SO(2) (in particular, it contains a nonconstant path), and also
contains any element that commutes with a nontrivial element of SO(2). �
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Let L = [0, 1] be the orbit space of the standard SO(2) action on D2,
where r ∈ [0, 1] represents the circle of radius r, and let p denote the
projection p : D2 → L = [0, 1]. With the exception of O, every other
ρ(Homeo0(S1))-orbit is 1 or 2-dimensional, since nontrivial orbits under the
subgroup ρ(SO(2)) are 1-dimensional. Let Q ⊂ D2 be the union of all the
1-dimensional orbits and O. Then K := p(Q) ⊂ [0, 1] is a closed subset.
(Each 2-dimensional orbit is open by invariance of domain.) The action of
Homeo0(S1) is standard on each 1-dimensional orbit, so the point stabilizer
Gs fixes a single point. Thus, we may define h′1 : K − {0} → D2 by

h′1(x) = Fix(ρ(Gs)) ∩ p−1(x).

Away from O, this function is uniquely determined by its projection to the
S1 coordinate, which we denote by g′1 : K − {0} → S1.

Lemma 8.4. The functions h′1 and g′1 are continuous on K − {0}.

Proof. Continuity of h′1 implies continuity of g′1. For h′1, we need to show

that for a closed set C ⊂ D2, the set h′−1
1 (C) is closed. We have the following

computation:
h′−1

1 (C) = p(Fix(ρ(Gs)) ∩ C).

Since Fix(ρ(Gs)) is a closed set and p is a proper map, we know that h′−1
1 (C)

is a closed set as well. �

By the Tietze extension theorem, we can extend the function g′1 to a
continuous function g1 : (0, 1] → S1. Identify S1 = R/Z, so s is identified
with 0, and Gs = G0 ⊂ Homeo0(S1). Since ρ(G0) fixes g1(r) for r ∈ K, the
action of ρ(f) on p−1(r) agrees with ρ(f)(θ, r) = (f(θ − g1(r)) + g1(r), r).
Define a homeomorphism h1 of D2 by

h1(θ, r) = (θ + g1(r), r)

and h1(O) = O. Then h−1
1 ◦ρ◦h1|p−1(K) is “coning”, i.e. h−1

1 ◦ρ(f)◦h1(θ, r) =
(f(θ), r) whenever r ∈ K. From now on, we replace ρ with its conjugate
h−1

1 ◦ ρ ◦ h1.

8.3. Building block: Indecomposable actions. Call an action of Homeo0(S1)
on a surface indecomposible if there are no zero or 1 dimensional orbits. The
following is an easy consequence of Theorem 1.3.

Corollary 8.5. Up to conjugacy, there are only two indecomposible actions
of Homeo0(S1) on connected surfaces: the standard action on Conf2(S1)
and the standard action on PConf2(S1), which is the space of ordered pair
of points on S1.

Proof. Let S be a connected surface with an indecomposible Homeo0(S1)
action. Since S is 2-dimensional, by invariance of domain every orbit is
an open subsurface of S, and by Proposition 4.2, each is homeomorphic to
either PConf2(S1) or Conf2(S1). Since S is connected, it cannot be covered
by disjoint open subsurfaces, so is either PConf2(S1) or Conf2(S1). �
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Since Conf2(S1) is homeomorphic to the Möbius band, this orbit type
does not occur when the surface is orientable. So we may focus on PConf2(S1),
which is homeomorphic to an open annulus. These are precisely the 2-
dimensional orbits that occur in Theorem 8.1.

Claim 8.6. The conjugation between the action a0 and Homeo0(S1) on
PConf2(S1) is given by the homeomorphism H : PConf2(S1) → S1 × (0, 1)
such that H(x, y) = (x, y− x) where y− x is the distance between x, y along
the anti-clockwise direction.

Proof. To verify the conjugation, for f ∈ Homeo0(S1), we need to show
that H ◦ f = a0(f) ◦ H. For (x, y) ∈ PConf2(S1), we have H ◦ f(x, y) =
(f(x), f(y)− f(x)) ∈ S1 × (0, 1). We also have

a0(f) ◦H(x, y) = a0(f)(x, y − x) = (f(x), f̃(x̃+ (y − x))− f̃(x̃)),

Now x̃+ y − x is a lift of y. Denoting this by ỹ we have

a0(f) ◦H(x, y) = (f(x), f̃(ỹ − f̃(x̃)) = (f(x), f(y)− f(x) ∈ S1 × [0, 1].

Thus, we know that these two actions are conjugate. �

8.4. Second conjugation: 2-dimensional orbits. Let S1 × (a, b) be a
ρ-invariant open annulus on which ρ is irreducible. By Corollary 8.5, there
exists h ∈ Homeo(S1 × (a, b)) such that

h ◦ ρ(f) ◦ h−1 = na,b ◦ a0(f) ◦ n−1
a,b.

We also have ρ(rθ) = rθ = a0(rθ), and therefore

h ◦ rθ = rθ ◦ h.
Writing h in coordinates as h(α, r) := (g(α, r), k(α, r)), the coordinate func-
tions satisfy

g(α+ θ, r) = g(α, r) + θ,

k(α+ θ, r) = k(α, r)

for any θ. This shows that k(α, r) = k(r) and g(α, r) = α+ g(r) where g(r)
and k(r) are continuous functions of r ∈ [a, b] such that g(a) = g(b) = 0
and k(a) = a and k(b) = b. Since for each 2-dimensional orbit of the
form S1 × (a, b), we have that k(a) = a, k(b) = b and k : [a, b] → [a, b]
is increasing, these k glue together to give a continuous function, which
extends to a continuous function that is the identity outside of the union of
the 2-dimensional orbits of ρ. Abusing notation, denote this function also
by k, and let h2(θ, r) = (θ, k(r)). This defines a homeomorphism of D2.
Going forward, we replace ρ with its conjugate h2 ◦ ρ ◦ h−1

2 . This simplifies
the form of the associated function h conjugating ρ to the a0 action given
by Corollary 8.5, and we now have

(2) h(α, r) = (g(r) + α, r).

Say that a 2-dimensional orbit has degree d if this map g : [a, b] → S1

is isotopic relative to the boundary to a degree d map (Recall that g(a) =
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g(b) = 0, so the notion of degree makes sense here). Our next goal is to
prove the following.

Lemma 8.7. Let J ⊂ (0, 1] be a closed interval bounded away from 0.
Among the 2-dimensional orbits that intersect J × S1, only finitely many
have degree not in {0, 1}.

We will use the notation Gθ for the stabilizer of θ ∈ S1 = R/Z. There
are two 1-dimensional orbits of G0 in PConf2(S1). For the a0 action, as in
Claim 8.6, these orbits are {(−r, r) | r ∈ (0, 1)} and {(0, r) | r ∈ (0, 1)}.
Thus, the 1-dimensional orbits of ρ(G0) on an irreducible annulus S1×(a, b)
are the sets {h(0, r) | r ∈ (0, 1)} and {h(na,b(−r, r)) | r ∈ (0, 1)}.

Proof of Lemma 8.7. Suppose for contradiction that there are infinitely many
2-dimensional orbits Uk = S1 × (ak, bk), indexed by k ∈ N, of degree dif-
ferent from 0 or 1 inside a compact sub-annulus of D2−O. Without loss of
generality, we assume they all have degree > 1 (the case where the degree
is negative is similar) and assume that ak converges monotonically to some
r ∈ (0, 1).

For a fixed degree d orbit U = S1 × (a, b), the 1-dimensional orbits of
ρ(G0) in U are the sets

{h ◦ na,b(−r, r)|r ∈ (0, 1)} = {(g(t), t)|t ∈ (a, b)} and

{h ◦ na,b(−r, r)|r ∈ (0, 1)} = {(g(t)− t−a
b−a , t)|t ∈ (a, b)}

where g is a degree d map, and hence the map t 7→ g(t) − t−a
b−a has degree

d− 1 ≥ 1.
For convenience, we now switch to working on the universal cover. Since

ρ(G0) acts on D2−O with fixed points, we may lift it to an action ρ̃ with
fixed points on the universal cover of D2−O; then the 1-dimensional orbits
in Uk are continuous curves from (m, ak) to (m+ d, bk) and from (m, ak) to
(m+ d− 1, bk), for m ∈ Z. See Figure 1.

ak

bk

0 1 0 1 2
a1

b1
a2
b2

Figure 1. Orbits of G0 in a degree 1 orbit for ρ (left) and
in degree 2 orbits (right). Dots represent fixed points.

Each 1-dimensional orbit of G0 is canonically homeomorphic with (0, 1)
via a map φ : θ 7→ Fix(G0 ∩ Gθ). (The map φ depends on the orbit, but
for the sake of readability we suppress that notation for the time being.)
Choose θ ∈ (0, 1) and, let xk ∈ {θ} × (ak, bk) be a point contained in a
1-dimensional orbit of G0. Let θk = φ−1(xk). Pass to a subsequence so
that θk converges to some θ∞ ∈ S1. If θ∞ 6= θ, then we may take h ∈ G0
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such that h(θ) 6= θ, but h(θk) = θk for all k large. But since Fix(ρ(h)) is a
closed set, it contains the point (θ, r), contradicting the fact that h /∈ Gθ.
Thus, we conclude that θ∞ = θ, i.e. every convergent “vertical” sequence
of points xk = (θ, rk) contained in 1-dimensional orbits of G0 corresponds,
via the identifications defined by φ, to a sequence converging to the first
coordinate θ. But this contradicts the existence of a sequence of orbits of
degree > 1. �

8.5. Final conjugation: normal form for 2-dimensional orbits. We
now conjugate the map on each 2-dimensional orbit so that it agrees on
each orbit with a0 or a1. First, by Lemma 8.7, there are only finitely may
orbits of degree neither 0 nor 1. Let h3 be a homeomorphism of D2 that is
supported on the union of these orbits and agrees with a power of a Dehn
twist on each, conjugating the action on this orbit to the (normalized) action
of a0.

Let h4 : D2 → D2 be a function that is the identity map outside the
union of the degree 0 orbits and is the conjugation map that conjugates
each degree 0 orbit action to a0-action (this is the function h from equation
(2) in Section 8.4), and let h5 : D2 → D2 be a similar function for degree 1
orbits like h4. We need to show that h4 and h5 are homeomorphisms; we
give the details for h4, the case of h5 is completely analogous.

By construction, h4 is continuous on each individual 2-dimensional orbit,
and extends to a continuous function on the closure of each individual orbit.
What we need to show is continuity at accumulation points of such orbits.
Suppose that S1 × (an, bn) is a sequence of 2-dimensional orbits of degree 0
with an → r for some r 6= 0. Let gn denote the function from equation (2)
on S1× (an, bn), and φn the identification with (0, 1) defined in the proof of
Lemma 8.7 (where it was called φ). We need to show that gn converges to the
constant function 0. Recall that cn := {(gn(t)− t−an

bn−an , t)|t ∈ (an, bn)} is a 1-
dimensional orbit. If gn did not converge to 0, we could pass to a subsequence
and find a sequence of points tn = φn(θ) such that |gn(tn)| > ε > 0 where
φn denotes the corresponding identification φn : θ → Fix(G0∩Gθ)∩ cn. But
this contradicts the fact that φn(θ) converges to (θ, r) as shown in the proof
of Lemma 8.7. Thus, h3 ◦ h4 ◦ h5 is a homeomorphism conjugating ρ into
standard form.

8.6. Characterization of conjugacy classes. It remains only to show
that two homomorphisms ρK,λ and ρK′,λ′ are conjugate to each other if and
only if there is a homeomorphism h : [0, 1]→ [0, 1] such that h(K) = K ′ and
λ and h ◦ λ′ agree on all but finitely many components of [0, 1]−K on each
closed interval in the interior of [0, 1]. This is proved in [22, Proposition
2.3]. In brief, since K and K ′ are the union of 1-dimensional orbits, they
are necessarily conjugate if the actions are. On any fixed two-dimensional
orbit, there is a unique conjugacy between the two actions by Corollary 8.5,
and if λ and h ◦ λ′ differ on only finitely many components of [0, c]−K for
some c < 1, then these conjugacies can glue together to form a continuous
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homeomorphism. Conversely, if there is a conjugacy between the actions,
one can identify the (necessarily finitely many) components on which they
differ by looking at the image of a radial line under the conjugacy. Full
details can be found in [22].
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den Flächen. Math. Z., 25(1):362–372, 1926.

[16] Shoshichi Kobayashi. Transformation groups in differential geometry.
Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the
1972 edition.

[17] Kathryn Mann. Homomorphisms between diffeomorphism groups. Er-
godic Theory Dynam. Systems, 35(1):192–214, 2015.



STRUCTURE THEOREMS FOR ACTIONS OF HOMEOMORPHISM GROUPS 41

[18] Kathryn Mann. Automatic continuity for homeomorphism groups and
applications. Geom. Topol., 20(5):3033–3056, 2016. With an appendix
by F. Le Roux and Mann.

[19] Kathryn Mann and Bena Tshishiku. Realization problems for diffeo-
morphism groups. To appear in Proc. 2017 Georgia International Topol-
ogy conference, 2018. Pre-print: https://arxiv.org/abs/1802.00490.

[20] John N. Mather. Commutators of diffeomorphisms. Comment. Math.
Helv., 49:512–528, 1974.

[21] John N. Mather. Commutators of diffeomorphisms. II. Comment. Math.
Helv., 50:33–40, 1975.

[22] Emmanuel Militon. Actions of the group of homeomorphisms of the
circle on surfaces. Fund. Math., 233(2):143–172, 2016.

[23] Deane Montgomery and Hans Samelson. Transformation groups of
spheres. Ann. of Math. (2), 44:454–470, 1943.

[24] Deane Montgomery and Leo Zippin. Topological transformation groups.
Interscience Publishers, New York-London, 1955.

[25] L. Paris and D. Rolfsen. Geometric subgroups of surface braid groups.
Ann. Inst. Fourier (Grenoble), 49(2):417–472, 1999.

[26] Christian Rosendal. Automatic continuity in homeomorphism groups
of compact 2-manifolds. Israel J. Math., 166:349–367, 2008.

[27] Christian Rosendal and S l awomir Solecki. Automatic continuity of
homomorphisms and fixed points on metric compacta. Israel J. Math.,
162:349–371, 2007.

[28] Matatyahu Rubin. On the reconstruction of topological spaces from
their groups of homeomorphisms. Trans. Amer. Math. Soc., 312(2):487–
538, 1989.

[29] C. W. Stark. Blowup and fixed points. In Geometry and topology in
dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), volume
246 of Contemp. Math., pages 239–252. Amer. Math. Soc., Providence,
RI, 1999.

[30] William Thurston. Foliations and groups of diffeomorphisms. Bull.
Amer. Math. Soc., 80:304–307, 1974.
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