
Minicourse: The algebraic structure of diffeomorphism groups

Abstract. This course introduces classical and new results on the algebraic structure of the identity compo-
nent of the diffeomorphism group Diff0(M) or homeomorphism group Homeo0(M) of a compact manifold.
These groups are algebraically simple (no nontrivial normal subgroups) – for deep topological reasons due
to Epstein, Mather, Thurston... but nevertheless have a very rich algebraic structure. We’ll see that:

a) The algebraic structure of Diff0(M) determines M . If Diff0(M) is isomorphic to Diff0(N), then M and
N are the same smooth manifold (Filipkiewicz for Diff0(M), Whittaker for Homeo0(M))

b) The algebraic structure of Diff0(M) “captures the topology” of Diff0(M)
Any group homomorphism from Diff0(M) to Diff0(N) is necessarily continuous. Any homomorphism
from Homeo0(M) to any separable topological group is necessarily continuos (Hurtado, Mann)

We’ll explore consequences of these theorems and related results, as well as other fascinating algebraic
properties of diffeomorphism groups of manifolds (for instance, distorted elements, left-invariant orders,
circular orders...). In the last lecture, we’ll touch on recent work on the geometry and metric structure of
diffeomorphism groupss.
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1 Introduction, perfectness and simplicity of Homeo0(M)

1.1 Goals for the workshop

• My course: algebraic structure of homeomorphism and diffeomorphism groups and applica-
tions to (diverse!) problems in topology.

• Bena’s course: topology (homotopy type, cohomology) of diffeomorphism groups, and appli-
cations to classifying bundles, flat bundles, and realization problems.

Basic motivation. For me, the most basic motivation comes from Klein’s Erlangen program. Here
is Klein’s formulation (roughly)

“Given a space X and transformation group acting (transitively) on X, investigate the
properties of aspects of X invariant under G”

Klein’s program gave rise to the modern idea of defining geometry as the study of (G, X) structures.

Definition 1.1. Let X be a topological space, and G ⊂ Homeo(X) a group. A manifold M has a
(G, X) structure if it has charts to X with overlap maps in G. (Technically, one should say that
overlap maps are locally in G: they are restrictions of elements of G to the sets on which they are
defined.)

For example, hyperbolic 2-manifolds are those with a (PSL(2, R), H2) structure; since the hyperbolic
metric on H

2 is invariant under PSL(2, R), these manifolds inherit a metric, and the isometries of
M are exactly the automorphisms of the (PSL(2, R), H2) structure. In Klein’s perspective the
group of automorphisms of a structure plays a central role – Klein himself applied this to projective
geometry, translating geometric problems into algebraic statements.

In this formulation, an oriented topological manifold is a (Homeo+(Rn), Rn) space, and a smooth
structure on a manifold is a (Diff+(Rn), Rn) structure. The automorphism groups of these struc-
tures are Homeo(M) and Diff(M) respectively. Just as a thorough knowledge of the algebraic (and
Lie group) structure of Isom(Hn) is essential to the hyperbolic geometer, we expect that under-
standing the structure of diffeomorphisms and homeomorphism groups should give us new tools in
topology.

Exercise 1.2. In the language of (G, X) structures, what is a symplectic structure on a mani-
fold? A contact structure? A Riemannian metric structure? A notion of volume? What are the
automorphism groups of these structures?

1.2 Meet our friends for the week

Notation 1.3. M is always a connected manifold (smooth or topological, depending on context),
usually assumed compact. We are interested in the following groups.

• Homeo(M) = group of homeomorphisms of M = continuous invertible maps M → M with
continuous inverses.

• Diffr(M) = group of C
r diffeomorphisms of M , i.e. r-times continuously differentiable maps

with r-times continuously differentiable inverses. With this notation Diff∞(M) is the group
of smooth diffeomorphisms (often abbreviated as Diff(M) – if no superscript appears, assume
smooth), and Diff0(M) = Homeo(M).
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• Diffr

+(M) = subgroup of orientation-preserving C
r diffeomorphisms.

• Diffr

0(M) = connected component of Diffr(M) containing the identity.

For non-compact manifolds, we usually focus on the subgroup of compactly supported diffeomor-
phisms –diffeomorphisms that are the identity outside of some compact subset. This group is
denoted Diffr

c(M), and Diffr

0(M) denotes the subgroup of Diffr

c(M) consisting of diffeomorphisms
isotopic to the identity via a compactly supported isotopy. 1

Topology and metric. The idea behind the topology on Diffr(M) is to say that a diffeomorphism
is close to the identity if it doesn’t move any point too far in the manifold, and if its derivatives are
“close to the identity” as well. For Homeo0(M) this is easy to make precise by specifying a metric:
Put a metric d on M , and define a distance on Homeo(M) by

dist(f, g) := sup
x∈M

{d(f(x), g(x))}.

This definition feels natural, but we could have just as well defined

dist2(f, g) := sup
x∈M

{d(f−1(x), g−1(x))}

or even
dist3(f, g) := dist(f, g) + dist2(f, g).

Exercise 1.4. Prove:

i) All of these distance functions are genuine metrics, and the topology they generate is indepen-
dent of the choice of metric d on M .

ii) With the topology induced by dist, dist1, and dist2, right and left multiplication and inversion
is continuous, hence Homeo(M) is a topological group. (In fact, all three distances induce the
same topology. Even better, we’ll see later that Homeo(M) has a unique complete separable
topology – this is it.)

iii) Which metrics are invariant under left, resp. right, multiplication?
Remark: a theorem of Birkhoff-Kakutani states that every metrizable topological group admits a compatible

left-invariant metric – perhaps you know this familiar fact about Lie groups. The existence of a metric invariant

under both left and right multiplication is a nontrivial question. **Can you find such a metric on Homeo0(M)?

The topology on Homeo(M) induced by any of these metrics is separable – a countable sub-basis
for the open sets consists of the sets

{f ∈ Homeo(M) : f(U) ⊂ V }

where U and V range over a countable basis for the topology of M . It also admits a complete
metric (this is dist3 above), making Homeo(M) a Polish group.

1There are many reasons to focus on Diffr
c(M). From a topological perspective, the usual compact-open topology

on Diffr(M) doesn’t “see” the behavior of diffeomorphisms at infinity. From an algebraic perspective, Diffr
c(M) is a

normal subgroup, so a good place to start the study of the algebraic structure of Diffr(M).
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The subset topology on Diffr(M) ⊂ Homeo(M) is not complete. For a better (finer) topology,
one should take derivatives into account. Specifying how far a derivative is from the identity is most
concretely done in coordinates, so to define the C

r compact open topology on Diffr(M) we specify
a sub-basis of open sets as follows. For f ∈ M , let φ : U → R

n and ψ : V → R
n be coordinate

charts, K ⊂ U a compact set with f(K) ⊂ V and let � > 0. Define the (�, K, U, V )-neighborhood
of f as

{g ∈ Diffr(M) | ∀x ∈ φ(K) and 0 ≤ k ≤ r, �Dk(ψgφ
−1)(x)−D

k(ψfφ
−1)(x)� < �}

(by convention, the 0th derivative is just g). The topology on Diff∞(M) is induced by the inclusions
Diff∞(M) �→ Diffr(M) for all finite r; all of these spaces are also completely metrizable. We’ll
return to discussing metrics in Lecture 5.

An infinite dimensional Lie group. The groups Diffr(M) have a natural smooth structure (as a
Banach manifold, or Frechet manifold for the case of Diff∞(M)); the tangent space at the identity
can be identified with the space of C

r vector fields on M . A local chart from a neighborhood of
the identity in Diffr(M) to the space of vector fields is given by mapping g to the vector field

X(p) := exp−1
p g(p)

where expp is the Riemannian exponential map on a neighborhood of the identity in Tp(M). We
say that Diffr(M) is locally modeled on the space of C

r vector fields.
This smooth structure, together with the Lie algebra structure on Diffr(M) makes Diffr(M) an

infinite dimensional Lie group, with Lie algebra the algebra of C
r vector fields.

Warning! although there is a “smooth chart” from M a neighborhood of the 0 vector
field, this is not given by the usual Lie algebra exponential map. The Lie algebra
exponential in this case assigns to a vector field the time 1 map of the flow generated by
this vector field, but there exist diffeomorphisms, even of S

1, that are arbitrarily close
to the identity and not the time 1 map of any flow.

See Chapter 1 of [2] for a very short introduction and [36], especially Chapters II.2 and II.3, for
more development and context.

1.3 Perfectness and simplicity

A recurring theme in this course will be that Diff0(M) and Homeo0(M) share many common traits
(perfectness, simplicity, group determines the manifold, etc.), but the tools needed to prove these
in the smooth and topological categories are often completely different. As a first example, we’ll
prove a fundamental tool called the Fragmentation property, first for Homeo0(M) using Kirby’s
torus trick, then for Diff0(M), which will be comparatively elementary.

Fragmentation is a particular way of decomposing a homeomorphism into “smaller” ones, pre-
cisely, ones with smaller support.

Definition 1.5. The support of a homeomorphism f , denoted supp(f), is the closure of the set
{x ∈ M : f(x) �= x}

Definition 1.6 (Fragmentation). A group G ⊂ Homeo0(M) has the fragmentation property if,
given any finite open cover U of M and any element g ∈ G, there is a decomposition g = g1◦g2....◦gn

with each gi supported in some set in U .
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Theorem 1.7 (Kirby [34], Edwards–Kirby [17]). Homeo0(M) has the fragmentation property.

Proof sketch. The proof is a straightforward application of Kirby’s famous “torus trick”

1. Reduction to neighborhood of id. Since a topological group is generated by a neighborhood of
the identity, it suffices to prove that homeomorphisms close to the identity can be fragmented.

2. The torus trick. If f ∈ Homeo(Rn) is sufficiently close to the identity, and K ⊂ R
n a compact

set, then there is an isotopy ft, with f0 = f and K ⊂ fix(f1).

3. First application of torus trick. If M is a manifold, U ⊂ M and open set and K ⊂ U

compact, then any f ∈ Homeo(M) sufficiently close to the identity can be isotoped to a
homeomorphism f1 fixing K, and the isotopy can be taken to be constant (agreeing with f)
outside of U .

4. Control of norm. We can control the norm of f1 from step 2. Given �, there exists δ so that
�f� < δ ⇒ �f1� < �. [proof omitted]

5. Fragmentation. Let U be an open cover of M . For simplicity, I’ll assume U = {U1, U2}, if
there are more sets you make an inductive argument. Take V1 ⊂ U1 so that {V1, U2} is still a
cover. Let f ∈ Homeo(M). If f is close enough to the identity, we can isotope f to f1, where
f1 fixes V1 and agrees with f outside of U1. Then f2 := f ◦ f

−1
1 agrees with f on V1 and is

supported on U1. Since f1 fixes V1, supp(f) ⊂ U2, so f = f2f1 is our desired fragmentation.

Remark 1.8. The torus trick uses topological Schönflies (which itself is not too hard), and oth-
erwise is quite elementary. A more refined version, using Gauld’s “cannonical Schönflies” theorem
shows that there is a cannonical means of fragmenting a homeomorphism close to the identity,
and was used by Edwards–Kirby to prove that Homeo0(M) is locally contractible. Local con-
tractibility of Homeo0(M) was proved earlier by Cernavskii, using difficult surgery theory (handle-
straightening). For a thorough introduction to the topic (published in 1973, when it was a very hot
topic) see [60].

Fragmentation has many other important applications. We’ll use it now to show an algebraic
property of Homeo0(M). Recall that a group G is perfect if it is equal to its commutator subgroup,
equivalently, if H1(G; Z) = 0 (in group homology).

Corollary 1.9. Homeo0(M) is perfect.

Proof. (“folklore,” perhaps due to Anderson [1]) Since Homeo0(M) is generated by any neighbor-
hood of the identity, it suffices to prove that any homeomorphism close to the identity can be written
as a product of commutators. By fragmentation, it will suffice to prove that any f ∈ Homeo0(M)
supported in a small ball B can be written as a commutator. So Let B be an open ball in M , and
suppose supp(f) ⊂ B. Choose b ∈ Homeo0(M) such that for any m �= n, b

n(B) ∩ b
m(B) = ∅ (one

can easily construct such explicitly using a chart in R
n. Define a by

a(x) =
�

b
n
fb
−n(x) if x ∈ b

n(B) for some n

x otherwise

Then it is easily verified that [a, b] = f .
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Figure 1: Schematics for the proofs of Corollaries 1.9 and 1.10

Corollary 1.10. Homeo0(M) is algebraically simple.

Proof. . Let n �= id be an element of Homeo0(M). We want to show that every element of
Homeo0(M) is in the normal closure of n. Let B ⊂ M be a small ball such that nB ∩B = ∅. First
we show that if supp(f) ⊂ B, then f is in the normal closure of n.

Let g ∈ Homeo0(M) be such that g|B = id and g(nB) ∩ nB = ∅. The proof of Corollary 1.9 in
fact shows that f = [a, b] for some a and b supported on B. (Since supp(f) is closed, it is contained
in some smaller sub-ball B

� ⊂ B, run the proof of the corollary with B
� in place of B, and take b

to be supported on B.) Now verify (exercise!) that

f =
�
[a, n], [b, gng

−1]
�

which is what we wanted to show.
If B

� is another small embedded ball, then there exists h ∈ Homeo0(M) such that h(B�) ⊂ B.
If supp(f) ⊂ B

�, then supp(hfh
−1) ⊂ B, so hfh

−1 (and hence h) lies in the normal closure of n.
Finally, fragmentation tells us that Homeo0(M) is generated by elements supported on small balls,
hence lies in the normal closure of n.

Exercise 1.11. Fill in the details of the proof above. Does this also show that Diff0(M) is simple
(given that it is perfect, which we will show tomorrow)? What general properties of a group
G ⊂ Homeo0(M) will guarantee that G is simple?

Fragmentation for Diffr

0(M). Above, we mentioned that Diffr

0(M) was an infinite-dimensional
(Banach/Frechet) manifold modeled on the space of smooth vector fields on M . One consequence of
this fact is that Diffr

0(M) is locally connected. We exploit this to give a quick proof of fragmentation.
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Proof of fragmentation for Diffr

0(M), following [2]. Let {U1, ...Un} be an open cover of M . As in
the proof of fragmentation for Homeo, it suffices to show we can “fragment” a diffeomorphism g

that is close to the identity. By local connectedness, we can take an isotopy gt from g0 = id to
g1 = g that stays close to the identity for all t.

Take a partition of unity λi subordinate to {Ui} and define µk :=
�
i≤k

λi. Now define ψk(x) :=

gµk(x)(x). This is a C
r map, and close to the identity, although not a priori invertible. How-

ever, the space of C
r diffeomorphisms is open, so being suffieintly close to the identity implies

that it is a diffeomorphism. By definition, ψk agrees with φk−1 outside of Uk, and hence g =
(ψ−1

0 ψ1)(ψ−1
1 ψ2)...(ψ−1

n−1ψn) is the desired decomposition of g, with each diffeomorphism ψ
−1
k−1ψk

supported on Uk.

Exercise 1.12. Prove that the group of Hamiltonian diffeomorphisms of a symplectic manifold has
the fragmentation property. Use the fact that the group is generated by the set of time-dependent
Hamiltonians in a small neighborhood of identity in C

∞(M × [0, 1]). Take a partition of unity
subordinate to an open cover, and attempt a similar “cut-off” strategy – you will need to be a little
more careful with the decomposition and supports.
This proof strategy also works for Diff0(M), since it is generated by small time-dependent smooth
vector fields.

1.4 Further exercises

1. (Standard fact) Let G be a connected topological group, and U a neighborhood of the identity in G.
Prove that U generates G.

2. Let M be a compact manifold with nonempty boundary.

(a) Prove that the identity component of Homeo(M) has the fragmentation property. (Remark:
fragmentation for Homeo(M) also holds, thanks to Edwards-Kirby, which works for manifolds
with boundary. If you are familiar with the torus trick, try to prove this.)

(b) Prove that the identity component of Homeo(M) is perfect. Is it simple? What about the group
of homeomorphisms that fix the boundary pointwise?

(c) Give examples of normal subgroups of Diff0(M) and Homeo0(M). **Attempt a complete clas-
sification, at least for the one-dimensional case M = [0, 1].

3. The “Lie group exponential map” from X(M) (the space of smooth vector fields on M) to Diff(M) is
given by sending a vector field X to the time-1 map of the flow generated by X.

(a) * Show that, when M = S
1, this map is not surjective onto any neighborhood of the identity

in Diff(S1). Hint: if f has a periodic orbit and is the time one map of a flow, what can you
conclude about f?

(b) * Using part a), show that the Lie group exponential is not surjective onto any neighborhood of
the identity in Diff(M) for any compact manifold M .

4. A group G is called uniformly perfect if there is some integer k such that every element can be written
as a product of at most k commutators. (The minimal such k is called the “commutator width” of
G).

(a) * Show that PSL(2, R) is uniformly perfect.
(b) * Show that Homeo+(S1) is uniformly perfect.
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(c) ** Show that Homeo+(Sn) is uniformly perfect. (See Ghys’ Groups acting on the circle for an
answer)

(d) ** Show that Diff+(S1) is uniformly perfect. (This is a 0-star question if you know the right
theorem to cite, and a *** question otherwise).

(e) ** Let Σg be the genus g surface. Is Homeo0(Σg) or Diff0(Σg) uniformly perfect? Does it matter
what g is?

5. For the symplectic topologists: Let M be a closed manifold, and let Symp(M) denote the group of
symplectomorphisms of M . Is Symp0(M) perfect? (Hint: flux. See Chapter 10 of McDuff–Salamon
Introduction to Symplectic Topology for an introduction to the structure of Symp0(M).)
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2 Simplicity and perfectness of Diff0(M)

The main content of this lecture is the expository paper A short proof that Diff0(M) is perfect [39],
proving the following theorem originally due to Thurston [64].

Theorem 2.1. Diff∞0 (M) is a perfect group.

Our strategy follows a new proof (30 years after Thurston’s!) due to Haller and Teichmann in [29],
and Haller–Rybicki–Teichman in [30]. As [39] is already expository, we refer the reader there for
the proof.

2.1 Remarks on the Thurston and Mather proofs

In [64], Thurston announced a proof of perfectness of Diff0(M). In fact, he announces much more,
involving the relationship between the classifying space of Diff0(M) as a discrete group (what you
use to compute group cohomology) and the classifying spaces for Haefliger structures of codimension
dim(M). (A Haefliger structure is a generalization of a foliation, and the right way to make a notion
of classifying spaces and characteristic classes for foliations.) Thurston never wrote the details of
his proof, but the special case of 1-dimensional manifolds was proved earlier by Mather [43], which
gives a thorough proof. The general (Thurston) case is written in [2].

For us, the important consequence of Thurston’s work – what gives perfectness of Diff0(M) –
is the following.

Theorem 2.2 (Thurston [64]). Let Diffc(Rn) denote the group of diffeomorphisms of R
n with

compact support that are isotopic to the identity through a compactly supported isotopy. For any
compact n-manifold M ,

H1(Diffc(Rn); Z) ∼= H1(Diff0(M); Z).

This is combined with a (analytical) theorem of Herman for the n-torus – we used the n = 1
case of this theorem in the proof of Theorem 2.1:

Theorem 2.3 (Herman [31]). Diff0(Tn) is perfect. In fact, there is a neighborhood U of the
identity such that every g ∈ U can be written

g = Rλ[g0, Rθ]

where Rλ and Rθ are homeomorphisms that act as rotations in each S
1 coordinate.

As a consequence, H1(Diff0(Tn)) = 0, but Thurston’s theorem says that this is isomorphic to
H1(Diffc(Rn)), which is then isomorphic to H1(Diff0(M)) for any compact n-manifold M .

The C
r case. In 1973-74, Mather showed that Diffr

0(M) is perfect, in the two cases 1 ≤ r ≤
dim(M), and dim(M) + 1 ≤ r < ∞ ([44], [45]). Combined with an argument as in Corollary
1.10, this also shows that these groups are simple. Mather’s proofs use a version of the Schauder-
Tychonoff fixed point theorem, to show that each element of Diffr

0(M) lies in the commutator
subgroup without giving an explicit way of writing it as a commutator. The case of r = dim(M)+1
remains open, even in the case where M = S

1 and r = 2.

Other groups The first homology of other natural groups of homeomorphisms – e.g. volume-
preserving (Thurston, Banyaga), Symp0(M) (Banyaga), Lipschitz homeomorphisms (Abe-Fukui),...
has been computed. A nice summary table appears in the introduction to [38].
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2.2 Exercises

1. Further properties of diffeomorphism groups: k-transitivity

(a) A group G ⊂ Homeo(M) is called k-transitive if for any two k-tuples of distinct points (x1, x2, ...xk)
and (y1, y2, ...yk), there exists g ∈ G such that g(xi) = yi for all i. Show that Diff0(M) is k-
transitive for all k, provided dim(M) > 1

(b) What happens in the case where dim(M) = 1? (treat R and S
1 separately).

(c) * Suppose M has a Riemannian metric. Is the group of volume-preserving diffeomorphisms k-
transitive for all k? What about hamiltonian symplectomorphisms on a symplectic manifold?
Diffeomorphisms that preserve a foliation? Can you find interesting examples of groups that are
(not) k-transitive?

(d) Give a reasonable definition of what it should mean for a group of homeomorphisms of the circle
to be n-transitive. Can you characterize groups that are 3 but not 4-transitive?

2. A group which is not perfect (following Mather [46])

Let Diff1+bv
c (R) be the group of C

1 diffeomorphisms of R whose derivatives are functions of bounded
variation. (Recall that v has bounded variation if there is a finite radon measure dµv such that�

g dµv =
�

vg
�
dx holds for each compactly supported C

1 function g on R. Define

Φ : Diff1+bv
c (R) → R

by defining Φ(f) to be the total mass of the regular (nonsingular) part of the measure µlog(f �).

(a) As a warm-up, calculate µv when v is the characteristic function of the interval [0,∞)
(b) Show that Φ is a homomorphism
(c) Show that Φ is trivial when restricted to the subgroup of C

2 diffeomorphisms. (Note: you can’t
cheat and just say that Diff2

c(R) is perfect – that’s an open question!)
(d) ** Show that Φ is nontrivial.

3. (Another group which is not perfect) The identity component of Diff([0, 1]) is not perfect (why not?).
** What about the subgroup of diffeomorphisms that are infinitely tangent to the identity at the
endpoints? (see [62] for much discussion on this group).

4. (Closely related to the question on Symp0 from the last lecture): Let µ be a measure (assume absolutely
continuous with respect to Lebesgue measure) on M , and let Homeoµ(M) denote the identity compo-
nent of the group of µ-preserving homeomorphisms of M – homeomorphisms such that µ(f(A)) = µ(A)
for all measurable sets.

(a) Construct a map φ : Homeoµ(T2) → T
2 as follows. Think of T

2 as R
2
/Z

2, the measure µ can be
lifted to a measure on R

2. Take a path ft from id to f = f1, lift it to a path f̃t based at id in
Homeo0(R2). Define

φ̃(ft) =
�

[0,1]×[0,1]
ft(x)− x dµ

and let φ(f) := φ̃(ft) mod Z
2.

Show that this is well defined, and a homomorphism.
(b) Generalize this definition to give a map from paths in Homeoµ(M) to H

1(M ; R). Show that
this descends to a homomorphism Homeoµ(M) → H

1(M ; R)/Γ, where Γ is a discrete subgroup.
(This homomorphism is called the mass flow by Fathi [19], who showed that its kernel is a perfect
group. It is also known as the homological rotation vector e.g. in various dynamical applications,
pioneered by John Franks.)

10



3 The algebraic-topological correspondence

The goal of this lecture is to convince you that the algebraic structure of homeomorphism or
diffeomorphism groups is amazingly rich. As a first example, it completely determines the manifold.

Theorem 3.1 (Whittaker, 1963 [67]). Let M and N be topological manifolds, and suppose there
is an (abstract) isomorphism Φ : Homeo0(M) → Homeo0(N). Then M and N are homeomorphic,
and Φ is induced by a homeomorphism M → N .

Whittaker’s theorem applies to homeomorphism groups of more general topological spaces, but
we are interested in the manifold case. This theorem was generalized to diffeomorphism groups by
Fillipkiewicz.

Theorem 3.2 (Filipkiewicz, 1982 [21]). Let M and N be compact manifolds and suppose there
is an isomorphism Φ : Diffr

0(M) → Diffs

0(N). Then r = s, M and N are diffeomorphic, and Φ is
induced by a C

r-diffeomorphism f : M → N .

A proof of both theorems (following the same strategy, essentially due to Whittaker but refined
by Filipkiewicz) is outlined in the exercises. Although it looks like this is a unified proof strategy
that covers both cases, the proof relies on fragmentation, which was different for Homeo0(M) and
Diff0(M)!

Other structures.
Filipkiewicz’s theorem inspired a broader research program:

Let G(M,X) be the group of homeomorphisms of a manifold M preserving some struc-
ture X. Show that G(M,X) ∼= G(N,X) implies that M and N are homeomorphic via
an X-preserving homeomorphism.

This has been carried out in many cases – smooth volume forms, and symplectic structures
(Banyaga); foliations, contact structures (Rybicki). An interesting open question is the case of
real analytic diffeomorphisms. Fragmentation fails here, so the proof would require a fundamen-
tally different approach.

Whittaker’s theorem was also generalized to homeomorphism groups of general (non-manifold)
topological spaces. The best result in this line is perhaps the work of Rubin [59], who unified all
previous results using a novel model-theoretic approach.

3.1 A dictionary?

Given that Homeo0(M) determines M , there should be a correspondence

algebraic property of Homeo0(M) ←→ topological property of M

As an easy example (for which one does not need Whittaker’s theorem), connectedness of
M corresponds to simplicity of Homeo0(M) – if M is the disjoint union of M1 and M2, then
Homeo0(M) ∼= Homeo0(M1)×Homeo0(M2).

However, in practice very of this little is known. In 1991 Ghys asked the following question (for
diffeomorphism groups, but it applies just as well to Homeo or Diffr.)

11



Question 3.3 (Ghys). Let M and N be closed manifolds, and suppose that there is a homomor-
phism Diff0(M) → Diff0(N). Does it follow that dim(M) ≤ dim(N)?

This question remained open until 2013, when it was answered in the affirmative by Hurtado
in [32]. Hurtado shows two remarkable things.

Theorem 3.4. Let Φ : Diff0(M) → Diff0(N) be a homomorphism. Then Φ is continuous.

Theorem 3.5. Let Φ : Diff0(M) → Diff0(N) be a continuous homomorphism. Then dim(M) ≤
dim(N), and in the case of equality, N is a cover of M , and Φ is a lift.

Hurtado’s theorems generalize to non-compact manifolds. In this case there are more options for
continuous homomorphisms between homeomorphism groups of manifolds of the same dimension,
arising from embeddings of M in N as an open submanifold.

The proof of Hurtado’s theorems make essential use of smoothness in many ways. Theorem 3.5
uses the Montgomery–Zippin theorem on smooth actions of finite dimensional groups (an outline
is given in the exercises). Theorem 3.4 uses distorted elements of Diff0(M), which we’ll discuss in
Lecture 5. Today, we’ll discuss a fundamentally different proof for homeomorphism groups.

3.2 Automatic continuity

In this second half of the lecture, we’ll see that the algebraic structure of Homeo0(M) not only
determines the topological structure of M (that was Whittaker’s theorem), but determines the
topological structure of Homeo0(M) in a very strong sense.

Theorem 3.6 (Mann, [42]). Let M be a compact manifold, and H a separable topological group.
Any homomorphism Φ : Homeo0(M) → H is necessarily continuous.

An immediate consequence is that any homomorphism Homeo0(M) → Homeo0(N) is continuous.
The isomorphism case was a consequence of Whittaker’s theorem– but see Exercises 2. and 3.
below. Another immediate consequence is the following result, which was mentioned in an exercise
in lecture 1.

Corollary 3.7. Homeo0(M) has a unique topology that makes it a complete, separable group.

Proof. Put some mysterious (complete, separable) topology on Homeo0(M), and let G denote the
resulting topological group. The identity map Homeo0(M) → G is a continuous isomorphism of
Polish groups. It is easy to show using a Baire category argument that such a map is necessarily
also open (a stronger result is Pettis’ theorem, 9.10 in [35]), hence a homeomorphism.

The proof that we give of Theorem 3.6 follows [42], which builds on the work of C. Rosendal in
[56]. For an introduction to automatic continuity, see [57].

3.3 Exercises

1. ** (Open, but perhaps not hard!) Using automatic continuity, give an easier proof of Whittaker’s
theorem:
If Φ : Homeo0(M) → Homeo0(N) is an isomorphism, then Φ is induced by a homomorphism M → N

12



2. * Give examples of interesting homomorphisms between diffeomorphism or homeomorphism groups.
Attempt to construct “pathological” examples. How bad can they be? [I would be very interested to
hear any examples you come up with!!]

3. *** (Open problem) Let M and N be compact n-manifolds, and suppose that Φ : Homeo0(M) →
Homeo0(N) is a homomorphism. Is N a cover of M?
The following variant of this problem is a conjecture in [51]:
Let N be a closed surface of genus g ≥ 1, and let M = N − D

2. Show that every homomorphism
Φ : Homeoc(M) → Homeo0(N) comes from an embedding of M in N .

4. ** In a recent paper [51], E. Militon gave a complete classification of all homomorphisms Homeo+(S1) →
Homeo(A), where A = S

1 × [0, 1] is the closed annulus. Recall that such a homomorphism is called
an action of Homeo+(S1) on A. Can you figure out Militon’s classification?
(Hint to start: Which actions of Homeo+(S1) preserve a foliation of A by circles? Now can you come
up with an action that does not?)

5. *** (Open) Let M be a compact manifold without boundary. Prove that Diff0(M) has automatic
continuity.

6. This sequence of exercise gives an outline of the proof of Filipkiewicz’s theorem.

(a) Prove the following lemma, using the hint.

Lemma 3.8. Let M and N be manifolds, and w : M → N a bijection such that whw
−1 ∈

Homeo(N) for all h ∈ Homeo(M). Then w is continuous.

(Hint: {N \fix(h) | h ∈ Homeo(M)} is a collection of open sets that forms a basis for the topology
of M . Show that the image of such a set under w

−1 is open.)
Remark/challenge. Takens (1979) generalized this lemma for diffeomorphisms. He showed
that if w : M → N is a bijection such that whw

−1 ∈ Diffr(N) for all h ∈ Diffr(M), then w is a
C

r diffeomorphism. Can you reproduce his argument?

(b) Let Φ : Homeo0(M) → Homeo0(N) be an isomorphism. For x ∈ M , let Sx ⊂ Homeo0(M) denote
the stabilizer of x, i.e. the set {f ∈ Homeo0(M) : f(x) = x}. Suppose that for each x ∈ M the
image Φ(Sx) was the stabilizer of a point w(x) ∈ N . Show that x �→ w(x) is a bijection satisfying
the conditions of Lemma 3.8.

(c) Now we prove that Φ(Sx) is a point stabilizer. First show that {B ⊂ N | GB ⊂ Φ(Sx)} is
a Φ(Sx)-invariant set, and is not all of M . (hint: fragmentation) Hence, its complement is a
nonempty, closed, Φ(Sx)-invariant set.

(d) * Let C denote the nonempty, closed Φ(Sx)-invariant set you found above. Show that C �= M .
(Filipkiewicz’s proof uses a trick, which doesn’t use any hard tools, but seems nonintuitive to
me!)

(e) * Show that C consists of a singe point, and that Φ(Sx) is the stabilizer of this point.
(f) Given the remark/challenge after Lemma 3.8, prove Filipkiewicz’s theorem using the same argu-

ment.

7. This exercise gives an outline of the proof of Hurtado’s theorem: If φ : Diff0(M) → Diff0(N) is
continuous, then dim(M) ≤ dim(N) (and in the case of equality, the map comes from a cover)

(a) Given φ : Diff0(M) → Diff0(N), attempt ala Filipkiewicz to produce a map M → N as follows.
For B ⊂ M , let GB denote the group of diffeomorphisms supported on B. Let Br(x) denote the
ball of radius r about x. Note that, for x ∈ M ,

x =
�

r>0

Br(x) =
�

r>0

interior
�
supp(GBr(x))

�

13



so define
S(x) =

�

r>0

interior
�
supp(Φ(GBr(x))

�
.

Verify that
• ** S(x) is a nonempty set
• x �→ S(x) is “equivariant”: Φ(f)S(x) = S(f(x))

(b) ** Show that S is “injective” in the sense that x �= y → S(x) ∩ S(y) = ∅. Hurtado’s strategy is
to first show that for any distinct n+1 points (where n = dim(N)), ∩n+1

i=1 S(xi) = ∅ by supposing
for contradiction that this was not the case, and looking at the images of flows of commuting
vector fields supported in small neighborhoods of the xi. Use Montgomery-Zippin.
Given this, take a maximal k < n+1 such that there exists disjoint x1, ...xk with ∩k

i=1S(xi) �= ∅,
and show that k = 1.

(c) * Assuming equality of dimension, show that S(x) consists of isolated points, and S(x) �→ x is a
covering map.

8. *** Suppose φ : Homeo0(M) → Homeo0(N) is a homomorphism. Is it true that dim(M) ≤ dim(N)?
What if equality holds?
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4 Additional structure in the 1-manifold case

This lecture is motivated by a very broad question.

Question 4.1. Let M be a manifold. Characterize the finitely generated/countable subgroups of
Homeo(M) and Homeo0(M). What countable groups act nontrivially or faithfully on M (i.e. admit
nontrivial/faithful homomorphisms to Homeo(M))? Given a group, can one describe/classify/encode
the possible actions?

The Zimmer program. One refinement of Question 4.1 leads to a family of conjectures and
results known as the Zimmer program. The Zimmer program is organized around the principle
that “large groups shouldn’t act on small manifolds”. Large traditionally means that the group is
an irreducible lattice in a semisimple Lie group of large rank, small refers to the dimension of the
manifold. Progress on this program has been made in two separate scenarios – one is restricting
to the class of volume-preserving actions, i.e. homomorphisms Γ → Diffvol(M), the other is case
where the manifold has dimension 1. While these seem like very restrictive hypotheses, the main
results and techniques in both cases are highly nontrivial. To indicate just how difficult the general
problem is, here is a remark from the 2008 paper [23]:

Except for M = S
1, there is no known example of a torsion-free finitely generated group

that doesn’t act by homeomorphisms on M .

Fisher’s paper [22] is a beautiful survey on the Zimmer program, treating mostly the differen-
tiable and measure-preserving case. For an interesting take on the Zimmer program for actions by
homeomorphisms – with remarks on the use of torsion tricks, and enough other interesting nuggets
to feed a research program for years – see [66]. 2

Much of the success of the Zimmer program for 1-manifolds comes from a (remarkable!) positive
answer to Question 4.1 in the case where M is one-dimensional. The answer comes from orderability,
which will be the content of the rest of this lecture.

4.1 Left-invariant orders on groups

We start with a purely algebraic definition.

Definition 4.2. A group G is left-orderable if there is a total order ≤ on G that is invariant under
left multiplication. Such a total order is called a left-invariant order, or left-invariant linear order
on G

3 .

The study of left-orderable groups and left invariant orders on groups has deep connections with
algebra, dynamics, and topology. You’ll see some of this in Ying’s talk this afternoon.

Example 4.3. (Examples of L.O. groups)

• Z, R, R× Z, ...
2This paper contains one of my personal favorite published wide-open questions: “What groups are discrete

subgroups of Homeo(Dn
rel ∂)? Needless to say, they are torsion free (and they are subgroups of Homeo(M) for any

m-manifold, for m ≥ n)”
3Of course, we could just as well work with right-invariant orders on G. At the moment, left-invariance seems to

be more popular, but this was not always the case.
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• Finitely generated torsion-free nilpotent groups (Malcev, 1960s)

• Free groups

• Surface groups ( �PSL(2, R) proof, another proof is given in the exercise below)

• Braid groups (hyperbolic geometry proof)

Exercise 4.4. (Constructing new L.O. groups from old ones)

a) Suppose H is a normal subgroup of G, and both H and G/H have left-invariant orders. Use
these to construct a left-invariant order on G.

b) Use this to give a proof that the fundamental group of a closed, orientable surface is left order-
able.
Hint: a subgroups of a surface group is fundamental group of a (possibly noncompact) surface,
so an infinite index subgroup is free4...

The next proposition and theorem are our motivation for studying left-orderable groups.

Proposition 4.5. Homeo+(R) is left-orderable.

Proof. Given f, g ∈ Homeo+(R), say that f < g if f(0) < g(0). Notice that this condition is
invariant under left-multiplication. Unfortunately, we don’t know what to do if f(0) = g(0). To
remedy this, instead of just looking at 0, enumerate a countable dense subset {x1, x2, x3, ...} of R.
Given f, g ∈ Homeo+(R) let k be the minimum integer such that f(xk) �= g(xk). Now say that
f < g if f(xk) < g(xk), and f > g otherwise.

It turns out that left-orderability completely characterizes countable subgroups of Homeo0(R).

Theorem 4.6. Let G be a countable group. Then G is left-orderable if and only if there is an
injective homomorphism G → Homeo+(R). Moreover, given an order on G, there is a canonical
(up to conjugacy in Homeo+(R)) injective homomorphism G → Homeo+(R).

Proof. The “if” direction comes from the order inherited from G as a subgroup of Homeo+(R). For
the “only if”, suppose that we have a left-invariant order on G. We start by mapping G into R (as
a set) in an order-preserving way. Enumerate the elements of G as g0, g1, g2, ... and label 0 ∈ R

with g0. If g1 > g0, then label 1 with g1, if not, label −1 with g1. Inductively, having identified
points with g0 through gk, if gk+1 > gi for all i ≤ k, assign gk+1 to the point 1 to the right of all
the previously placed points (similarly if gk+1 < gi, use a point one to the left). Otherwise, find
the unique i and j such that gi < gk+1 < gj appears in the total ordering of the group elements up
to gk+1, and label the midpoint of gi and gj with gk+1.

Now G has a natural order-preserving action on the set of labeled points (by left-multiplication).
Our construction implies that limit points are mapped to limit points, so the action extends to the
closure. Call the closure A. We can also think of elements of G as permuting the connected
components of R \A. To extend this to an action by homeomorphisms of R, we specify that g ∈ G

map an interval in the complement of A to its image by the unique affine map between intervals.
4for a rigorous proof of this fact, see section 4.2.2 of [63]

16



Note that countability was an essential ingredient in this proof. In fact, the “only if” direction
is not true for uncountable groups! See [41] for discussion and examples.

Question 4.7. i) Is there a “nice” characterization of left-ordered groups that act on R?
ii) More generally, given a totally ordered space, characterize the ordered groups that act on the
space in an order-preserving way.
iii) Given an (uncountable) left-ordered group, find the “simplest possible” ordered space on which
it acts.

4.2 Circular orders

Motivated by the definition of left-invariant orders and the relationship with homeomorphisms of
the line, we try to replicate this for the circle. Whatever our definition of “circular order,” we
would like the following to be true.

“Theorem” 4.8. (Wishful thinking)

i) Homeo0(S1) is a circularly ordered group

ii) A countable group G is circularly orderable if and only if there is an injective homomorphism
G → Homeo0(S1).

Our model for a circular order on a set is the cyclic ordering of points on S
1. This is most easily

described as a cocycle.

The order cochain on S
1. Define a function ord : S

1 × S
1 × S

1 → {±1, 0} by

ord(x, y, z) =






0 if x = y, y = z or x = z

1 if (x, y, z) is positively oriented
−1 if (x, y, z) is negatively oriented

Exercise 4.9 (Cocycle condition). There are only 6 nondegenerate “orderings” (combinatorial
configurations) of a quadruple of distinct points x, y, z, w on the circle (check!), but 8 ways to
assign a value if 1 or −1 to each triple. This should convince you that there is some relationship
between ord(x, y, z),ord(x, y, w),ord(x, z, w) and ord(y, z, w). What is it?

As well as the cocycle condition, the function ord also satisfies an “orientation compatibility”
condition – for any permutation σ, we have ord(x, y, z) = sign(σ)ord(σ(x), σ(y), σ(z)). Thus, it’s
natural to think of ord as a oriented 2-cochain on the complete simplex on the set S

1. Notice
also that ord is invariant under the left (diagonal) action of S

1 – for g ∈ S
1, ord(x, y, z) =

ord(gz, gy, gz). (It’s also invariant under the action of Homeo0(S1), but more on that later.) In
this sense, ord gives a S

1-left-invariant order on S
1.

There is a way to de-homogenize this function to get a function on S
1×S

1 that is not invariant
under left-multiplication, but contains the same data – we simply define c(x, y) := ord(1, x, xy).
If you are familiar with both the standard inhomogeneous and homogeneous n-cochain models for
group cohomology, you’ll recognize that ord is a an homogeneous 2-cocycle, and c is its inhomoge-
neous counterpart.
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Definition 4.10 (Circular order, definition #1). A circular order on a set Γ is an oriented integral
2-cocycle ord on Γ taking the values 0, 1 and −1, and such that ord(x, y, z) �= 0 whenever (x, y, z)
is a nondegenerate simplex. (i.e. a distinct triple).

If Γ is a group, a left-invariant circular order (often confusingly just called a circular order
when the fact that Γ is a group is understood) is a Γ-invariant such cocycle.

Exercise 4.11 (Linear orders as cochains, see [65]). Suppose X is a totally ordered set. Define
the linear order cochain L : X ×X → {±1, 0} by

L(x, y) =






0 if x = y

1 if x < y

−1 if y < x

a) What relationship is there between L(x, y), L(x, z) and L(y, z)? (i.e. what corresponds to
transitivity of <?) Antisymmetry can be dealt with by thinking of L as a function not on
X × X but on oriented 1-simplices in the complete simplex on X. Hence the terminology
“cochain” again.

b) Define a linear order on X to be a 1-cochain satisfying the condition for transitivity above (and
convince yourself this is an ok definition). Show that the coboundary of a linear order is a
circular order, and conversely that every circular order on X is the coboundary of some linear
order.

c) Now suppose that X is a group. Show that left-invariant circular orders on X are not necessarily
the coboundaries of left-invariant linear orders on X.

Exercise 4.12 (Cut points definition). The following alternative definition of circular order appears
in [10]. Prove that it is equivalent to our definition.

Let S be a set with at least 4 elements. A circular ordering S is a choice of total ordering <p

on S \ {p} for each p ∈ S, such that if p and q are two distinct elements, the total orderings <p,
<q differ by a cut on their common domain of definition. That is, for any x, y distinct from
p, q, the order of x and y with respect to <p and <q is the same unless x <p q <p y, in which
case we have y <q p <q x.

By imitating the proof of Theorem 4.6, we can show

Theorem 4.13. Let Γ be a countable circularly ordered group. Then there is a faithful homo-
morphism φ : Γ → Homeo+(S1). Moreover, φ can be constructed so that some point x0 ∈ S

1 has
trivial stabilizer in Γ.

Proof. Exercise.

Conversely, we also have

Theorem 4.14. Let Γ be a countable subgroup of Homeo+(S1). Then Γ has a circular order.

This is an immediate consequence of the following answer to our “wishful thinking” theorem
above.

Theorem 4.15. Homeo+(S1) has a (left-invariant) circular order.
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We prove this below, but first give a clever alternative proof of Theorem 4.14 due to Calegari.
This proof uses Proposition 4.5 to modify an action of Γ on the circle to produce a new action where
some point x has trivial stabilizer, in which case Γ inherits the cyclic order of the set Γx ⊂ S

1.

Proof sketch of Theorem 4.14. (Following 2.2.14 in [10]).
Let Γ ⊂ Homeo+(S1) be countable. If x ∈ S

1 has trivial stabilizer in Γ, then Γ can be identified
with the orbit of x, which inherits a natural (left Γ-invariant) circular order as a subset of S

1.
Otherwise, let H be the stabilizer of x. Then H acts faithfully on S

1 \{x} ∼= R, so is left-orderable,
and proposition 4.5 now lets you build an action φ of H on R ∼= [0, 1] so that some point has trivial
stabilizer. The idea now is to “blow up” the (countable) orbit G ·x, replacing each point of the orbit
with an interval, to produce a new circle and new G-action where H acts by φ on each inserted
interval.

To show now that Homeo+(S1) has a circular order, we use the fact that it’s (universal) central
extension �Homeo+(S1) can be identified with the subgroup of homeomorphisms of R that commute
with integer translations. The proof can be generalized to show that, if G is any group, and G̃ a
central extension

0 → Z → G̃ → G → 1

such that G̃ is linearly ordered, and the image of Z in G̃ is cofinal, then G has a left-invariant
circular order. This is a theorem originally due to [68].

Proof of Theorem 4.15. Let G̃ = �Homeo+(S1), and let T denote the generator of Z ⊂ G̃. Put a
left-invariant order on G̃ induced from a left-invariant order on Homeo+(R) as in Proposition 4.5.
Note that, for each g̃ ∈ G̃, there is a unique n ∈ Z such that T

n ≤ g̃ < T
n+1, or equivalently, a

unique n such that id ≤ T
n
g̃ < T .

We define a circular order on Homeo+(S1) as follows. Given g ∈ Homeo+(S1), let g̃ ∈ G̃ denote
the lift of g such that id ≤ g̃ < T . Since different lifts of g differ by elements of Z, our observation
above implies that such a lift exists and is unique. For a nondegenerate triple g1, g2, g3 in S

1, define

c(g1, g2, g3) =
�

1 if g̃1 < g̃2 < g̃3 up to a cyclic permutation of 1, 2, 3
−1 if g̃1 < g̃3 < g̃2 up to a cyclic permutation of 1, 2, 3.

and for a degenerate triple where gi = gj for some j, define c(g1, g2, g3) = 0.
It is an easy exercise to check that this satisfies the order cocycle condition. We now show that

it is invariant under left-multiplication. Let h ∈ Homeo+(S1), and let h̃ be any lift of h. Suppose
for concreteness that, g̃1 < g̃2 < g̃3. Then we in fact have

. . . ≤ T
−1

g̃1 < T
−1

g̃2 < T
−1

g̃3 < id ≤ g̃1 < g̃2 < g̃3 < T ≤ T g̃1 < T g̃2 < T g̃3 . . .

and, by left-invariance and the fact that T is central, we have

. . . < T
−1

h̃g̃2 < T
−1

h̃g̃3 < h̃ ≤ h̃g̃1 < h̃g̃2 < h̃g̃3 < Th̃ ≤ T h̃g̃1 . . .

Note that such a sequence gives a complete list of all lifts of each hgi. Since consecutive appearances
of lifts of hg1, hg2 and hg3 in this sequence always have a positive order (i.e. after cyclic permutation
of subscripts on g, they appear in the order 1,2,3), the triple of lifts that lie between id and T will
have a positive cyclic order. This proves that the cocycle c is left-invariant.
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4.3 The Euler class for circularly ordered groups

Recall that H
2(Homeo+(S1); Z) = Z, generated by the Euler class corresponding to the central

extension
0 → Z → �Homeo+(S1) → Homeo+(S1) → 1.

Moreover, this class has a bounded representative – in fact there is a cocycle representative taking
only the values 0 and 1.

A two minute crash course on bounded cohomology of groups.
Let G be a group, and A an abelian coefficient group (think R, Q or Z). The cohomology H

∗(G;A)
is the cohomology of the (“homogeneous”) complex (Cn)G := {f : G

n+1 → A | f(g0, ...gn) =
f(hg0, ...hgn)∀h ∈ G} with coboundary

δf(g0, ...gn+1) =
�

(−1)i
f(g0, ...ĝi, ...gn+1)

Let (Cn

b
)G ⊂ (Cn)G denote the subset of bounded functions. It is easy to see that δ(Cn

b
)G ⊂

(Cn+1
b

)G, so this is also an exact cocomplex. Its cohomology is denoted H
∗
b
(G;A).

One can similarly use a bounded version of the inhomogeneos cocomplex to compute the coho-
molgy. Here the n-cochains are functions f : G

n → A, with no G-invariance assumption, but the
coboundary operator is more complicated.

We list a few key facts to convince you that bounded cohomology is rich an interesting and
contains a lot of information about the algebraic structure of the group. For a further introduction,
see [7] or [10], and for an introduction to bounded cohomology in diverse areas of current research,
see Monod’s excellent survey paper [53].

Proposition 4.16 (Bounded cohomology – key facts and examples). 1. Key example (Brooks,
Epstein-Fujiwara, Bestvina-Fujiwara,...) If G is Gromov-hyperbolic, then H

2
b
(G; R) is infinite

dimensional.

2. (Theorem of Trauber) If G is amenable, then H
k

b
(G; R) = 0 for all k > 0

3. There is a “comparison map” H
∗
b
(G;A) → H

∗(G;A) given by forgetting that a cocycle
representative is bounded. It is an open question in many cases whether this is injective and/or
surjective. The kernel of this map on H

2
b
(G; R) → H

2(G; R) corresponds to quasimorphisms
on G, and is closely related to stable commutator length.

4. (Dynamical interpretation, Ghys) As we’ll see in the next section, certain elements of H
2
B

(G; Z)
correspond to actions of G on the circle.

5. (Open questions) There is no countable group G for which H
∗
b
(G, R) is known, except for

cases where it is known to vanish in all degrees!

The Euler class in bounded cohomology. If Γ is a countable circularly ordered group, Theorem
4.13 gives us a (faithful) homomorphism φ : Γ → Homeo+(S1), so we can pull back the Euler class
to obtain an element φ

∗(e) ∈ H
2
b
(Γ; Z). Coincidentally (or not...) the definition of circular order

was also in terms of a bounded 2-cocycle.

20



Theorem 4.17 (Ghys, Barge-Ghys [3], Thurston [65]...).

[ord] = 2φ
∗(e) in H

2
b
(Γ; Z).

Proof; details left as exercise. The theorem follows from an equality of (bounded) cocycles. Fix
x ∈ S

1, and define an (inhomogeneous) “order cochain” on Homeo+(S1) by

c(f, g) := ord(x, f(x), fg(x)).

One can check that this has coboundary 0, so defines an element of H
2
b
(Homeo+(S1)). If φ : Γ →

Homeo+(S1) is the homomorphism of Theorem 4.13 and x ∈ S
1 is a point with trivial stabilizer,

then φ
∗(c) is exactly – as cochains – the original order cochain on Γ.

To prove Theorem 4.17, we will show that [c] = 2φ
∗(e) in H

2
b
(Homeo+(S1); Z). One way to do

this is to exhibit the difference c− 2φ
∗(e) as an explicit coboundary. This is left as an exercise; see

the “Further exercises” section for a hint. A related construction is given in [3].
As an alternative strategy, one can show first that H

2
b
(Homeo+(S1); Z) is one-dimensional – see

Theorem 4.18 below, so one only needs to check which multiple of e corresponds to ord.

Theorem 4.18 (Matsumoto–Morita [47]). H
2
b
(Homeo+(S1); Z) ∼= Z

Proof outline. By Thurston’s work on cohomolgoy of homeomorphism groups in [64], the map
H

2(Homeo+(S1); R) → H
2(B Homeo+(S1); R) ∼= R is injective. Since the Euler class, considered

as a real cocylce, is nontrivial, we have H
2(Homeo+(S1); R) ∼= R.

The kernel of the comparison map H
2
b
(Homeo+(S1); R) → H

2(Homeo+(S1); R) consists of the
homogeneous quasimorphisms Homeo+(S1) → R. (See the exercises for the definition of quasi-
morphism). It is a fact that there are no homogeneous quasimorphisms on a uniformly perfect
group. By Herman’s theorem, Homeo+(S1) is uniformly perfect, so it follows that the kernel of
H

2
b
(Homeo+(S1); R) → H

2(Homeo+(S1); R) is trivial. Since the Euler class has a bounded repre-
sentative, we have

H
2
b
(Homeo+(S1); R) ∼= R.

Finally, we move from R to Z coefficients by considering the exact sequence (applicable to any
group G)

0 = H
1
b
(G; R) → H

1
b
(G; R/Z) = H

1(G; R/Z) → H
2
b
(G; Z) → H

2
b
(G; R)

coming from the exact sequence 0 → Z → R → R/Z → 0.

Dynamical interpretation of the Euler class. The following theorem of Ghys says that the
bounded Euler class completely captures the dynamics of a group action.

Theorem 4.19 (Ghys [27]). Let φi : Γ → Homeo+(S1), i = 1, 2 be homomorphisms. If φ
∗
1(e) =

φ
∗
2(e) in H

2
b
(Γ; Z), then φ1 and φ2 are semiconjugate.

To be semiconjugate means that φ1 is obtained from φ2 by “blowing up” orbits – the operation
performed in the proof of Theorem 4.14 – and/or the inverse operation of collapsing wandering
intervals For a precise definition see [27].

There is also an analoge of Theorem 4.13 phrased in terms of the Euler cocycle.

Theorem 4.20 (Ghys [27]). Let Γ be a finitely generated group. If c ∈ H
2
b
(Γ; 0) has a cocycle

representative taking only the values 0 and 1, then there is a homomorphism φ : Γ → Homeo+(S1)
with φ

∗(e) = c.
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The relationship between Ghys’ theorem and Theorem 4.13 is slightly subtle – the subtlety
comes from the nondegeneracy condition on the cocycle ord in Definition 4.10. This condition
amounts to forcing the action of Γ on S

1 to be highly nontrivial, in fact to have a point with trivial
stabilizer. The circular order on Γ is then recovered from the circular order on the orbit of this
point as a subset of S

1. There is no such condition built into the definition of the Euler cocycle;
Ghys’ theorem characterizes all actions of Γ on S

1 in terms of the second bounded cohomology of
Γ. In particular, Γ need not even inject into Homeo+(S1) as φ is permitted to be a non-faithful
action.

Below is a schematic summary.

1. Faithful actions:

φ : Γ �→ Homeo+(S1)
(arbitrary)

blow up orbit−−−−−−−−→ φ̂ : Γ �→ Homeo+(S1)
(x trivial stabilizer)

ord←−→ C.O. (order cocycle) on Γ
from orbit of x

φ and φ̂ are semiconjugate. φ
∗(e) = φ̂

∗(e) = ord.

2. Arbitrary actions:

φ : Γ → Homeo+(S1)
(arbitrary)

φ
∗(e)←−−→ {0, 1}-valued, bounded cocycle

in H
2
b
(Γ; Z)

Exercise 4.21. Give an algebraic condition on a cocycle taking values 0 and 1 equivalent to the
nondegeneracy condition on the circular order cocycle.

4.4 Further exercises

1. ***(Open question) Give an example of a compact manifold M �= S
1 and a finitely generated, torsion-

free group Γ, with no faithful homomorphism Γ → Homeo(M).

2. Let Γ be a group. Prove that the following conditions are each equivalent to being left-orderable

(a) (Positive cone condition). Γ admits a decomposition into semigroups Γ = {id} � P �N , where
N = {g−1 : g ∈ P}.

(b) *(Finite condition, see [16] for proof). For every finite collection of nontrivial elements g1, ..., gk,
there exist choices �i ∈ {−1, 1} such that the identity is not an element of the semigroup generated
by {g�i

i }. (hint: one direction is easy: suppose Γ is orderable, and choose exponents to make gi

positive...)
(c) **(Burns–Hale theorem, see proof sketch in [10]). Every finitely generated subgroup H of Γ

admits a surjective homomorphism to a nontrivial left-orderable group.

3. (Dynamical realization of bi-orderable groups, suggested by Ying Hu)
A group is called bi-orderable if it has a total order which is preserved under both left- and right-
group multiplications. Prove that a group Γ is bi-orderable if and only if it admits an embedding into
Homeo+(R), such that, for any g ∈ Γ either gx ≥ x or gx ≤ x for any x ∈ R.

4. *Does Homeo+(S1) have a left-invariant circular order in the sense of Definition 4.10?

5. Show that c− 2φ
∗(e) is the coboundary of a bounded 1-cochain.

Hint: following [33], use the “dirac mass” function δ0(f) =
�

1 if f(0) = 0
0 otherwise (and perhaps modify by

a constant).
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6. (Bounded cohomology and quasimorphisms) A function φ : G → R is a quasimorphism if there exists
D such that

|φ(g1g2)− φ(g1)− φ(g2)| for all g1, g2 ∈ G.

You can think of it as being “a homomophism up to bounded error.”
In fancier language, φ is a (inhomogeneous) 1-cochain on G, whose coboundary is bounded.

(a) Let QM(G) denote the set of all quasimorphisms on G. Show that

QM(G)/C
1
b (G)⊕Hom(G; R)

is isomorphic to the kernel of the comparison map H
2
b (G; R) → H

2(G; R). (The isomorphism is
given by the usual coboundary).

(b) * A quasimorphism φ : G → R is called homogeneous if φ(gn) = nφ(g) for all n. Show that
each φ ∈ QM(G) has a homogeneous representative in QM(G)/C

1
b (G). In other words, a

quasimorphism can be “homogenized” by adding a bounded function.
(c) **(Example due to Brooks) Let G = �a, b� be the free group on two generators. For a word w,

define φ(w) to be the number of appearances of the string aab in the word w, minus the number
of the appearances of aab in w

−1. Show that φ is a quasimorphism. Hint: work on the cayley
graph.

(d) ***(The Poincaré rotation number) Let G = �Homeo+(S1), thought of as the group of homeo-
morphisms of R that commute with integer translation. Define a function φ : G → R by

φ(f) = lim
n→∞

f
n(0)
n

.

Show that φ is a quasimorphism. What is its relationship with the Euler class?

7. *** (Open question, Calegari) Let Homeo(D2
, ∂) be the group of homeomorphisms of the 2-dimensional

disc that fix the boundary pointwise. Is Homeo(D2
, ∂) left-orderable?

Calegari has an enlightening blog post on this topic: lamington.wordpress.com/2009/07/04/orderability-
and-groups-of-homeomorphisms-of-the-disk/
In particular, the group of diffeomorphisms Homeo(D2

∂) is left-orderable! The proof of this uses
Thurston Stability – the main technique developed by Thurston to generalize the Gray stability theo-
rem in foliation theory.
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5 Metrics on homeomorphism and diffeomorphism groups

Lectures 1-3 discussed the interplay between the algebraic structure of Diffr

0(M) and the topology
of M and Diffr

0(M). Today, we turn to a new topic – new also in the sense that most research on
it is in its infancy – and study the geometry of Diffr

0(M). However, we’ll see familiar techniques
re-appear in this context.

Motivated by the algebra ↔ topology relationship, one of our main goals will be to under-
stand the relationship between the geometry of Diffr

0(M), with respect to a suitable metric, and
the topology of the underlying manifold M . Of course, the geometry of Diffr

0(M) depends on
the choice of metric, so we begin with a discussion of candidates for good metrics on Diffr

0(M).
We would like the metric to reflect the fact that Diffr

0(M) is a group, so for today we consider
only left-invariant metrics5. Recall that the Birkhoff-Kakutani theorem implies that any metriz-
able topological group admits a left-invairant metric that generates its topology, so restricting our
attention to left-invariant metrics is not unreasonable.

We start this lecture with a zoo of diverse examples of metrics. Eventually, we turn our focus to
word metrics, and then motivate the study of the large-scale geometry of such metrics by introducing
an extension problem. Lecture 6 is a detailed study of large-scale geometry of homeomorphism
groups.

5.1 Constructing metrics 1: “Riemannian” metrics

If G is a Lie group, there exist many left-invariant Riemannian metrics on G, obtained by taking
any inner product on the tangent space TidG

∼= g and then left-translating it to give an inner
product at the tangent space to each other point.

We mentioned in Lecture 1 that, for r ≥ 1, Diff0(M) is a Banach or Frechet manifold, whose
tangent space at the identity can be identified with the Lie algebra of C

r vector fields on M . The
same process gives us a weak-Riemannian structure on Diff0(M).

Definition 5.1. A weak-Riemannian structure on a manifold is a smooth choice of inner product
on each tangent space.

By contrast a strong Riemannian structure is a smooth choice of inner product on each tangent
space that induces an isomorphism of the tangent space at each point with the cotangent space at
that point. In finite dimensions this comes for free, but in general, strong Riemannian structures
on a manifold only exist if the manifold is modeled on a Hilbert space. However, one can still use
a weak-Riemannian structure to define path length and a (possibly degenerate) metric.

Definition 5.2. Let G be a manifold, and �, �g an inner product on Tg(G). The length of a path
{gt}1

t=0 is

�(gt) =
1�

t=0

�ġt, ġt�gt
dt

where ġt = d

dt
(gt)

5Of course, we could just as well consider right-invariant metrics – if you haven’t checked already, verify that dL

is a left-invariant metric on a group G if and only if dR(g1, g2) := dL(g−1
1 , g−1

2 ) is a right-invariant metric.
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Remark 5.3. Definition 5.2 works just as well given only a norm � · �g on Tg(G); we define
�(gt) :=

�
�ġt�gt dt

Given a notion of path-length, we get a distance function

d(f, g) =: inf{�(gt) | gt is a path from f to g}.

In some cases, the path-distance defined by this weak-Riemannian structure gives a genuine
metric. (However, weak-Riemannian structures are not generally so well behaved – certain choices
of inner product on vector fields on S

1 give a path-distance that is ≡ 0 [4]!) When one does have
a metric, one can ask whether it is complete, geodesic, locally geodesic, etc. Little is known about
such metrics on Diff0(M), except when M = S

1. See the introduction of [18], or the paper [13] for
a brief survey of recent results.

A success story: Hofer’s metric. Let (M, ω) be a symplectic manifold. The Hofer metric on
the space Hamc(M) of compactly supported Hamiltonian symplectomorphisms is the path-metric
distance given by the L∞ norm �Ht� = supx∈M Ht(x)− infx∈M Ht(x) on the space of hamiltonian
vector fields (the tangent space at the identity to Hamc(M)). Nondegeneracy of this metric is a
difficult theorem, proved for R

2n by Hofer, and in the most general case by Lalonde and McDuff.
See Chapter 12 of [48] for more on the geometry of Ham with the Hofer metric.

It is easy to check that Hofer’s metric is not only left, but also right–invariant. Remarkably, it
is the only such metric on Hamc(M)!

Theorem 5.4 (Buhovsky – Ostrover [8]). Any continuous, bi-invariant, nondegenerate Finsler
metric on Hamc(M) is equivalent to the Hofer metric.

Eliashberg and Polterovich earlier showed that using the Lp rather than L∞ norm on hamilto-
nian vector fields gives a totally degenerate metric, i.e. with d ≡ 0. Another way in which a metric
can be considered “degenerate” is if it is bounded. The following is a well known open question.

Question 5.5 (open). Does there exist a symplectic manifold (M, ω) such that the Hofer norm on
Ham(M) is bounded?

For many examples (Lalonde, McDuff, Schwartz, Entov, Polterovich...) the Hofer norm is known
to be unbounded, and as far as I know, the expected answer to Question 5.5 is “no”

5.2 Constructing metrics 2: Word metrics

If G is any group, and S a symmetric generating set for for G, define a word norm � · �S on G by

�g�S = min{k | g = s1s2...sk where si ∈ S}.

There is a standard procedure to turn a norm on a group into a left-invariant metric: define

dS(g, h) = �h−1
g�S .

Exercise 5.6 (standard facts). Check that the word norm defined above is indeed symmetric,
nondegenerate, and subadditive (i.e. �gh� ≤ �g� + �h�). Check that dS satisfies the triangle
inequality. Show how one can use a norm to define a right-invariant metric in a similar way.
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Example: Fragmentation norm. Let U be an open cover of M . The U-fragmentation norm on
Diffr

0(M) is the word norm with respect to the generating set

{f ∈ Diffr

0(M) | supp(f) ⊂ U for some U ∈ U}.

The fragmentation metric will play an important role in the second half of this talk, in particular,
we’ll see how it changes as we vary U .

We mention briefly another application of the fragmentation norm. Let Homeoc(D2
, area)

denote the group of area-preserving homeomorphisms of the disc that fix a neighborhood of the
boundary. It is an open question whether this group is simple. In [37], F. Le Roux shows that
simplicity is equivalent to boundedness of a certain fragmentation norm.

Theorem 5.7 (Le Roux [37]). The following fragmentation condition is equivalent to simplicity
of Homeoc(D2

, area). There exists a constant m such that any area-preserving homeomorphism of
the plane supported on a disc of area 1 is the composition of m area-preserving homeomorphisms
supported on topological discs each of area 1/2.

Example: Autonomous metric.6 In Lecture 1, we mentioned that every f ∈ Diff0(M) is the
time-1 map of the flow of a time-dependent vector field; similarly every f ∈ Ham(M) is the time-1
map of the flow of a time-dependent Hamiltonian vector field. This is not true if one removes the
“time-dependent” condition – in fact there are diffeomorphisms of S

1 (or any manifold) arbitrarily
close to the identity that are not the time one map of any flow. In other words, the Lie group
exponential map from X(M) to Diff0(M) is not surjective. See Chapter 1 of [36] for more details.

However, Diff0(M) is generated by the set of flows, and Ham(M) is generated by the set of
autonomous (time independent) Hamiltonians. The autonomous metric on Diff0(M) and Ham(M)
are defined using the word norm with respect to these generating sets. This has been studied
(although is not well understood) in the case of Ham(M), see [5] [6].

Example: commutator length Let G be a perfect group (for example, Diffr

0(M) for r �=
dim(M) + 1). Then the commutator subgroup [G, G] generates G and the commutator length of an
element, cl(g), is the norm with respect to this generating set. If cl, and hence the induced norm
on G, is bounded, then G is called uniformly perfect. See Exercise ?? from Lecture 1. Commutator
length is closely related to quasi-morphisms on Diffr

0(M), see e.g. [25].

Exercise 5.8. (Conjugation-invariant metrics.)

a) A metric is called conjugation-invariant if d(a, b) = d(gag
−1

, gbg
−1) for all a, b, g ∈ G. Suppose

d is a left-invariant metric. Verify that d is also right-invariant iff it is conjugation-invariant.

b) Verify that the autonomous metric and the commutator length metric are conjugation-invariant.

c) Define the conjugation-invariant fragmentation norm on Diff0(M) by

�f� = min{k | f = f1f2...fk where supp(fi) is contained in some embedded ball in M}.

Verify that the induced left-invariant metric is conjugation-invariant.
6“autonomous” comes from the fact that the vector fields are autonomous, or time–independent.

26



In [9], Burago, Ivanov and Polterovich discuss general conjugation-invariant norms on diffeo-
morphism groups. They prove

Theorem 5.9 ([9]). Let M be a compact manifold. Any conjugation invariant norm � · � on
Diff0(M) is “discrete” in the sense that 0 is not an accumulation point of {�g� : g ∈ G}.
If M is a 3-manifold, or M = S

n, then any conjugation-invariant norm on Diff0(M) is discrete and
bounded.

In particular, the first part of this theorem shows that no sub-Riemannian metric on Diff0(M)
can be conjugation invariant, in contrast with, the Hofer metric on Ham, or the metric induced
by the killing form on a compact semi-simple Lie group. One step of the proof is to reduce the
theorem to one about a particular conjugation-invariant norm.

Theorem 5.10 ([9]). If the conjugation-invaraint fragmentation norm is bounded on Diff0(M),
then any conjugation invariant norm on Diff0(M) is bounded.

Question 5.11 (Open question, [9]). Does there exist an unbounded conjugation-invariant norm
on Diff0(Σg)?

5.3 Motivation: A new take on extension problems

In Bena’s lecture on Wednesday, we saw the following

Theorem 5.12. Let Γ = π1(Σg)
φ→ Diff+(S1) be the standard Fuchsian representation (with image

a discrete subgroup of PSL(2, R)). Let S be a surface with χ(S) < 0, and at least one S
1 boundary

component. Then there is no extension of φ to Homeo0(S), i.e. no homomorphism ρ such that the
diagram below commutes.

Diff0(S)

restrict

��

Γ
φ

��

ρ

������������
Diff+(S1)

The essence of the proof was an argument that the Euler class φ
∗(e) ∈ H

2(BΓ; Z) is nonzero, but
that H

2(B Diff0(S)) = 0.
Motivated by this success, we ask a seemingly similar question:

Question 5.13. Let D
2 denote the 2-disc. Does there exist a finitely generated group Γ, and

homomorphism φ : Γ → Diff+(S1) with no extension to Diff0(D2)?

Unfortunately there can be no cohomological obstruction in this case, as B Diff0(D2) is homo-
topy equivalent to B Diff+(S1), and the restriction map is a homotopy equivalence (exercise: prove),
so induces an isomorphism on cohomology of classifying spaces. Note also that the corresponding
question for groups of homeomorphisms has a positive answer – any group of homeomorphisms of
S

1 can be extended to a group of homeomorphisms of D
2 by “coning off” the action. However, a

clever argument of Ghys gives a negative answer.

Theorem 5.14 (Ghys [26]). There is a finitely generated group Γ, and homomorphism φ : Γ →
Diff+(S1) with no extension to Diff0(D2)
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The theorem Ghys states in [26] is weaker – he states that the whole group Diff+(S1) does not
extend – but his proof produces a finitely generated example. The following outline of Ghys’ proof
is adapted from [40].

Proof. Let Γ be the group with the following presentation
�
f, g, t | t

6 = id, [f, g] = t, [f, t
2] = id, [g, t

2] = id
�

We now construct an action of Γ on S
1 by diffeomorphisms. Recall from Lecture 2 that any

rotation of the circle can be written as a commutator of hyperbolic elements in PSL(2, R) ⊂
Diff+(S1). So let f̄ and ḡ be such that [f̄ , ḡ] is a rotation of order 2. Let f and g be lifts of f̄

and ḡ to diffeomorphisms of the threefold cover of the circle – and identify this cover with S
1. If

we choose the (unique) lifts that have fixed points, then the commutator [f, g] will be rotation of
S

1 by π/3. Let t = [f, g]. Then t
6 = id, and t

2 is a deck transformation of our threefold cover, so
commutes with the lifts f and g. This gives the desired action of Γ on S

1.
Now assume for contradiction that there is an extension ρ : Γ → Diff0(D2). Since ρ(t) has

order 6, Kerekjarto’s theorem (see [12] for a nice proof) implies that ρ(t) is conjugate to an order 6
rotation, hence has a unique fixed point in the interior of D

2. Let x denote this fixed point. Since
ρ(f) and ρ(g) commute with ρ(t), they also fix x. This gives us a homomorphism Γ → GL(2, R)
by taking derivatives at x:

γ �→ D(ρ(γ))x.

Now D(ρ(t2))x is a rotation by 2π/3, and it follows from the relations in Γ that D(ρ(f))x and
D(ρ(g))x lie in its centralizer. But the centralizer of such a rotation in GL(2, R) is abelian, hence
[D(ρ(f))x, D(ρ(g))x] = id. This contradicts the fact that [D(ρ(f))x, D(ρ(g))x] = D(ρ(t))x.

With a small modification of this argument, Ghys also shows that there is a homomorphism of
a finitely generated group Γ → Diff0(Sn) that does not extend to Diff0(Dn+1), for all n odd. In all
cases, the main trick is using torsion to force a global fixed point.

Question 5.15. Does there exist a finitely generated torsion free group Γ, and homomorphism
φ : Γ → Diff+(S1) with no extension to Diff0(D2)?

The easiest way to adapt Ghys’ proof would be to find a direct substitute for torsion – an
algebraic condition on a group Γ ⊂ Diff0(D2) that would force an element to have a unique fixed
point, or at least a predictable fixed set. Fortunately, there is such a property – distortion.

Definition 5.16. Let Γ be a finitely generated group, with generating set S, and let � · �S denote
the word norm with respect to S. An element g ∈ Γ is distorted if

lim inf
n→∞

�gn�S

n
= 0

The following theorem of Franks and Handel now gives us exactly what we would like:

Theorem 5.17 (Consequence of Franks–Handel [24]). Let Γ be a finitely generated subgroup of
Diff0(D2), and t ∈ Γ a distorted element. If t acts on ∂ D

2 as a nontrivial rotation, then t has a
unique interior fixed point.
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Using this, it is possible to modify Ghys’ example and give a positive answer to Question 5.15.
See [40] for a proof.

Distortion in groups of diffeomorphisms. Franks and Handel’s work in [24] proves a much
more general result about distorted elements in groups of diffeomorphisms of surfaces – Theorem
5.17 is only one specific instance. The general theme is that distortion places strong restrictions on
the dynamics of a group element. Hurtado’s proof of Theorem 3.4 also relies heavily on distorted
elements in groups of diffeomorphisms, and even more recent results along this theme are contained
in [24], [11], [50], and [54]. In many cases, distortion has provided a fruitful approach to questions
related to the Zimmer program.

One unsatisfactory point about the definition of distortion given above is that it references a
particular choice of generating set S for Γ. Fortunately, this is not necessary:

Exercise 5.18. Let Γ be a finitely generated group, and S and T finite generating sets. Show that
g is distorted with respect to � · �S if and only if it is distorted with respect to � · �T .

In the next lecture, we will see this as a specific instance of a more general theme: distortion is a
quasi-isometry invariant and any two word metrics on Γ are quasi-isometric.

However, there is another unsatisfactory point in our definition of distortion – the reference to
a particular finitely generated subgroup Γ ⊂ Diff0(M). Ideally, one would like a notion of distortion
for elements in homeomorphism or diffeomorphism groups akin to the following:

Definition 5.19 (Tentative definition?). Let G = Diff0(M) or Homeo0(M), and let S be a gener-
ating set for G, with word norm � · �S . An element g ∈ Γ is distorted if

lim inf
n→∞

�gn�S

n
= 0

However, as we’ll see in the next lecture, since G is not finitely (nor compactly) generated,
this notion is no longer independent of the generating set. Historically, the solution has been to
define an element of Diff0(M) to be distorted if there exists a finitely generated subgroup in which
it is distorted. In the next lecture, we propose a better solution – at least for Homeo0(M) – by
identifying a preferred word metric7 on Homeo0(M). We’ll also see a theorem of Rosendal that
shows that this metric, despite being discrete, captures the topology of Homeo0(M) at least on a
large scale, and we’ll study the large-scale geometry of homeomorphism groups.

5.4 Further exercises

1. (a) *Modify the argument of Theorem 5.14 to produce a finitely generated group Γ and homomor-
phism Γ → Diff0(Sn) that does not extend to Diff0(Dn+1), for n odd.

(b) ***(open). Do the same for n even.

2. Answer Bena’s question from problem set 3:
For n ≥ 2, give an example of a group action Γ → Homeo0(Sn ∪ . . . ∪ S

n) such that

• Γ is countable and torsion free
• There exists W with ∂ W = Sn ∪ . . . ∪ S

n for which the action does not extend.
7technically, a preferred quasi-isometry class. This is completely analogous to the situation for finitely generated

groups, where all finite generating sets give quasi-isometric word metrics, but an infintie generating set might not.
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3. **(reprove my theorem) Given an example of a countable, torsion-free group Γ and an action Γ →
Homeo0(S1) that does not extend to Homeo0(D2). *** Can you do this for S

2 and D
3?

4. (The autonomous metric on Diff0(M)). Let S ⊂ Diff0(M) be the set of diffeomorphisms that are the
time 1-map of the flow of some vector field. (Recall that in lecture 1 we said S �= Diff0(M)).

(a) Prove that S generates Diff0(M). (use simplicity of Diff0(M))
(b) Show, if you didn’t already that the word metric dS is conjugation-invariant.
(c) **Can you give an example of a manifold where the autonomous metric is unbounded?

5. *** (open) Let g ≥ 1. Find an unbounded conjugation-invariant metric on Diff0(Σg)
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6 Large-scale geometry of homeomorphism groups

6.1 The basics of large-scale geometry

Large-scale or coarse geometry is the study of properties of metric spaces that can be identified by
someone with poor eyesight – properties that can be formulated in terms of large distances only.
These properties are usually named “quasi–” or “coarse–” (e.g. coarse connectedness, coarse simple
connectedness, quasi-geodesic, quasi-isometry...)

Definition 6.1. Let X, dX and Y, dY be metric spaces. A quasi-isometric embedding X → Y is a
function f : X → Y such that there exist k, c with

1
k
dY (f(p), f(q)− c ≤ dX(p, q) ≤ kdY (f(p), f(q)) + c

for all points p, q ∈ X.

If, additionally each point y ∈ Y is a uniformly bounded distance from a point in the image of
f , we say that f is a quasi-isometry

Figure 2: Assume these are length-preserving embeddings R → R
2 Which are quasi-isometric

embeddings?

Exercise 6.2. (For those unfamiliar with large-scale geometry.) Show that quasi-isometric is an
equivalence relation on metric spaces. Show it is nontrivial by giving an example of metric spaces
that are not quasi-isometric.

Example 6.3. The following are examples of quasi-isometries.

1. The inclusion of Z
n into R

n

2. The “inverse” map R
n → Z

n given by (x1, ...xn) �→ (�x1�, ...�xn�)

3. Let Γ be a finitely generated group, and S and T symmetric, finite, generating sets with word
metrics dS and dT . The identity map (Γ, dS) → (Γ, dT ). is a quasi-isometry
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4. If Γ� is a finite index subgroup of Γ, then inclusion Γ� → Γ is a quasi-isometry (with respect
to any word metrics)

5. (Generalizing 5.2.1) If M is a compact manifold, then M̃ is quasi-isometric to π1(M). This
is a special case of:

6. (Milnor-Schwartz8 ) Let Γ be a finitely generated group, and suppose Γ acts properly discon-
tinuously on a space X by isometries. If X/Γ is compact, then any orbit map γ �→ γ(x0) is a
quasi-isometry Γ → X. 9

Item 3 in the example above gives us a first indiction why quasi-isometry is the “right” notion
of equivalence for metrics on groups, at least in the finitely-generated case. A finitely generated
group Γ does not have a canonical metric, but it does have a canonical quasi-isometry type. This
statement readily generalizes to locally compact groups.

Exercise 6.4. Let G be a locally compact, compactly generated group. If S and T are compact
generating sets, show that (G, dS) and (G, dT ) are quasi-isometric. [See also problem 1. in the
“Further exercises” section.]

For example, you proved as an easy exercise in Lecture 1 that a connected group was generated
by any neighborhood of the identity. If your group is locally compact (for example, a Lie group),
Exercise 6.4 now says that the corresponding word metric gives a well-defined QI type, independent
of the neighborhood of the identity you chose.

Considering metrics up to quasi-isometry dissolves the division between word metrics and met-
rics that generate the topology of G (such metrics are said to be compatible).

Theorem 6.5 (Birkoff-Kakutani, Struble, Rosendal10). Let G be a locally compact metrisable
group generated by a compact symmetric set S. Then G admits a compatible left-invariant metric
quasi-isometric to dS .

Much of the existing literature on large-scale geometry of groups focuses on the finitely generated
case. The general locally compact case is treated in a wonderful and very new book of Cornulier
and de la Harpe [15]. For the more advanced, Cornulier also has a survey preprint on the quasi-
isometric classification of locally compact groups [14], with emphasis on the hyperbolic/negatively
curved case and QI rigidity of locally symmetric spaces.

To illustrate the power of the large-scale perspective, we give a quick proof of a toy theorem.

Theorem 6.6 (Toy theorem). If a finite index subgroup of Z
n is isomorphic to a finite index

subgroup of Z
m, then m = n.

Proof. Suppose there is an isomorphism of finite index subgroups of Z
m and Z

n. Then there exists
a (k, c) quasi-isometry φ : Z

n → Z
m. We’ll use a trick to get rid of the additive constant c and turn

this into a k-bilipschitz map.
8 This is often called the “Milnor-Švarc” lemma, but according to a story I heard from M. Kapovich, this spelling

is the result of a translation of “Schwartz” into and back out of Russian. The point of the story being that translation
is only a quasi-isometry of languages...

9Gromov later proved a theorem that indicates cocompact actions are exactly the right thing to think about: Two

finitely generated groups Γ1 and Γ2 are quasi-isometric iff there exist commuting proper cocompact actions of Γ1 and

Γ2 on some locally compact Hausdorff space X.
10 This is Rosendal’s modification of Struble’s modification of the Birkhoff–Kakutani metrisation theorem
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For � > 0, let Z
n
� denote Z

n with the usual metric rescaled by �, so the old unit ball is the new
�-ball. You can think of Z

n
� as sitting inside R

n as a lattice generated by (�, 0, 0, ...0), etc.
We have

dZm
�

(φ(x), φ(y)) = �dZm(φ(x), φ(y)) ≤ �
�
kdZn

�
(x, y) + c

�
= kdZn

�
(x, y) + �c

So φ is a (K, �c) quasi-isometry as a map Z
n
� → Z

m
� . Now we “take a limit”: define φ̂ : R

n → R
m by

taking any sequence xj ∈ Z
n

1/j
that converges to x, and set φ̂(xj) = lim

j→∞
φ(xj). This gives a (K, 0)

quasi-isometry, i.e. a k-bi-Lipschitz map. A bi-Lipschitz map is a homeomorphism onto its image
– which implies that m ≤ n. But we could have just as well done this with m and n reversed.

Remark 6.7. An important application of this “rescaling the metric” technique is a kind of coarse
differentiation of quasi-isometries: one first turns a quasi-isometry into a bi-Lipshitz map (of a
different space...), then applies Rademacher’s theorem to conclude this map is almost everywhere
differentiable. This strategy has been quite fruitful in problems of classification of quasi-isometries.

6.2 Large-scale geometry of general metrisable groups

Our next goal is to try to apply the techniques of large-scale geometry to homeomorphism and
diffeomorphism groups. Unfortunately, these groups are not locally compact – so the word metric
with respect to a nice generating set may not give a canonical quasi-isometry type as in Exercise
6.4. Here is an example of what can go wrong.

Example 6.8. Consider the (additive) group R
N with the standard product topology. This group is

connected, so generated by any neighborhood of the identity. A neighborhood basis of the identity
is given by sets of the form

Un,� := (−�, �)n × R× R× ...

(with n and � varying). If n �= m, then the word metrics with respect to Un,� and Um,� with not be
quasi-isometric.

In [58], C. Rosendal develops a framework for dealing with this problem – identifying which
properties of a metrisable group imply that it has a canonical quasi-isometry type, and giving us
an analog of Theorem 6.5 for a wider class of groups than just the locally compact. We assume
all groups are Polish – completely metrizable and separable, although completeness isn’t always
needed.

The starting point of Rosendal’s theory is the right generalization of “compact set.”

Definition 6.9. A subset K ⊂ G is said to have property (OB) relative to G if it has finite diameter
in every compatible left-invariant metric on G.11

For connected groups, Definition 6.9 is equivalent to the following condition:

(∗) For every open neighborhood V of id, there is k ∈ N such that K ⊂ V
k

11The terminology (OB) comes from “orbites bornées” – an equivalent formuation of the condition is that for every
continuous isometric action of G on a metric space, every orbit Ax has finite diameter.
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Here V
k denotes the set of words of length k in letters of V . If G is not connected, then we

allow there to be some finite set F such that K ⊂ (FV )k. If G is connected, the two conditions
are equivalent, since any finite set lies in some V

n. For simplicity, we’ll restrict our attention to
connected groups from now on.

Condition (∗) lets us define a canonical word metric for any group with a relatively-(OB)
neighborhood of the identity.

Exercise 6.10. Let G be a connected Polish group, and suppose that U and V are symmetric
neighborhoods of the identity, each with the relative property (OB). Use property (∗) to show that
the word metrics dU and dV are quasi-isometric.

We say that a group with a relatively-(OB) neighborhood of the identity has the local property
(OB).

Rosendal also proves an analog of Theorem 6.5 for groups with the local property (OB), and
shows that these word metrics are canonical in an even stronger sense.

Theorem 6.11 (Rosendal, [58]). Let G be a Polish group with V ⊂ G a relatively-(OB) neighbor-
hood of the identity.

i) (Compatibility) G admits a compatible, left-invariant metric that is quasi-isometric to the word
metric dV .

ii) (Maximality) The word metric dV is maximal in the following sense: If d is a compatible,
left-invariant metric on G, then there exist k, c so that d(a, b) ≤ kdV (a, b) + c for all a, b ∈ G.

iii) (Uniqueness) If d
� is any metric satisfying the maximality condition above, then (G, d

�) is
quasi-isometric to (G, dV ).

6.3 Large-scale geometry of homeomorphism groups

Using fragmentation, we now prove that Homeo0(M) has a well defined quasi-isometry type.

Theorem 6.12 (Mann–Rosendal). Homeo0(M) has the local property (OB).

Proof. Let M be a closed manifold. Let {B1, B2, ...Bn} be a cover of M by embedded open balls.
The proof of the fragmentation theorem (Theorem 1.7) implies that there is a neighborhood U of
the identity in Homeo0(M) such that any g ∈ U can be factored as a product

g = g1g2 . . . gn

with supp(gi) ⊂ Bi. (This was indicated in our sketch of a proof, the complete proof is Corollary
1.3 in [17]). We’ll show that U has the relative property (OB).

Let V ⊂ U be a neighborhood of the identity. We will find a finite set F with U ⊂ FV
n
F ⊂

(FV )n+1. By our comment regarding condition (∗), this is sufficient to show that U has the relative
property (OB). Let � > 0 be small enough so that any homeomorphism f with supp(f) contained
in a ball of diameter � is contained in V . For each Bi, choose hi ∈ Homeo0(M) so that hi(Bi) is
contained in some ball B

�
i

of diameter �. Then supp(h−1
i

gihi) ⊂ B
�
i
, so h

−1
i

gihi ∈ V ; equivalently,
gi ∈ hiV h

−1
i

. Define F to be the finite set

F = {hi, (h−1
j

hj+1), h−1
n | 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1}.
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Then g ∈ h1V h
−1
1 h2V......hnV h

−1
n ⊂ (FV )n+1

.

Example 6.13. (Some examples of QI types)

1. (Calegari–Freedman [11]) Homeo0(Sn) is quasi-isometric to a point.

2. If M has infinite fundamental group, then Homeo0(M) is unbounded. (point-pushing)

3. �Homeo0(S1) also has the local property (OB), and is quasi-isometric to Z.

6.4 Distortion revisited

The following definition is standard for finitely generated groups, and readily generalizes to any
group with the local property (OB).

Let G be a group and H ⊂ G a subgroup. Assume that both G and H have the local property
(OB) – if they are discrete groups, they should be finitely generated – and let dG and dH be maximal
metrics (in the sense of Theorem 6.11) – if G and H are finitely generated, one may take any word
metric.

Definition 6.14. The dH , dG distortion function is a function D : H → Z defined by

D(r) := sup{dH(h, id) | h ∈ H and dG(h, id) ≤ r}

Distortion measures how much of a “shortcut” between elements in H one can take by traveling
in G. The subgroup H is said to be undistorted if D is bounded, in which case the inclusion
H �→ G is a quasi-isometric embedding, and is distorted otherwise. If we replace dG (and/or dH)
by quasi-isometrically equivalent metrics and let D

� denote the new distortion function, then there
exists c ∈ R such that 1

c
D(r/c) ≤ D

�(r) ≤ cD(cr). Thus, whether the distortion function is linear,
polynomial, exponential, superexponential, etc. depends only on the large scale geometry of G and
H.

Exercise 6.15. In Lecture 5, we defined an element g in a finitely generated group Γ to be distorted
if

lim inf
n→∞

�gn�S

n
= 0.

Show that this is equivalent to distortion of the Z subgroup generated by g in Γ, in the sense of
the definition above.

The following proposition, essentially due to Militon, reconciles the notion of distorted elements
in Homeo0(M), in the historical sense, with distorted cyclic subgroups.

Proposition 6.16 (Militon, [50]). Let M be a compact manifold, and �·�U the word norm induced
by a neighborhood U of the identity with the relative property (OB). Let g ∈ G be a distorted
element. Then there exists a finitely generated subgroup S ⊂ G such that

�gn�S ≤ Kn log(n)
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Application of distortion: Proof of Hurtado’s theorem. Uniting nearly all the topics we’ve
covered so far, we give a rough indication of Hurtado’s proof of continuity of homomorphisms
between diffeomorphism groups, using a theorem of Militon on distortion (which itself uses frag-
menation!).

Theorem 6.17 (Hurtado [32]). Let M and N be compact manifolds, and φ : Diff0(M) → Diff0(N)
be a homomorphism. Then φ is continuous.

We will only sketch a proof of the following weaker statement, which is Hurtado’s first step.

Suppose fn → id in Diff0(M). Then there is a subsequence fnk such that φ(fnk) con-
verges to an isometry of N .

Very loosely, the strategy of proof is as follows. Suppose that gn is a sequence of diffeomorphisms
approaching the identity. The same ingredients as in Militon’s Proposition 6.16 (namely, Lemma
1 from [49]) allows one to find a finitely generated subgroup �S�, containing all gn, and such that
the word norm �gn�S is controlled – and the control is essentially independent of the sequence gn.

Now the fact that gn can be expressed as words of bounded length gives some weak control on
the norms of the derivatives of φ(gn) – one can give a kind of double-exponential bound. However,
if the norms of derivatives of φ(gn) formed an unbounded sequence, then one could pass to a
subsequence g

�
n along which they grew arbitrarily fast – say a triple exponential – so that when one

runs the same argument with the sequence g
�
n (finding a finite set S

�, etc.) this would contradict
the double-exponential control on norm given by the word length of g

�
n in S

�.
This strategy shows that all k

th derivatives of φ(gn) remain bounded. One then applies Arzela-
Ascoli to find a convergent subsequence converging to some h ∈ Diff0(N) and uses an “averaging
a metric along iterates of h” to show that h is an isometry.

6.5 Further exercises

1. (Quasi-isometry types of locally compact groups)

(a) Verify that a locally compact, compactly generated group G has a well defined quasi-isometry
type (i.e. if T and S are compact generating sets, then (G, dS) and (G, dT ) are quasi-isometric.
Remark: note that this is not necessarily true if S is not compact).

(b) Let Γ be a (finitely generated) cocompact lattice in a Lie group G. (Note that G is locally
compact, so has a well-defined QI type.) Show Γ is quasi-isometric to G.

2. Prove that Homeo0(S1) is quasi-isometric to a point as follows:

(a) Let x, y ∈ S
1. Show that any f ∈ Homeo0(S1) can be written as f = f1f2f3 where f1 and f3 fix

x, and f2 fixes y.
(b) *Show that the subgroup of homeomorphisms of S

1 that fix x is quasi-isometric to a point. (i.e.
for any small neighborhood of the identity U , there exists k so that any f fixing x can be written
as a word of length at most k in U .

(c) ** Challenge: Can you generalize to S
n?
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